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Introduction.

Let F be a totally real algebraic number field, O, the integer ring
of F and K,(Oy) Quillen’s higher K-group of O, for each non-negative
integer m. According to Quillen [8], K,(O;) is a finite abelian group for
even m=2n (n=1). Let p be an odd prime number and F’ a Galois p-
extension of F. In this paper, we investigate whether the prime p divides
the order of K,,(0;). (The order of K,(O;) has been treated by several
authors [2], [4], [9].) We shall state our main theorem in §1. In §2,
we prove group-theoretical lemmas on Z,-modules on which a finite group
acts, whose order is prime to p.

In the final part §38, we prove our main theorem in using first a result
of Soulé, according to which we translate the language of K-theory into
that of Iwasawa theory, then a result of Iwasawa (Lemma 4), with the
help of which we refine Kida’s formula (Lemma 5), which leads 1mmed1ately
to our theorem.

§1. Main theorem.

Throughout the following, let » be a fixed odd prime number. For
a finite algebraic number field F, we denote by F. the cyclotomic Z,-
extension of F.

THEOREM. Let F be a totally real algebraic number field of finite
degree, F' a Galois p-extemsion of F, { a primitive p-th root of 1 and
n an odd positive integer. Let k denote F() and d the degree (k: F).
We assume that the p-invariant p, of k./k is zero. Then we have the
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following:

(1) We assume that n® —1 (mod d). If there exists a prime ideal
f of F.. which ramifies tamely in FL/F., then the prime p divides the
order of the K-group K,.(Og).

(2) We assume that n=—1(modd). If there ewist two distinct
prime ideals &,, &, of F.. which ramify tamely in Fi/F., then the prime
p divides the order of K,,(Og).

(8) We assume that d+2 and that F'[F i3 unramified outside p.
The prime p divides the order of K(Or) if and only if » divides the
order of K,(Og).

(4) We assume that d=2 and that at most one prime ideal ramsifies
tamely in F./F.. The prime p divides the order of K,(Oy) if and only
if p divides the order of K,(Og).

REMARK. Let ! be a prime ideal of F and 8 a prime ideal of F.

lying above I. Then if I ramifies tamely in F'/F, 8 ramifies tamely in
F./F..

§2. Group-theoretical lemmas.

Let G be a topological group and H,, H, closed subgroups of G. We
denote by (H, H,) the topological commutator group of H, and H,. The
following two lemmas play important roles in this paper.

LEMMA 1. Let 4 be a finite group whose order is prime to p. Let
G be a finitely generated pro-p-group on which 4 acts. Let N be an open
normal Ad-subgroup of G and x an element of G such that the coset 6(x)N
coincides with xN for any element & of 4. Then there exists an element
y in =N such that 6(y)=y for any element & of 4.

PrROOF. We put N,=N and N,,,=N%N, N). Then the system {N},
is a fundamental system of neighborhoods of unity. We put z,=z and
£(3)=8(x,)"'z,N, for each element € 4. Then the mapping f: 4— N,/N,
is a l-cocycle, where N,/N, is a factor group of N, over N,. Since the
order of 4 is prime to p, the cohomology group H'(4, N,/N,) is trivial.
Hence there exists an element n, of N, such that 6(x,) '@V, =0(1,) 1.V,
We put z,=zm;'. Then we have §(=,)N,==z,N,. We repeat the above
procedure and obtain x, for 1=0,1,2, ---. We put y=lim,x,. Then we
have yN=2zN and d(y)=y for any element & of 4.

Now let E be a finitely generated free pro-p-group and G, a cyclic
group of order d which acts on E. We assume that d divides p—1. Let
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N be an open normal G,-subgroup of E with (E: N)=p* e being a given
positive integer. We put E=(E, E), N=(N, N), X=E/E and X'=N/N.
Let X be a character (a homomorphism) of G, into Z; with the order d.
We put '

ef=-al— S, X(9)'g™ € Z,[G.]

ﬂeao

for each integer i. We can consider X and X’ as Z,[G,)-modules in a
natural way. Then we have the following:

LemMMA 2. If G, acts on E/N trivially, then

rank; e, X'—1= p*(rank, e, X—1) and
rankzpeiX'=p'(rankzpe,X) Jor =12 ..., d—1.

PrOOF. First, we prove our assertion for the case e=1. Let z,
Y, *°°, Y, be free generators of E. We may assume from Lemma 1 that
g(x)=x for every element ge G, and that N contains Yy *** Yoo It is
well known that

- - - —(p— - —(p—
{xp’ Yy ***y Yny TY X 1’ tec, XYL 1’ cee, P 1y1x t» 1): cee, X7 1y,,m ? 1)}

is a free generator system of N. We regard X and X’ as Z,-modules.
Then we have

X'= Z,,(Nx’)@(m@_l Z,,(Nx‘y,-x“))
1555

1sisp—1

155sn

= ,(Nx’)@(jélﬂg Z,(N'y,-))ea( @ 2z, Nz'ya‘y; 1)

=2,(Ne)®( 2,y BN .

Since Z,(Nxz*)DE/N is a G,-module and since d is prime to p, there
exists a G,-submodule Y/N of N/N such that X '=Z,(Nx*)® Y/ NDE/N.
Let 2,N, ---, 2, N be a basis of ¢(Y/N) for 0<i<d—1. Then Ly 2oy * v v
Borg ***y Ba_yyy ***y Ra_y,,_, are free generators of £. Since we have

9@z~ )N=a'22" '~ N= (a*z, 0 Ny @*

for any element g <G, we have rank; e X'= p(rank; . X) for 1<i<d-—1
and rank; X’ —1=p(rank 2,60X —1).

Now, let e be any positive integer. There exists a sequence of sub-
groups of E




244 KEIICHI KOMATSU
E=N,ON,D:-+DN,=N

such that each N,/N,,, is a cyclic group of order p». Hence induction
shows our assertion.

§3. Proof of Theorem.

Let S be the set of prime ideals of F' which ramify tamely in F'/F
and S, the set of prime ideals of F' lying above p. Let L be the maximal
p-extension of k unramified outside SUS,. As k/F is a Galois extension,
L/F is a Galois extension. Since the degree d=(k:F) is prime to p,
there exists an intermediate field K between L and F such that L=Kk
and KNk=F. We notice that the Galois group G(k/F') is isomorphic to
G(L/K) in a natural way and that G(L/F) is a semi-direct product of
G(L/K) and G(L/k). We put G,=G(L/K). Let X:G(L/K)—Z} be the
character such that £2=¢*? for all ge G(L/K). We define

e=1 > X9)9 e Z,Gl
d 9¢6o
for each integer i. Let A. be the p-part of the ideal class group of k.
and G.. the Galois group of k. over F. Then G. acts on A. in a natural
way. We put As=@2 ¢, 1A.. Now, when F' is replaced by F', the field
Lk will be replaced by k'=F'({), the p-part A, of the ideal class group
will be replaced by A, and the u-invariant g, will be replaced by ..
similar notations will be used in the following. Let W,» be the group
of p~-th root of unity and 7~ =1i_I£an the Tate module. Thus .7 is a
free Z,-module of rank 1, on which G. acts in a natural way. If X is
a G.-module which is also a Z,-module, we define, for each integer =0,

X0)=XQz, 9 Rz, Rz, 7 (v times), endowed with the diagonal action
of G... Soulé’s theorem asserts that, for each odd positive integer y, there
exists a canonical surjective homomorphism

K,(Op)(p) — (Az(v))’=  (cf. [3] and [9)]),

where K, (O;)(p) denotes the p-primary subgroup of K, (Of). (For a G-
module X, we denote as usual by X% the G.-invariant submodule.) This
mapping is an isomorphism for y=1. Now, we have

Az(v)% = (Az(p)%0) %= = ((g,_, Aw)(v)')a(kw/k)

for odd positive integer ». Hence we see that Az(»)?»=0 if and only if
€4-,Ax=0. Therefore we have the following:
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LEMMA 3. Let v be an odd positive integer. If ¢, ,A.+#0, then p
divides the order of K, (0z). Furthermore, g, ,A.#0 if and only if »
divides the order of K,(Og).

Now, we assume, from now on, g,=0. Then pg,.,=0 follows from
Iwasawa [5]. Furthermore, there exists a non-negative integer A, such
that ¢,4.=(Q,/Z,)". Let ki denote the maximal real subfield of k.., M
the maximal p-extension of k% unramified outside S,US and E the Galois
group of M over ki. Let s be the number of prime ideals of F'. which
lie above S. Then we have the following:

LEMMA 4 (cf. [6, Theorem 1 and the proof of Theorem 3]). Let 7 be
an odd integer such that 1<i1<d—1. Let j be an integer such that
j=1—i(modd). We put X=E/(E, E). Then ;X=Z}".

REMARK. Let I be a prime ideal in S and & be a prime ideal of F,,
lying above I. Since & is tamely ramified in F./F., & splits in k./F.

Since M contains F’, Lemma 2 and Lemma 4 yield the following
lemma which is a refinement of Kida’'s formula (cf. [7]).

LeEMMA 5. We put ¢,A.=(Q,/Z,)" and ¢, A..=(Q,/Z,)i. Then we have
M+ —1=p(\,+8—1) and A+ =p°(\;+8) for the odd integer i from 8
to d—1. Here, p*=(k : kL)=(E: E'").

Lemma 3 and Lemma 5 yield our theorem.

The author would like to express his hearty thanks to Professor
S. Iyanaga and Professor T. Kanno.
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