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1. Introduction.

It is well-known that while trigonometric polynomials are good means of
approximation of periodic functions, entire functions of exponential type may serve as
a mean of approximation of nonperiodic functions, given on n-dimensional space. Some
properties of entire functions of exponential type, bounded on the real space R" have
been considered in [1]. These results are very important in the imbedding theory, the
approximation theory and applications. The present paper is a continuation of this
direction.

2. Results.

Let 1<p<c and 0=(6y, ‘", 0,), 6;>0, j=1, - - -, n. Denote by M, , the space
of all entire functions of exponential type ¢ which as functions of a real x e R" belong
to L,(R™). The well-known Bernstein-Nikolsky inequality reads as follows (see [1], p.
114): Let f(x)e M, ,. Then

o YD fll,<lfl,, a>0. @
We have the following resulit:

THEOREM 1. Given 1<p<oo and f(x)e M, ,. Then

lim ¢~ D%f|,=0. Q)

la]— o0
To prove this theorem we need the following results:
LEMMA 1. LetO0<r<p<g<o. Then L(R") N L(R") < L,R") and
1AL <IAINS N
Sor any f(x)e L(R") N L(R"), where t=(1/p—1/g)/(1/r—1/g).
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This is a corollary to Hélder’s inequality. See for example [2], p. 227.
LEMMA 2. Let 1<p<g<oo. Then M, , is dense in M, ,.

PROOF. Given ¢>0 and f(x)e M, ,. There exists a function g(x)e L (R") n L (R")
such that || f —g||,<e. Hence (see [3], p. 100),

ISo(f =Pl <Al f —gll,<e4,,

where S,h=% ~1y, Fh, # is the Fourier transform, g, is the characteristic function of
4,={¢;1¢1<0;,j=1, - - -, n} and the constant 4, depends only on g. Consequently,
taking account of S,ge M, , (because of 1 <p<o0) and S,f = f, we conclude M, , is
dense in M, ,. (q.e.d.)

PrOOF OF THEOREM 1. We divide the proof into four cases.
Case 1 (p=2). This case is easy: Given ¢>0. We choose 4>1 so that

f | (O 1PdE<e,
4o\A™ 14,

where f=% f. Hence, it follows from Parseval’s theorem for D*f that
a'z“llD“f||§<a_2“f E2F (&) Pde +e
A= 14,
<A7Hfl3+e.

Therefore,

lim sup o~ 2*|D%f||2<e

|Ja]— o0

and since £¢>0 is arbitrarily chosen, we get (2).

Case 2 (1<p<2). We fix 1 <r<p. We notice that M, ,c M, ,= M, , (it follows
from the Nikolsky inequality ([1], p. 125)). At first we show (2) for all f(x)e M,,.
Applying Lemma 2 (with ¢=2), we have

ID*fl,<ID*fI;ID*flIz™",  a=0
for each f(x)e M, ,. Therefore, by (1) it follows that
oI Dfll,<(e~*ID* I (e~ *ID*fll)*
<Iflxe=*ID*fli)* ",

which together with proved Case 1 implies (2).
Now let f(x)e M, ,. For given £¢>0, by Lemma 2, there is a function g(x)e M,,
such that || f —g||,<é&. On the other hand, we have

o~ D*fll,—o~“ID*gll , <~ D*(f =g, <lIf —gl,-
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Therefore, taking account of

lim ¢=*|.D%],=0,

la|—>

which was shown above, we get

lim supo~%|D*f|,<¢.
|a] =0

Case 2 is proved.

Case 3 (2<p< ). Invoking the density of M, , in M, ,, proved Case 1 and the
last part of the proof of Case 2, we deduce (2) for all f x)eM, ,.

Case 4 (p=1). To prove this case we cannot invoke above proved cases. Given
f(x)eM, ;. Then

fx)= j e f(E)dE
40

where f(£)e C(R™ and F(&) is vanishing in R"\ 4,. Further, let A>1. Then taking
account of

j e f(A&)dE =J‘ e™f(A8)de ,
4,21, 44

A

we get
Sx)= j e™f(A&)dE +f e (f(&)— F(A)d¢ . (3)
4,-1, 4o
Put
g(x)= e f(A8)d¢

h(x)= J e™(f(&)—F(Ag)de .
ds

Then the type of exponential function g(x) is A~ 'o. Therefore

lim SUPU_“IlD“glhsllnglilml supA~1%1=0. 4)
|a]—= o0 al— oo

Invoking # ~(f(A&))=A""f(A™ x), the type of exponential function f(x)—A~"f(1™ 1x) v

is o because the type of exponential function f(A7!x) is A~ lo<o, and by the

Bernstein-Nikolsky inequality, we have
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o~ D*h| =0~ IDH(f ()= A" f(A™ ), (5)
<IfE)—=A7"fA" "9,
SATA =D +A7"1 )= fA™ )y -
For fixed ¢>0, there is a number 4, >1 such that
ATMAT=DI SNl <€, I<i<i,. (6)
Further, we can choose 6 >0 such that for some 4,>1
1) = FA D umman <€, 1<A<Z, . ™

Then, it follows from the uniform continuity of the function f(x) on 4; we get a num-
ber 1;>1 such that

1) = fAT )L, ap<e,  1<A<4;. ®
Combining (5)«8), we have
O'—“"Dah"1<38, 1</1$2.4=inf{11, lz, 13} . (9)

Finally, put A=1,. Then combining (3), (4) and (9) we get
o~ D*f |y <o~ Dgll, + o7 D%h|l; <Ai'*Igll, + 3¢ .

Therefore,

lim supo ~*||D*f |, <3e,
|

al—> oo

and since £>0 is arbitrarily chosen, we get

llim o *|ID*fll,=0.

|a|— o0
The proof of Theorem 1 is complete.

REMARK 1. It easily follows from the Bernstein-Nikolsky inequality and Theorem
1 that ™% D*f||, converges decreasingly to 0.

REMARK 2. Theorem 1 does not hold if p=oo. Actually, let
flx)= _]_[1 sin 0 x; .
j=

Then f(x)e M, , and ||D*f|,=0" a>0.

Let us now consider the Bernstein-Nikolsky inequality for the directional derivatives

of entire function of exponential type.
Suppose that a=(qa,, * * -, @,) is an arbitrary real unit vector. Then
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D.fw=110= 3. a2 ()

is the derivative of f at the point x in the direction a, and
[OX)=D.fi )= X a*f®x), I=1,2,
Ja]=1

is the derivative of order / of f at x in the direction a.

Further, let 1 <p< oo and K< R" be a compact set. Denote by M(K, p) the space
of all functions f(x)e L,(R") such that supp # f < K.

We put

hx(a)=suplal]| .
¢eK

Then we have the following result:
THEOREM 2. Let f(x)e M(K, p). Then
1Dz fll,<[hg@I"l fll,, —m=0.

PrROOF. We introduce the transformation

x=(x1, t .,xn)_)(fla . T én)=€’

where &,, - - -, &, are the coordinates of x in the new rectangular system of coordinates,
which is chosen such a way that the increase of ¢, for fixed &,, -- -, &, will lead to a
motion of the point x in the direction a. The coordinate transformation

is defined by a real orthogonal matrix 4 =(x, ;). Here, evidently we have
| a;=0o;, , j=1,---,n and |detAd|=1.
Put g(¢)= f(x). Then
o" = f£0m = ..
@g(é)—fa x), m=12,
Now we show that |y, | < Ag(a) for each point y e supp g(y). Actually, it is clear that
for any function f e L,(R") (1 <p< o0), there exists a sequence of infinitely differentiable

finite functions f,, such that f,,— f in the topology of &’ (see, for example [1], p. 44).
For this sequence we put

GnlO=Ful0),  m=1,2,--.
Then g,,—g in the topology of &".
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-
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J— 1 (
2 e

e g (&)dL

d») =g, (y)=

e~ AT f (x)dx

e—ix'A" "’f,,(x)dx

1 = LA7)-fCA7Yy).
Therefore, 7
supp g={'4x ; xesupp f}c{'4x; xeK}.
Denote by (‘Ax), the first parameter of ‘Ax. Then

(‘Ax); = 2 Oy, 1 X = Z GpXy, -
k=1 k=1
Therefore

|y11<hga), yesupp 4(y) .

Hence, using the Bernstein-Nikolsky inequality for the function g(£), we get for
m=1,2,---

Om
@ 9(%)

The proof of Theorem 2 is completed.

<[hd(@]™ gl ,=L[hx(@]"I Sl -

p

IDZS ()= l

Using Theorem 1 and the proof of Theorem 2 we have the following resulit:

THEOREM 3. Let f(x)e M(K, p), l <p< 0. Then

lim [Ag(a)]" ™| DZf1l,=0.

m—* o0

REMARK 3. Letn=1.Then it was shown in [4] that: If 1 <p< o0 and f(x)e C*(R?)
such that D*f(x)e L (R"), k=0, 1, - - -. Then there always exists the limit

d;=lim | D*f| /%,
k— o0

and moreover

d,=0,=sup{|¢| ; Eesupp f(&)} .
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Therefore, if 6, < 0, using Theorem 1 and Remark 1, we get the following representa-
tion:

”Dkf”p=‘))ka-§'”f”ps kZOs
O0<yrs+1=<n<l,

lim yi*=1,

k— o0

and

lim y, =0, if 1<p<o.

k— o

This representatlon says us about the speed of the convergence to 0 of the sequence
o *ID¥f |l k=0, 1,
For the dlrectlonal derivatives we also have the following representation: Let
f(x)e M(K, p). Then

”Dl'z”f"p=)’m[hK(a)]m"f”p ’ m=09 19 Y
0<'ym+ls.'})mS1 s

lim ylm=1,

m— oo
and

lim y,,=0, if 1<p<oo.

m— oo
We can prove the following theorem:

THEOREM 4. Let 1<p<oo and I be some unbounded set of multi-indices
a=(0ty, * ", %), @;=0,j=1, - -+, n, 0el. Let f(x) be a nonconstant measurable function
such that its generalized derivatives D*f(x) belong to L,(R") for all xel. Then

hm inf (1€~ D*f 1| )% = 1

a—'ao

for any point &esupp f(&).

REMARK 4. Generalizing a result obtained in [5], we can prove Theorem 4. (The
proof is long and will be published elsewhere.) We notice that this result is dual with
the Bernstein-Nikolsky inequality. In this inequality the bound 1 cannot be improved.

From (1) and Theorem 4 we get

COROLLARY 1. Let 1<p<co. Let f(x)e M, , be not a constant and supp f(¢)
contains at least one vertex of the parallelepiped A,. Then
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lim (oD | )e=1.
e}
Here we cannot drop the assumption that supp f(£) contains at least one vertex
of 4,.

COROLLARY 2. Let 1<p<oo and let f(x) be the function defined in Corollary 1.
Then we have

ID°fllo=20%0SNl,» @20,

0<?p$'y¢, aSﬁ,

lim yiiel=1

la|=o0

and

lim y,=0, if 1<p<oo.

la|=
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