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\S 1. Introduction.

Let $M$ be a compact complex manifold, $G$ any compact subgroup of
the complex Lie group of all holomorphic automorphisms of $M$ and $\mathfrak{G}$ the
Lie algebra of $G$ which consists of holomorphic vector fields on $M$. In
[5], the first author defined a character $f:\mathfrak{G}\rightarrow C$ (more generally defined
a C-character of the complex Lie algebra of all holomorphic vector fields
on $M$) which depends only on the complex structure of $M$ and vanishes
if $M$ admits a Kaehler-Einstein metric. In this paper, we first see that
characters of this kind appear naturally in the Lefschetz numbers. More
precisely, let $\mathcal{D}$ be the Dolbeault complex of $M$ with values in a certain
holomorphic vector bundle over $M$ and $H^{i}$ the i-th cohomology group of
$\mathcal{D}$. Then the Lefschetz number $L(g)$ , for $g\in G$ , is by definition

$L(g)=\sum_{i}(-1)^{i}tr(g|_{H^{i}})$ .
In Theorem 4.3, we show that $f(X)$ , for $X\in \mathfrak{G}$ , coincides up to constant
with the second term of the Taylor expansion of $L(\exp tX)$ whose first
term is of course the arithmetic genus of $\mathcal{D}$. Then it becomes clear that
$f$ depends only on the complex structure of $M$ and that $f(Ad(g)X)=f(X)$
for any $geG$ .

Now we wish to put this view point into a single diagram. Let $G$

and $H$ be compact Lie groups with Lie algebras $\mathfrak{G}$ and $\mathfrak{H}$ . Let $M$ be a
compact oriented manifold of dimension $2m$ and $P$ a principal right H-
bundle over $M$. Suppose that $G$ acts on $P\rightarrow M$ on the left as bundle
automorphisms and that the action of $G$ on $M$ is orientation-preserving.
Let $\theta$ be a G-invariant connection of $P$. Then, as in [4], an H-equivariant
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$\mathfrak{H}$-valued O-form $J(X)$ on $P$ is defined for $Xe\mathfrak{G}$ by

(1.1) $J(X)(p)=\theta(X_{p}^{*})$ for $p\in P$

where $X^{*}$ denotes the vector field on $P$ induced by the flow exp $tX$ and
$\mathscr{G}^{-}(\phi):\otimes^{k}\mathfrak{G}\rightarrow C$ is defined for an H-invariant polynomial $\phi$ of degree
$m+k$ by

(1.2) $\mathscr{G}^{-}(\phi)(X_{1}, \cdots, X_{k})=\left(\begin{array}{l}m+k\\k\end{array}\right)(\frac{\sqrt{-1}}{2\pi})^{n}\int_{r}\phi(J(X_{1})\wedge\cdots\wedge J(X_{k})\wedge(\wedge^{*}\Theta))$

where $X_{i}e\mathfrak{G}$ and $\Theta$ denotes the curvature form of $\theta$ . It can be seen
from the left G-invariance of $\theta$ that $\sim Z(\phi)$ is $Ad(G)$-invariant and thus
we get a C-linear map $\mathscr{G}^{-}:$ $I^{n+k}(H)\rightarrow I^{k}(G)$ where $I^{l}(G)$ denotes the set
of all G-invariant polynomials of degree $l$ with C-coefficients. Clearly,
when deg $\phi=m,$ $\mathscr{G}^{-}(\phi)$ is a characteristic number and when deg $\phi=m+1$ ,
$\pi(\phi)$ is a character of $\mathfrak{G}$ into $C$. In Theorem 3.11, we give relations
between $\mathscr{F}^{-}$ and the Lefschetz number (or the Atiyah-Singer index). In
particular when $M$ is a compact complex manifold, $G$ is a compact sub $\cdot$

group of the (biholomorphic) automorphism group of $M$ and $P$ is the
unitary frame bundle with respect to a G-invariant Hermitian metric,
$f:\mathfrak{G}\rightarrow C$ coincides up to constant with $\mathscr{G}^{-}(c_{1}^{m+1})$ where $c_{1}$ is the first Chern
polynomial (this can be seen using Yau’s solution to the Calabi conjecture,
see [6]) and Theorem 4.3 follows from Theorem 3.11.

With these understood, it would be clear that Theorem 3.11 can be
applied to other geometric cases such as the signature complex for an
oriented manifold and the Dirac operator for a spin manifold. Note $that_{1}$

in these cases, $G$ may be any closed subgroup of the automorphism group
$Aut(M)$ of $M$ because $Aut(M)$ itself is compact. In Section 5, we shal’
apply Theorem 3.11 to the homogeneous space $G/H$ (where $H$ is a closec
subgroup of a compact Lie group $G$) and get an induction homomorphism
$I^{*}(H)\rightarrow I^{*}(G)$ which is expressed by the integration over $G/H$ and coincidef
with the induced representation $R(H)\rightarrow R(G)$ (where $R(H)$ denotes the
representation ring of $H$ ) (see Segal [9]) and with the transfer $maI$

$H^{*}(BH)\rightarrow H^{*}(BG)$ (see Becker-Gottlieb [3]) under the natural corre.
spondence between $R,$ $I^{*}$ and $H^{*}$ .

We have benefited from the conversations with Professor Morita, $wht$

made many valuable suggestions to us. We are also indebted to Professo]

K\^ono, who helped us in proving Lemma (2.5).

\S 2. Chern characters.

Let $R(G)$ be the representation ring of a compact Lie group $G$

Namely, $R(G)=K_{a}(pt)$ is the Grothendieck construction of the commutativ $($
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semiring of all complex G-modules. $R(G)$ is isomorphic to a free Z-module
with the irreducible complex G-modules $A_{i}’ s$ or the irreducible characters
$x_{i}’ s$ of $A$ $s$ as its basis and is also regarded as a subring of the ring of
all real analytic functions on $G$ generated by $\chi_{i}’ s$ .

For any $R(G)\ni z=\sum_{i}nA_{i}$ (finite sum), $n_{i}\in Z$, the Chern character
$ch(z)eH_{a}^{**}=H^{**}(BG;C)=\prod_{k=0}^{\infty}H^{2k}(BG;C)$ is defined by $ch(z)=$
$\sum_{i}n_{i}Cx(EG\times_{a}A_{i})$ where $Cz$ is the usual Chern character of a complex
vector bundle $EG\times_{a}$ $A$ over $BG$ .

On the other hand, a counterpart in $I^{**}(G)=\prod_{k=0}^{\infty}I^{k}(G)$ is defined as
follows. For any $R(G)\ni z=\sum_{i}n_{i}A_{i}$ , an $Ad(G)$-invariant real analytic
function $\alpha_{z}$ on $\mathfrak{G}$ is defined by

$\alpha_{z}(X)=z(\exp X)=tr(\exp X|_{f})=\sum_{i}n_{i}tr(\exp X|_{A_{i}})$ for $Xe\mathfrak{G}$ .
DEFINITION 2.1. Let $ch(z)eI^{**}(G)$ denote the image of $\alpha_{\iota}$ under the

invariant Taylor homomorphism of [7]. Namely, $\{ch(z)\}_{(k)}\in I^{k}(G)$ (where
$\Psi_{tk)}\in I^{k}(G)$ denotes the degree $k$ term of $\Psi\in I^{**}(G))$ is characterized by
the Taylor expansion

$\alpha_{z}(tX)=\sum_{k=0}^{\infty}\{ch(z)\}_{(k)}(X, \cdots, X)t^{k}$ for any $ X\in$ G.

Thus ch: $R(G)\rightarrow H_{a}^{**}$ and ch: $R(G)\rightarrow I^{**}(G)$ are defined and easily seen to
be ring homomorphisms. These two $ch’ s$ correspond to each other under
the Weil homomorphism $W_{G}:I^{k}(G)\rightarrow H_{a}^{2k}$ . Throughout this paper, the
Weil homomorphism always means the modified Weil homomorphism of
[7]. Namely, $W_{a}$ is normalized by the property that, for $G=U(1)=S^{1}$ ,
$q^{*}W_{U(1)}(x)=\{(\sqrt{-1}/2\pi)\Omega\}$ where $x:u(1)\rightarrow C$ is an invariant polynomial on
the Lie algebra $u(1)=\sqrt{-1}R$ given by the inclusion map and $\Omega$ is a
curvature form in the principal bundle $q:EU(1)\rightarrow BU(1)$ .

The next lemma follows immediately from the definition of $ch’ s$ and
[7, p. 453].

LEMMA 2.2. The following diagram is commutative.

$ch’ s$ are obviously extended to C-algebra homomorphisms, and if $G$ is
connected, then $R(G)\otimes C,$ $I^{**}(G)$ and $H_{a}^{**}$ may be identified under the
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above diagram in the sense of the next lemma.

LEMMA. If $G$ is connected (and compact), then
(2.3) $W_{a}:I^{**}(G)\rightarrow H_{a}^{**}$ is a C-algebra isomorphism,
(2.4) ch: $R(G)\otimes C\rightarrow I^{**}(G)$ is an injective C-algebra homomorphism,
(2.5) for any finite sum $\phi\in\sum_{k=0}^{N}I^{k}(G)$ , there exists $zeR(G)\otimes C$ such that

$ch(z)=\phi$ modulo higher terms of degree $\geqq N+1$ .
(2.4) and (2.5) assert that $R(G)\otimes C$ becomes a “dense” subalgebra of

$I^{**}(G)\cong H_{a}^{**}$ under ch.

PROOF OF (2.4). For $R(G)\otimes C\ni z=\sum_{i}c_{i}\chi_{i},$ $c_{i}\in C,$ $ch(z)=0$ means that
$\sum_{i}c_{i}\chi_{i}(\exp X)=0$ for any $Xe\mathfrak{G}$ . This means that $\sum c_{i}x=0$ because $G$

is connected.

PROOF OF (2.3) AND (2.5). Let $T^{r}\subset G$ be a maximal torus and $W$ the
Weyl group which acts on $T$‘ as inner automorphisms. Then (2.3) follows
immediately from the well-known facts that both $I^{k}(G)$ and $H_{a}^{2k}$ consist
of W-invariant elements of $I^{k}(T$‘ $)$ and $H_{T^{f}}^{2k}$ respectively and that $W_{a}$ maps
$I^{k}(T^{r})$ isomorphically onto $H_{T}^{2k}$. commuting with the W-action.

For the proof of (2.5), it suffices to show that for any $\phi\in I^{k}(G)$ there
exists $zeR(G)\otimes C$ such that $ch(z)=\phi$ modulo terms of degree $\geqq k+1$ . As
described above, $\phi$ is a W-invariant element of $I^{k}(T^{r})=\{polynomials$ of
degree $k$ in $C[x_{1}, \cdots, x_{r}]$ } where $x_{i}$ is an $Ad(T^{r})$-invariant polynomial of
degree 1 given by

(2.6) $x(X)=\sqrt{-1}\theta_{:}\in C$ for an element $X=(\sqrt{-1}\theta_{1}, \cdots, \sqrt{-1}\theta_{r})$

of the Lie algebra of $T^{r}$ .
On the other hand, it is also well-known that $R(G)\otimes C$ consists of W-
invariant elements of $R(T^{r})\otimes C=C[t_{1}, t_{1}^{-1}, \cdots, t_{r}, t_{r}^{-1}]$ where $t_{i}$ is an irre-
ducible character of $T^{r}$ given by $t_{i}(g)=e^{\prime_{-1\theta_{l}}}$ for $g=(e^{\prime_{-1\theta_{1}}}, \cdots, e^{\prime_{-1\theta_{f}}})\in T^{r}$ .
Now it is easy to see from the definition of ch that

$ch(t_{i})=e^{i}=1+x_{i}+\frac{1}{2}x_{i}^{2}+\cdots\in I^{**}(T$
‘

$)$ .

Furthermore, it is clear that ch commutes with the W-action because the
W-action is induced from an automorphism of $T^{r}$ . Now, for $\phi=\phi(x_{1}, \cdots, x_{r})$ ,
put $z=|W|^{-1}\sum_{\sigma eW}\sigma\cdot\phi(t_{1}-1, \cdots, t_{r}-1)$ where $|W|$ is the order of $W$. Then
it follows from the properties of ch described above and the W-invariance
of $\phi$ that
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$ch(z)=|W|^{-1}\sum_{\sigma eW}\sigma\cdot\phi(e^{x_{1}}-1, \cdots, e^{x_{r}}-1)$

$=|W|^{-1}\sum_{\sigma eW}\sigma\cdot\phi(x_{1}+hIgher, \cdots, x_{r}+higher)$

$=|W|^{-1}\sum_{\sigma eW}\sigma\cdot\phi(x_{1}, \cdots, x_{r})+higher$

$=\phi(x_{1}, \cdots, x_{r})+higher$ . Q.E.D.

COROLLARY 2.7. For any compact (not necessarily connected) Lie
group $G,$ $W_{a}$ is iniective.

PROOF. Let $G_{0}$ be the identity component of $G$ and $i;G_{0}\rightarrow G$ the
inclusion. Then $i^{*}:$ $I^{**}(G)\rightarrow I^{**}(G_{0})$ is clearly $|injective$ . Thus the cor-
ollary follows from (2.3) because $i^{\prime}\circ W_{a}$ coincides with $W_{a_{0}}\circ i^{*}$ for $i’=$

$i^{*}:$
$H_{a}^{**}\rightarrow H_{a_{0}}^{**}$ . Q.E.D.

The next lemma is an obvious consequence of (2.5).

LEMMA 2.8. If $G$ is connected (and compact), then for any $\Psi\in I^{**}(G)$

such that $\Psi_{(0)}\neq 0$ and any $\phi\in I^{m+k}(G)$ , there exists $z\in R(G)\otimes C$ such that
$\{\Psi\cdot ch(z)\}_{(m+k)}=\phi$ .

\S 3. $\mathscr{F}^{-}$ and the Atiyah-Singer index.

Now we come back to the situation of Section 1. Let $M_{a}=EG\times_{a}M$

be the associated oriented M-fiber bundle over $BG$ with proiection
$\pi_{H}:M_{G}\rightarrow BG$ and $P_{a}=EG\times {}_{\theta}P$ the associated P-fiber bundle over $BG$ with
projection $\pi_{P}:P_{a}\rightarrow BG$ . Note that, in arguments of this section, $BG,$ $EG$ ,
$M_{a}$ and $P_{a}$ are regarded as compact smooth manifolds by considering
their finite skeletons. $P_{a}$ is also regarded as a principal H-bundle over
$M_{G}$ with classifying map $c:M_{a}\rightarrow BH$. Then

DEFINITION 3.1. A C-linear map $\mathcal{G}:H_{H}^{2m+2k}\rightarrow H_{\theta}^{2k}$ is defined to be the
composition of $c^{*}:$ $H_{H}^{2m+2k}\rightarrow H^{2m+2k}(M_{a};C)$ and the Gysin homomorphism (i.e.
the integration over the fiber) $\pi_{M*}:$ $H^{2m+2k}(M_{a};C)\rightarrow H_{a}^{2k}$ .

The next proposition is a generalization of a result in [6] and is
proved similarly by use of the G-invariance of $\theta$ .

PBOPOSITION 3.2. The following diagram is commutative.

$I^{m+k}(H)\rightarrow^{\ovalbox{\tt\small REJECT}^{-}}I^{k}(G)$

$ W_{H}\downarrow$

$\mathcal{G}$

$\downarrow W_{G}$

$H_{H}^{2m+2k}\rightarrow H_{a}^{2k}$
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PROOF. A fixed connection $\omega$ in $EG\rightarrow BG$ (with curvature form $\Omega$)

defines a splitting of tangent spaces $T_{(\cdot,p)}P_{a}=T_{(\cdot,p)}^{\gamma}P_{a}\oplus H_{(\cdot,p)}$ for any
$(e, p)\in EG\times {}_{G}P=P_{a}((e, p)=(e\cdot g^{-1}, g\cdot p)$ in $P_{a}$ for any $geG$) where $H_{(\cdot.p)}$

denotes the horizontal subspace and $T^{V}P_{a}\cong EG\times_{a}TP$ denotes the vertical
subbundle of the tangent bundle $TP_{a}$ . This splitting defines the vertical
projection $\kappa_{(\cdot,p)}$ : $T_{(*,p)}P_{a}\rightarrow T_{(0,p)}^{V}P_{a}$ . Furthermore, $\theta$ defines a splitting $T_{p}P=$

$\mathfrak{H}\oplus\hat{H}_{p}$ for any $p\in P$ with $\hat{H}_{p}$ as its horizontal subspace, and this splitting
defines the vertical projection $\theta_{p}:T_{p}P\rightarrow \mathfrak{H}$ . Here $T_{(\iota,p)}^{V}P_{a}$ is naturally
identified with $T_{p}P$ and $\theta_{p}$ defines $\theta_{(\cdot,p)}$ : $T_{(0,p)}^{\gamma}P_{a}\rightarrow \mathfrak{H}$ . By use of the left
G-invariance of $\theta$ , it is easy to verify that $\theta_{(e.p)}$ is independent of the
choice of the identification $T_{(*,p)}^{V}P_{a}=T_{p}P$ (i.e. the choice of the represen-
tative $(e, p)\in EG\times {}_{q}P=P_{a})$ . Thus a $\mathfrak{H}$-valued l-form $\psi$ on $P_{a}$ is defined
by $\psi=\theta\circ\kappa$ and is easily verified to give a connection in principal H-
bundle $P_{a}\rightarrow M_{a}$ . Straightforward calculations show that the curvature
form $\Psi$ of $\psi$ is given by

(3.3) $\Psi=\tilde{\Theta}0\kappa\otimes\kappa+J(\Omega)$

where $\tilde{\Theta}:T^{r}P_{a}\otimes T^{V}P_{a}\rightarrow \mathfrak{H}$ is given by the curvature form $\Theta$ and $J(\Omega)$ is
an H-equivariant $\mathfrak{H}$-valued $\omega$-horizontal 2-form on $P_{a}$ defined as follows.
For any $A\in T_{b}BG,$ $beBG$ , let $A$ denote the right G-invariant $\omega$-horizontal
lift of $A$ on $EG$ . Then, for any $A$, Be $T_{(\cdot.p)}P_{a}$ , put

$J(\Omega)_{(\cdot,p)}(A, B)=J(\Omega.((\pi_{P*}A), (\pi_{P*}B)))(p)\in \mathfrak{H}$ .
Using the right G-invariance of $(\pi_{P*}A)^{0},$ $(\pi_{P*}B)^{\iota}$ and the property of $i$

that $J(Ad(g)X)(p)=J(X)(g^{-1}\cdot p)$ for any $g\in G$ , any $Xe\mathfrak{G}$ , it is easy to
verify that $J(\Omega)_{(\cdot,p)}$ is independent of the choice of the representative
$(e, p)\in EG\times {}_{q}P=P_{G}$ .

Now it follows from the definition of $\pi_{H*},$ $\mathscr{G}^{-}$ and the (modified) $Wei$
.

homomorphisms that

$\mathcal{G}\circ W_{H}(\phi)=\pi_{K*}\circ C^{*}\circ W_{H}(\phi)=\pi_{K*((\frac{\sqrt{-1}}{2\pi})^{n+k}\phi(\wedge^{n+k}\Psi))}$

$=(\frac{\sqrt{-1}}{2\pi})^{k}\left(\begin{array}{ll}m & +k\\ & k\end{array}\right)(\frac{\sqrt{-1}}{2\pi})^{*}\pi_{r*}\{\phi((\wedge^{k}J(\Omega))\wedge(\wedge^{n}\tilde{\Theta}\circ\kappa\otimes\kappa))\}$

$=W_{a}\circ \mathscr{G}^{-}(\phi)$

for any $\phi e$ $I^{n+k}(H)$ . Q.E.D

For the rest of this paper, we shall work under the following as
sumption.
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ASSUMPTION 3.4. There exists a real oriented H-module $V$ with a
representation $\rho:H\rightarrow SO_{R}(V)\cong SO(2m)$ such that $\rho^{*}eeH_{H}^{2n}$ does not vanish
for the Euler class $e\in H_{SO\{2m)}^{2n*}$ and that $P\times HV$ is isomorphic to the tangent
bundle $TM$.

Assumption 3.4 means that $P$ is an oriented H-structure over $M$, and
then $G$ acts on $M$ as oriented H-structure preserving automorphisms.

Now, let $W^{0},$ $\cdots,$
$W^{N}$ be a sequence of complex H-modules and let

$\sigma_{i}:V\rightarrow Hom(W^{i-1}, W‘)$ $(1\leqq i\leqq N)$ be H-equivariant maps (i.e. $\sigma(h\cdot\xi)=$

$h\cdot\sigma_{i}(\xi)\cdot h^{-1}$ for any $h\in H,$ $\xi eV$ ) such that, for $V\ni\xi\neq 0$ ,

$0\rightarrow W^{0}\rightarrow W^{1}\sigma_{1}(\xi)\rightarrow\cdots\sigma_{N}(\xi)\rightarrow W^{N}\rightarrow 0$

is exact. Then the universal elliptic symbol class $veK_{H}(V)$ is defined
by the compactly supported complex

(3.5) $\{0\rightarrow\cdots\rightarrow V\times W^{i-1}\rightarrow V\times W^{i}\rightarrow\cdots\rightarrow 0\}$

($D$ (1)

$(\xi, w)$ $(\xi, \sigma(\xi)(w))$

on $V$. And, for a fixed universal elliptic symbol class $veK_{H}(V)$ , the v-
index class $\mathcal{J}_{v}\in H_{H}^{**}$ is defined as in [1, p. 559] by

(3.6) $\mathscr{J}=(-1)^{n}\{\frac{\sum_{i=0}^{N}(-1)^{i}Cz(EH\times HW^{i})}{\rho^{*}e}\cdot\rho^{*}\mathcal{J}\}$

where $\mathcal{J}\in H_{S0(2n)}^{**}$ is the index class of [1, p. 555].
On the other hand, let $P\times H:R(H)\rightarrow K_{\sigma}(M)$ denote the homomorphism

defined by the associating construction $z\rightarrow P\times Hz$ for an H-module $z$ ,

$\alpha_{P}$ : $K_{H}(V)\rightarrow^{q_{1}^{*}}K_{\theta\times H}(V)\rightarrow^{q_{2}^{*}}K_{a\times H}(P\times V)=K_{a}(P\times HV)=K_{a}(TM)$

the homomorphism defined by projections $q_{1}:G\times H\rightarrow H,$ $q_{2}:P\times V\rightarrow V$ and,
for $veK_{H}(V)$ , $\beta_{v}:K_{a}(M)\rightarrow K_{a}(TM)$ the homomorphism defined by the
multiplication $u\rightarrow\tau^{*}u\cdot\alpha_{P}(v)$ for $ueK_{a}(M)$ where $\tau:TM\rightarrow M$ is the pro-
jection. Then

DEFINITION 3.7. For a fixed universal elliptic symbol class $v$ , a
homomorphism $g_{v};R(H)\rightarrow R(G)$ is defined to be the composition of $P\times H$

’

$\beta_{v}$ and the equivariant index homomorphism $K_{a}(TM)\rightarrow R(G)$ . Namely,
$g_{v}(z)$ is the G-equivariant index of $P\times Hz$-valued v-elliptic complex on
$M$ for $z\in R(H)$ . Note that $g_{v}$ is obviously extended to a C-linear map
$g.:R(H)\otimes C\rightarrow R(G)\otimes C$.
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This $g_{v}$ is related to $\mathcal{G}$ as follows.

PROPOSITION 3.8. The following diagram is commutative;

$R(H)\rightarrow^{g_{v}’}R(G)$

$J_{v_{H_{H}^{**}}^{-ch\downarrow}}\rightarrow H_{G}^{**}\Psi\downarrow ch$

where f-ch is defined by the multiplication $z\rightarrow ch(z)\cdot \mathscr{J}$ for $z\in R(H)$ .
PROOF. Let $TM_{a}=EG\times_{a}TM$ be the tangent bundle along the fibers

of $M_{a}$ (i.e. $TM_{a}=T^{V}M_{a}$ in the notation of the proof of Proposition 3.2).
$TM_{a}$ is an oriented vector bundle over $M_{a}$ and is also an oriented TM-
fiber bundle over $BG$ . Let $\Psi:H^{**}(M_{a};C)\rightarrow H_{l}^{**}(TM_{a};C)$ be the Thom
isomorphism (where $H_{a}^{**}$ denotes the cohomology with compact supports)

and $\pi_{TK*}:$ $H_{\epsilon}^{**}(TM_{a};C)\rightarrow H_{a}^{**}$ the Gysin homomorphism for the projection
$\pi_{TH}:TM_{a}\rightarrow BG$ . Let $\tau_{a}:TM_{a}\rightarrow M_{a}$ be the projection given by $\tau_{a}(e, \xi)=$

$(e, \tau(\xi))$ for $(e, \xi)eEG\times_{a}TM=TM_{a},$ $\tau:TM\rightarrow M$. Then, since $\pi_{H*}\circ\tau_{G*}=\pi_{TH*}$

for $\tau_{G*}:$
$H_{\epsilon}^{**}(TM_{a};C)\rightarrow H^{**}(M_{a};C)$ and $\Psi$ is equal to $\tau_{a*^{-1}}$ , it suffices for

the proof of the proposition to show the commutativity of the following
diagram:

$EH\times R(H)H\downarrow\rightarrow K_{a_{I}}(M)P\times\epsilon_{EG\times a}(i)$ $\rightarrow K_{a}(TM)(ii)\beta_{v}EG\times aI^{(:i}\rightarrow R(G)G- indi)EG\times a\downarrow$

$K(BH)\rightarrow^{c^{*}}$
$K(M_{a})$

$\gamma_{v}$

$\underline{f- ind}$

$K(BG)$

$\delta_{v}\downarrow$

(iv)
$\epsilon_{v}\downarrow$

$\rightarrow^{(v)}$

$K(TM_{a})\zeta\downarrow(vi)$

$ c\nearrow\downarrow$

$H_{H}^{**}\rightarrow^{c^{*}}H^{**}(M_{\theta};C)\rightarrow^{\psi}H_{\iota}^{**}(TM_{a};C)\rightarrow H_{G}^{**}\pi_{\tau r*}$

where $EH\times H’ EG\times_{a}$ are the homomorphisms defined by the associating
construction, G-ind is the G-equivariant index, $f$-ind is the index of $fam$.
ilies over $BG,$ $\gamma_{v}$ is the homomorphism defined by $u\rightarrow\tau_{a^{*}}u\cdot EG\times_{a}\alpha_{P}(v_{J}^{\backslash }$

for $u\in K(M_{a})$ , $\delta_{v}$ is the homomorphism defined by $u\rightarrow Cz(u)\cdot J_{v}$ for
$u\in K(BH),$ $\epsilon_{v}$ is the homomorphism defined by $u\rightarrow Cz(u)\cdot c^{*}\mathcal{J}_{v}$ for $u\in K(M_{\theta_{J}}^{\backslash }$

and $\zeta$ is the homomorphism defined by $u\rightarrow(-1)^{n*}\tau_{a^{*}}\mathcal{J}(TM_{a})\cdot Cz(u)$ fol
$u\in K(TM_{a})$ . Note that the index class $\mathcal{J}(TM_{a})eH^{**}(M_{G};C)$ is equal
to $c^{*}\rho^{*}\mathcal{J}$ because $\rho\circ c:M_{a}\rightarrow BSO(2m)$ is the classifying map of $TM_{a}=$

$P_{G^{\times}H}V$.
Now, the commutativities of (i), (ii), (iii), (iv) are obvious and the

commutativity of (vi) follows from the index theorem for families $[2|$
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Theorem (5.1)]. Here the orientation of $TM_{G}$ in the definition of $\Psi$ differs
from that in [2] and the correct sign is $(-1)^{2m(2m+1)/2}=(-1)^{m}$ (see [1, (2.13)]).

The commutativity of (v) is verified as follows. Let $q:P_{a}\times V\rightarrow V$ be the
proper projection and $\alpha_{P_{\theta}}=q^{*}:$ $K_{H}(V)\rightarrow K_{H}(P_{a}\times V)=K(P_{a}\times_{H}V)=K(TM_{a})$ .
Then $EG\times_{a}\alpha_{P}(v)\in K(TM_{a})$ is clearly equal to $\alpha_{P}a(v)$ . Hence it follows
that, for any $ueK(M_{G})$ ,

$\zeta\circ\gamma_{v}(u)=(-1)^{m}\tau_{a^{*}}\mathcal{J}(TM_{a})\cdot Cz(\gamma_{v}(u))$

$=(-1)^{m}\tau_{a^{*}}c^{*}\rho^{*}\mathcal{J}\cdot\tau_{G^{*}}Cz(u)\cdot Cz(\alpha_{Pq}(v))$

$=\tau_{a^{*}}(Cz(u)\cdot(-1)^{m}c^{*}\rho^{*}\mathcal{J})\cdot\Psi\Psi^{-1}Cz(\alpha_{P_{G}}(v))$

$=\Psi\{Cz(u)\cdot(-1)^{m}\Psi^{-1}Cx(\alpha_{P_{\theta}}(v))\cdot c^{*}\rho^{*}\mathcal{J}\}$ .
Here it follows from [1, (2.16)] that

$\Psi^{-1}Cx(\alpha_{Pq}(v))=c^{*\{\frac{\sum_{i=0}^{N}(-1)^{i}Cz(EHx_{H}W^{i})}{\rho^{*}e}\}}$

and therefore $\zeta\circ\gamma_{v}(u)$ is equal to $\Psi(Cx(u)\cdot c^{*}\mathcal{J}_{v})=\Psi\circ\epsilon_{v}(u)$ . Q.E.D.

Now, let $e\in I^{m}(SO(2m))$ denote the Euler polynomial and $\mathcal{J}\in$

$I^{**}(SO(2m))$ the index polynomial which correspond to $e\in H_{S0(2m)}^{2\alpha*}$ and
$\mathcal{J}\in H_{SO(2m)}^{**}$ respectively under the Weil isomorphism $W_{SO(2m)}$ (see (2.3)).

Then the v-index polynomial $\ovalbox{\tt\small REJECT}_{v}\in I^{**}(H)$ is defined by

(3.9) $\mathcal{J}_{v}=(-1)^{m}\{\frac{ch(W)}{\rho^{*}e}\cdot\rho^{*}\mathcal{J}\}$

where $R(H)\ni W=\sum_{i=0}^{N}(-1)^{i}W^{i}$ . Note that $\mathcal{J}_{v}$ of (3.9) corresponds to
$\mathcal{J}_{v}$ of (3.6) under the Weil homomorphism $W_{H}$ (see Lemma 2.2).

DEFINITION 3.10. For a fixed universal elliptic symbol class $v$ ,
$\mathscr{G}_{v}^{-}:I^{**}(H)\rightarrow I^{**}(G)$ is defined by $\mathscr{G}_{v}^{-}(\phi)=\ovalbox{\tt\small REJECT}(\mathcal{J}_{v}\cdot\phi)$ for $\phi\in I^{**}(H)$ .

Now, we state our first theorem.

THEOREM 3.11. The following diagram is commutative.
$g_{v}$

$R(H)\leftrightarrow R(G)$

$ch\downarrow$

$F_{v}$

$\downarrow ch$

$I^{**}(H)\rightarrow I^{**}(G)$

PROOF. Consider the diagram;
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where $\mathscr{J}- ch:R(H)\rightarrow I^{**}(H)$ is defined by the multiplication $z\rightarrow ch(z)\cdot \mathcal{J}_{v}$

for $zeR(H)$ . Now the theorem follows from Lemma 2.2, Corollary 2.7,
Proposition 3.2, Proposition 3.8 and the above diagram. Q.E.D.

\S 4. Infinitesimal Lefschetz numbers.

Let $M$ be a compact complex manifold of complex dimension $m,$ $H(M)$

the complex Lie group (see [8]) of all holomorphic automorphisms of $M$

and $G$ any compact subgroup of $H(M)$ . Let $P$ be the principal $U(m)-$

bundle of unitary frames with respect to a G-invariant Hermitian metric
on $M$. Then $G$ acts on $P$ on the left and the holomorphic tangent bundle
$TM$ is isomorphic to $P\times HV$ for $H=U(m),$ $V=C^{*},$ $\rho=inclusion:U(m)\rightarrow$

$GL(m;C)$ . Here $\rho$ is identified with the standard inclusion $\rho:U(m)\rightarrow$

$SO(2m)$ and Assumption 3.4 is satisfied. Furthermore, the Hermitian
connection $\theta$ is left G-invariant and

$Z;I^{n+k}(U(m))\rightarrow I^{k}(G)$

is defined by (1.2).
Now, let $v\in K_{U(*)}(C$“ $)$ be the universal elliptic symbol class of the

Dolbeault complex so that $W‘=\wedge C^{n}(0\leqq i\leqq m)$ . Then it follows from
the same calculation as in [1, \S 4] that $\mathscr{J}\in I^{**}(U(m))$ is given by the
Todd polynomial

$F=\prod_{i=1}^{n}\frac{x}{1-e^{-\iota}}$

where $xs$ are those of (2.6), namely, $x_{1}(X),$ $x_{2}(X),$ $\cdots,$ $x.(X)$ are eigen-
values of a skew-Hermitian matrix $X\in u(m)$ .

On the other hand, $g.:R(U(m))\rightarrow R(G)$ is expressed as follows. It
is well-known that $R(U(m))$ is isomorphic to the polynomial ring
$Z[\wedge^{1}C^{n}, \cdots, \wedge^{n}C^{n}, \wedge^{-n}C‘‘]$ and any complex $U(m)$-module $A$ corresponds
uniquely to a holomorphic $GL(m;C)$-module. Thus a holomorphic vector
bundle $\xi_{A}$ over $M$ is defined by
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$\xi_{A^{=P^{\prime}\times aL(mjc)}}A(\cong P\times U(m)A)$

for principal $GL(m;C)$-bundle $P$ ’ of holomorphic frames, and the $\xi_{A}$-valued
Dolbeault operator (or complex)

$\mathcal{D}_{A}$ : $0\rightarrow\Omega^{0,0}(\xi_{A})\rightarrow^{\partial_{4}^{\iota_{1}}\overline}\Omega^{0,1}(\xi_{A})\rightarrow\cdots\rightarrow^{\overline\partial_{4}^{m}}\Omega^{0,n}(\xi_{A})\rightarrow 0$

is defined where $\Omega^{0,q}(\xi_{A})$ is the $\xi_{A}$-valued $(0, q)$-forms on $M$. Since this
$\xi_{A}$-valued Dolbeault complex is an $H(M)$-equivariant elliptic complex, the
j-th cohomology group $H_{A}^{j}=Ker\overline{\partial}_{A}^{j+1}/{\rm Im}\overline{\partial}_{A}^{\dot{f}}$ is a finite dimensional G-module.
Then, for any $z=\sum_{l}n_{i}A_{i}\in R(U(m)),$ $g_{v}(z)\in R(G)$ is given by

(4.1) $\mathscr{G}_{v}(z)=\sum_{i}n_{i}\sum_{J=0}^{\prime n}(-1)^{j}H_{A_{i}}^{j}$

which is the equivariant index of the elliptic complex $\sum n_{i}\mathcal{D}_{A_{i}}$ . Hence,
by the definition of ch, $\{$cho $g_{v}(z)\}_{(k)}\in I^{k}(G)$ is characterized by

$\{ch\circ \mathscr{G}_{v}(z)\}_{(k)}(X, \cdots, X)=\frac{1}{k!}[(\frac{d}{dt})^{k}Lf_{x}(\exp tX)]_{t=0}$

for any $X\in \mathfrak{G}$ where Lf, is the Lefschetz number of the elliptic complex
$\sum_{i}n_{i}\mathcal{D}_{A_{i}}$ given by

$Lf_{\iota}(g)=\sum n_{i}Lf_{i}(g)$

where

(4.2) $Lf_{i}(g)=\sum_{j=0}(-1)^{j}tr(g|_{H_{A_{i}}}j)$ for $g\in G$ .
Now, the next theorem follows from Theorem 3.11 and Lemma 2.8

because $\ovalbox{\tt\small REJECT}_{(0)}^{-}=1\neq 0$ .
THEOREM 4.3. For any $\phi\in I^{m+k}(U(m))$ , there exists $ z=\sum_{i}c_{i}A\in$

$R(U(m))\otimes C$ such that $\mathscr{G}^{-}(\phi)\in P(G)$ is characterized by

(4.4) $\mathscr{G}^{-}(\phi)(X, \cdots, X)=\frac{1}{k!}[(\frac{d}{dt})^{k}\sum_{i}c_{i}Lf_{i}(\exp tX)]_{t=0}$

for any $X\in \mathfrak{G}$ where $Lf_{i}$ is the Lefschetz number of the $P\times U(m)A$ -valued
Dolbeault complex $\mathcal{D}_{A_{i}}$ given by (4.2).

REMARK 4.5. It is well-known that $I^{*}(U(m))$ is isomorphic to the
polynomial ring $C[c_{1}, \ldots, c_{n}]$ of the Chern polynomials $c_{i}$ . When the above
$\phi\in I^{m+k}(U(m))$ is contained in $Z[c_{1}, \cdots, c_{m}]$ , it is proved that the above
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$z\in R(U(m))\otimes C$ can be taken to be an element $z=\sum n_{i}A$ of $R(U(m))$ ,
and therefore $\mathscr{G}^{-}(\phi)$ is expressed by the k-th derivative of the Lefschetz
number of the single elliptic complex $\sum n_{i}\mathcal{D}_{A_{i}}$ .

COROLLARY 4.6. If $P\times U(m)A$ -valued Dolbeault cohomology groups
$H_{A_{i}}^{j}s$ in (4.1) can be embedded in some de Rham cohomology groups and
hence have the homotopy-invariance, then the right-hand term of (4.4)
and hence $LZ(\phi)$ vanish for $k\geqq 1$ . In particular, $\mathscr{G}^{-}(\ovalbox{\tt\small REJECT}_{(m+k)}^{-})$ which
corresponds to $z=1eR(U(m))$ vanishes for $k\geqq 1$ if $M$ is a Kaehler
manifold.

\S 5. Induced invariant polynomials.

Let $G$ be a $\infty mpact$ Lie group with Lie algebra $\mathfrak{G},$ $H$ a closed sub-
group with Lie algebra $\mathfrak{H}\subset \mathfrak{G}$ and $i:H\rightarrow G$ the inclusion map. Here
we assume that dim $G$ -dim $H=2m$ . Let $\rho:H\rightarrow 0_{R}(\mathfrak{G}/\mathfrak{H})\cong O(2m)$ be the
isotropy representation on the tangent space to the homogeneous space
$G/H$ at the identity coset which is induced by the adjoint representation.
We assume that

(5.1) the image of $\rho$ is contained in $SO(2m)$

(i.e. det $\rho(h)>0$ for any $h\in H$).

Then $G/H$ has a G-invariant orientation and $G\times(H,\rho)R^{2}f*$ is isomorphic to
the oriented tangent bundle $T(G/H)$ . Moreover, we assume that $H_{H}^{2n}\ni\rho^{*}e$

does not vanish for the Euler class $eeH_{SO(2’ n)}^{2n}$ . If $\rho^{*}e$ vanishes or
dim $G$ -dim $H$ is odd, then $i_{1}$ in Definition 5.2 should be defined to be
the zero-mapping.

Now, put $P=G,$ $M=G/H$ and let $\theta$ be a left G-invariant connection
in the principal H-bundle $P\rightarrow M$. Then $\backslash \mathscr{F}:I^{\prime n+k}(H)\rightarrow F(G)$ is defined by
(1.2). Here, let $v\in K_{H}(R^{2m})=K_{H}(\mathfrak{G}/\mathfrak{H})$ be the universal elliptic symbol
class of the de Rham operator so that $W^{0}=\oplus_{i:even}\wedge^{i}R^{2m}\otimes C$, $W^{1}=$

$\oplus_{i:odd}\wedge^{i}R^{2m}\otimes C$ (see [9, p. 119]). Then $\mathscr{J}\in I^{**}(H)$ is equal to $\rho^{*}e\in I^{n*}(H)$

for the Euler polynomial $e\in I^{n}(SO(2m))$ and $\mathscr{G}_{v}^{-}:I^{**}(H)\rightarrow I^{**}(G)$ is given
by $L\mathscr{F}_{v}^{-}(\phi)=\mathscr{G}^{-}(\rho^{*}e\cdot\phi)$ for $\phi eI^{**}(H)$ .

DEFINITION 5.2. $i_{1}$ : $I^{k}(H)\rightarrow I^{k}(G)$ is defined by $i_{1}(\phi)=\mathscr{G}_{v}^{-}(\phi)=\mathscr{G}^{-}(\rho^{*}e\cdot\phi)$

for $\phi\in I^{k}(H)$ .
Note that $i_{I}$ turns out to be independent of the choice of the G-

invariant orientations of $G/H$.
Now, it follows from Proposition 3.2 that $\mathscr{G}^{-}:I^{n+k}(H)\rightarrow I^{k}(G)\infty r-$

responds to the Gysin homomorphism $\pi_{*}:$ $H_{H}^{2n+2k}\rightarrow H_{a}^{2k}$ under the Weil
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homomorphisms for $\pi=i:BH\rightarrow BG$ . Hence it can be verified from [3,
Theorem 4.3] that $i_{I}$ in Definition 5.2 corresponds to the transfer map
$i_{1}$ : $H_{H}^{2k}\rightarrow H_{O}^{2k}$ of Becker-Gottlieb [3].

On the other hand, for any $z\in R(H)$ , $g_{v}(z)eR(G)$ is equal to the
index of $G\times_{H}$ z-valued de Rham operator which coincides with $i_{1}(z)$ for
the induced representation $i_{l}$ : $R(H)\rightarrow R(G)$ (see Segal [9]).

Thus the next theorem follows from Lemma 2.2, Proposition 3.2,
Proposition 3.8 and Theorem 3.11.

THEOREM 5.3. The following diagram is commutative.

Now the next corollaries follow from Corollary 2.7, Theorem 5.3 and
the properties of the transfer map $i_{1}$ : $H_{H}^{**}\rightarrow H_{a}^{**}$ .

COROLLARY 5.4. $i_{1}$ : $I^{**}(H)\rightarrow I^{**}(G)$ is independent of the choice of
the G-invariant connection $\theta$ .

COROLLARY 5.5. Let $K$ be a closed subgroup of $H$ and $j:K\rightarrow H$ the
inclusion map. Then $i_{I}\circ j_{I}=(i\circ j)_{1}:I^{**}(K)\rightarrow I^{**}(G)$ .

COROLLARY 5.6. $ i_{1}\circ i^{*}(\phi)=x(G/H)\phi$ for any $\phi eI^{k}(G)$ where $\chi(G/H)$ is
the Euler characteristic of $G/H$. In particular, if rank $H=rankG$ , then
$i_{1}$ : $I^{k}(H)\rightarrow I^{k}(G)$ is surjective for any $k$ .
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