An Observation on the First Case of Fermat's Last Theorem

Norio ADACHI

Waseda University

Let p be an odd prime number. We consider Fermat's equation

$$(1) x^p + y^p + z^p = 0$$

under the condition

$$(2) xyz \not\equiv 0 \pmod{p}.$$

We abbreviate as $\mathrm{FLT}_1(p)$ the statement that the equation (1) has no solutions in integers under the condition (2). It is well-known that if p does not divide the (relative) class number of the cyclotomic field $L=Q(\zeta)$, where ζ is a primitive p-th root of unity, then $\mathrm{FLT}_1(p)$ is true.

In the present paper, we study what we can say about $FLT_1(p)$, supposing the relative class number of an imaginary subfield of L is not divisible by p. We prove the following:

THEOREM. Suppose that $FLT_1(p)$ is not true, and let x, y, z be non-zero integers satisfying (1) and (2). Put t=x/y and let

$$H = \left\{t, \frac{1}{t}, -\frac{1}{1+t}, -(1+t), -\frac{t}{1+t}, -\left(1+\frac{1}{t}\right)\right\}.$$

Let M be an arbitrarily fixed imaginary proper subfield of the cyclotomic field L. Put

$${\it \Phi}(T)\!=\!N_{{\scriptscriptstyle L/M}}(T\!+\!\zeta)\!-\!N_{{\scriptscriptstyle L/M}}(T\!+\!\zeta^{{\scriptscriptstyle -1}})$$
 ,

where $N_{L/M}$ denotes the relative norm map from L to M. If p does not divide the relative class number h_M^- of the field M, then any number in the set H satisfies the congruence

As an example, we consider the case M is a quadratic field $Q(\sqrt{-p})$ Received September 9, 1987

with $p \equiv -1 \pmod{4}$. Then it is well-known that p does not divide the class number of the quadratic field; in fact, it is easily seen that the class number is less than p (cf. for example, Lemma 2 in [2]). In §2, we will give the table of the solutions of (3) for any prime number $p \leq 199$, by which we will know that $FLT_1(p)$ is true for these prime numbers.

We note that p divides the relative class number h_{M}^{-} of the imaginary field M with m = [L:M], if and only if p divides the Bernoulli number B_{mj+1} for some $j=1, 3, 5, \cdots$, (p-4)/m: This was first proved by Carlitz, later by Metsänkylä and also by the author; cf. Theorem A in [1].

§1. Proof.

Suppose that the assumptions in the theorem are all satisfied. We may assume that x, y, z are pairwise relatively prime. Then it is well-known (and easily shown) that $x+\zeta^j y$'s are pairwise relatively prime for $j=1, 2, \dots, p-1$. Therefore $N_{L/M}(x+\zeta y)=A^p$ for some ideal A of M.

The p-Sylow subgroup C_0 of the ideal class group of the maximal real subfield M_0 of M naturally injects into the p-Sylow subgroup C of the ideal class group of M, since $[M:M_0]=2$ is prime to p. As the relative class number h_M^- is not divisible by p, the injection of C_0 to C is, in fact, surjective. Therefore the ideal A can be written $(\rho)S$ with $\rho \in M$ and S an ideal of M_0 , so

$$N_{L/M}(x+\zeta y)=(\rho^p)S^p$$
.

Since the left-hand side is prime to p, we may assume that ρ and S are prime to p. The above implies that S^p is principal in M. Since the natural map of C_0 to C is injective, S^p is principal in M_0 from the first beginning: $S^p = (\alpha)$ with $\alpha \in M_0$. Thus we obtain

$$N_{\scriptscriptstyle L/M}(x\!+\!\zeta y)\!=\!arepsilonlpha
ho^{_{\scriptscriptstyle p}}$$
 ,

where ε is a unit of M. By Kummer's lemma ε can be written $\zeta^{\bullet}\varepsilon_{0}$ with ε_{0} a real unit. Then $\zeta^{2\bullet}=\varepsilon/\bar{\varepsilon}\in M$. Here, and in what follows, $\bar{\alpha}$ denotes the complex conjugate of α . But M contains none of the p-th roots of unity other than 1, since $M\subsetneq L$. Therefore s is divisible by $p:\varepsilon=\varepsilon_{0}\in M_{0}$. We have

$$\bar{\rho}^p \equiv \rho^p \pmod{p}$$

for any $\rho \in M$. Therefore we obtain

$$N_{L/M}(x+\zeta y) \equiv N_{L/M}(x+\zeta^{-1}y) \pmod{p}.$$

This implies

$$\Phi(t) \equiv 0 \pmod{p}$$

On the other hand, we obtain $x+y+z\equiv 0\ (\mathrm{mod}\ p)$ by (1). Therefore the elements of H are congruent modulo p to those of the set

$$\left\{\frac{x}{y}, \frac{y}{x}, \frac{x}{z}, \frac{z}{x}, \frac{y}{z}, \frac{z}{y}\right\}$$

By the symmetry of the equation (1), the fact that T=t satisfies the congruence (3) implies that the elements of H other than t also satisfy the congruence (3). This completes the proof of the theorem.

§ 2. Some special cases.

In some special cases, the set H degenerates: If $t \equiv 1$, or -2, or $-1/2 \pmod{p}$, then $H = \{1, -2, -1/2\}$. If $t^2 + t + 1 \equiv 0 \pmod{p}$, then $p \equiv 1 \pmod{6}$ and H has only 2 distinct elements. In all other cases, H has 6 distinct elements. However, Pollaczek proved that the second case never happens ([3]), that is, $t^2 + t + 1 \not\equiv 0 \pmod{p}$.

We note that the congruence (3) is never trivial, because it is not satisfied by $T \equiv -1 \pmod{p}$. We note also that (3) is always satisfied by $T \equiv 0$, $1 \pmod{p}$. These are immediate consequences of the fact $N_{L/M}\zeta = 1$. Therefore, if $FLT_1(p)$ fails, and if h_M^- is not divisible by p, the number of the solutions of (3) must be ≥ 4 . If we admit using Pollaczek's result, then either -2 modulo p satisfies (3) or the number of the solutions of (3) must be ≥ 8 .

If m=[L:M]=3, then the degree of Φ is 2; so 0 and 1 are all of the solutions of (3). Thus we obtain the following:

COROLLARY. Suppose $p \equiv 1 \pmod{3}$. If $FLT_1(p)$ fails, then p divides B_{3j+1} for some $j=1, 3, \cdots, (p-4)/3$.

This corollary is weaker than classical results derived from "Kummer's congruences". Our proof, however, is different from their proofs.

Finally, we list the solutions of $\Phi(T) \equiv 0 \pmod{p}$ when $p \equiv -1 \pmod{4}$ and $M = Q(\sqrt{-p})$. Incidentally, $\Phi(T)/\sqrt{-p}$ is a monic polynomial with integral coefficients of degree (p-3)/2.

In the table below, the prime numbers for each of which there is a solution t of the congruence (3) such that the set H is contained in the set of solutions of (3) are 19, 43, 67, 139 and 163. But these are of the

type $t^2+t+1\equiv 0\ (\mathrm{mod}\ p)$, which is excluded by Pollaczek's result.

<i>p</i>	the solutions modulo p									
7	0	1								
11	0	1								
19	0	1	17	11						
23	0	1	7	19						
31	0	1								
43	0	1	6	36						
47	0	1	17	35	36	43				
59	0	1	22	51						
67	0	1	29	37						
71	0	1								
79	0	1								
83	0	1								
103	0	1								
107	0	1								
127	0	1								
131	0	1	10	118						
139	0	1	42	96						
151	0	1	66	135						
163	0	1	5 8	104						
167	0	1								
179	0	1	65	168						
191	0	1	56	5 8						
199	0	1								

The result in the present paper seems to have relation to Kummer's congruences. It is, however, still unknown to the author.

References

- [1] N. Adachi, Generalization of Kummer's criterion for divisibility of class numbers, J. Number Theory, 5 (1973), 253-265.
- [2] N. Adachi, The Diophantine equation $x^2 \pm ly^2 = z^l$ connected with Fermat's Last Theorem, Tokyo J. Math., 11 (1988), 85-94.

[3] F. Pollaczek, Über den grossen Fermat'schen Satz, Sitzungsber. Akad. Wiss. Wien II a, 126 (1917), 45-59.

Present Address:

DEPARTMENT OF MATHEMATICS, SCHOOL OF SCIENCE AND ENGINEERING, WASEDA UNIVERSITY OKUBO, SHINJUKU-KU, TOKYO 160, JAPAN