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1. Introduction.

In Jerison and Lee’s work on the CR Yamabe problem [JL], they consider the
following equation of prescribing pseudohermitian scalar curvature (2(n + 1)/n)R under
the choice of contact forms in a fixed CR structure:

(1.1) Ayu+

" Rou— Ru"+?m=Q u>0
2(n+1)
with R=constant, R, is a given pseudohermitian scalar curvature, where the sub-
laplacian operator A, is the real part of Kohn’s [, acting on functions. (See §2 for the
definition.) .

Let S?"*! be the unit sphere in C"*! equipped with the canonical pseudohermitian
structure having pseudohermitian scalar curvature n(n+ 1)/2 (see §2). In this paper, we
study the problem of prescribing arbitrary R on S2"*! with Ry=n(n+1)/2 in (1.1). In
fact, the equation we consider reads
2

(1.2) A,,u+~r—l4—u—Ru”=0, u>0

on S2"*! where a>1 is a constant. Our canonical pseudohermitian structure is
determined by a certain contact form 6. Let L, denote the associated Levi form. The
volume form 6 A (d6)" is denoted by dv,. The gradient operator relative to the metric
{, >=(1/4)6*+ L, is denoted by V. In §3, we obtain an integrability condition as follows.

THEOREM A. If u is a positive solution of (1.2), then
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1
(1.3) J w*t1(VR, Vf)dv,,=?(n+2—-na) w**Rfdv,
S2n+1 S2n+1

for all bigraded spherical harmonic f of type (1, 0) or (0, 1) or their linear combinations
on C"*1,

It is now clear that from (1.3), we have

COROLLARY. There are no positive solutions of (1.2) for R=f if a>(n+2)/n. And
the same conclusion holds for R=const+ f if a=(n+2)/n.

The equation (1.2) with the critical exponent a=(n+ 2)/n appears to be (1.1) in our
setting.

For the proof of Theorem A, we may think that the similar idea as in [KW] for
the Riemannian case should work at a first glance. This is partly right. Indeed, the
analogous divergence formula for integrating by parts still holds in pseudohermitian
geometry. However, A, is not elliptic (but subelliptic) and there appears a certain
characteristic direction in the tangent space, which needs special care. Actually, following
a standard argument, we arrive at (3.3) on the right-hand side of which there is an
“extra” uy-term. To see how to deal with this term, we carry out a variational argument
to get the equality (3.11). Comparing (3.3) with (3.11) gives us a hope of relating the
uy-term in (3.3) to the second term in the integrand of (3.11), which involves both u,
and V,u. Through the later computations, the hope comes true while it provides a clue
leading to a proof of (1.3). (See §3 for more details.)

When a equals the value (n+ 2)/n of geometric interest, the left-hand side of (1.3)
has a certain geometric interpretation. Along this line, Theorem A is extended to certain
compact pseudohermitian manifolds. Let Aut2y(A/) denote the identity component of
the CR automorphism group on a given CR manifold M. Let n,(M) denote the
fundamental group of M. In §4, we prove

THEOREM B. Let (M,0) be a compact pseudohermitian manifold with its
pseudohermitian scalar curvature R,. Suppose Auty (M) is compact or (M) is finite.
Then for any CR vector field X, we have

f XRydvy=0.

The proof of Theorem B is based on an analogous idea of Bourguignon ([B]).
Note that the real or imaginary part of gradient (with respect to {, )) of a bigraded
spherical harmonic of type (1, 0) or (0, 1) is a CR vector field.

According to Webster [W2] p. 63, if Aut2y(M) is non-compact, then either M is
CR-equivalent to S2"*! or every closed non-compact one-parameter subgroup on M
has no fixed points. We are wondering if the conclusion of Theorem B holds in the
latter case.
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The author would like to thank John Lee for valuable discussions. In particular,
he informed the author of Daryl Geller’s paper ([G]) which was a big help.

2. Some calculus in pseudohermitian geometry.

First we follow [L1] to give a brief description of pseudohermitian structures. Let
M be a smooth, oriented, compact (2n+ 1)-dimensional manifold. A CR structure on
M is an n-dimensional complex subbundle T, , of the complexified tangent bundle CTM
satisfying T, o N T, ; ={0}, where T, =T, ,. We will always assume that the CR
structure is integrable, that is, T , satisfies the Frobenius condition [T o, T o] < T} 0.
Set H=Re(T, o ® T, ,). We single out a real nonvanishing 1-form 6 annihilating H.
A choice of 0 is called a pseudohermitian structure on M. The Levi form of 6 is defined
by

LAV, W)=do(V A JW)

for V, WeT, . L,extends by complex linearity to a symmetric form on CH, real on
H, which is also denoted by L,. If L, is positive definite, M is said to be strictly
pseudoconvex. We will also assume throughout that M is strictly pseudoconvex.

Now let (M, 0) be a pseudohermitian manifold. The characteristic vector field of
0 is the unique vector field 7T such that T_10=1, T _1d6=0. Let {6*, - - -, 6"} be 1-forms
in CT*M, vanishing on T, ;. We call {6°} an admissible coframe if their restrictions
to T, o form a basis for T o, and 7_16*=0 for a=1, - - -, n. With respect to an admis-
sible coframe, we have

db = ih,z0* A 67 (Hereafter the summation convention is used.)

for some positive definite hermitian matrix of functions (4,3). Let {Z,, - - -, Z,} be the
frame for T, , dual to {6#*}. Then

- 1 —
LV, W)= —2—h¢3V°‘ wk

for V=V*Z,, W=W*Z,eT, ,.

It is well known that there exists a unique pseudohermitian-invariant affine
connection on (M, 0), satisfying certain geometric properties ([T1], [T2], [W1], [W2]).
Let D denote the associated covariant differentiation. For a (smooth) function f on
M, write f,=Z,f, fa=2Z;f, fo=Tf, so that Df=df = f,0*+ f;0*+ f,0. The second co-
variant differential D2f of f in directions (Z,, Zy) (Z,, 1), (T, T), etc., respectively)
will be denoted by f,5 (f0, foo, €tc., respectively). It follows that

(21) f;zﬁ_f;'fa=ihaﬁf09 f;ﬂ—fﬂaz:O'

Let (4*f) be the inverse matrix of (hyp). As usual, A,z and h*® are used to raise or
lower indices. Now we define the subgradient operator V; of type (1,0) (V; of type
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(0, 1), respectively) by

;wf =f aZa
(Vof = f*Z;, respectively) where f*=h" f; (f*=hPf,, respectively). Of course, if f is
real, f*=(f"). And then the subgradient operator V, is defined by the sum of V} and

V. Similarly, the subdivergence operator div, of type (1,0) (divy of type (0, 1),
respectively) is given by

1 _
div;,V=—2— Ve, and div,V'=0

(diviW=4W?; and div;W=0, respectively) for V=V*Z,eT,, (W=W?Z,eT,,,
respectively) where, as usual, we denote covariant derivatives of a tensor by indices
separated by a comma. Thus the subdivergence operator div, is given by the sum of
divy and divy. It follows that

div, X =%(V“,,+ we5)
for X=V+W.
To simplify the notation, we also denote Ly(X, Y) by X- Y. The following formulas:
divy(fX)=V,f- X+ f divp, X,
divi(fX)=V,f-X+ fdivy;X, and
div,(f X)=V,f- X+ f div,X

for Xe CH hold.
The sublaplacian operator A; (Aj, A,, respectively) acting on functions is now
defined by

Apf = —2divy(V,f)

(Apf=—-2divy(Vy [f), Ay=A,+ A}, respectively).

It follows that A, f = —2divy(V, )= —(f*+ ff) = — (/.= + ;) which agrees with
the formula in [L1]. We will often use the following divergence formula ([L2]) for
integrating by parts:

J div, V0 A (dOy = J Ve 0 A(dO)y'=0
M 2 Jm

for V=V*Z,. (Of course, similar formulas hold for div; and div,.) By (2.1), we also have

f T A (dO)"=0 .
M



CURVATURE FUNCTIONS 155

Our canonical pseudohermitian structure on the unit sphere $?"*! in C"*! with
the induced CR structure is given by 0=ilc—0), 6=)1] z,dz; for (zy, "+, 2,4 1)€
C"*1, Hereafter, for S2"*1, 0 is taken to be the above one. For what we need in the
next section, we have to know the extrinsic expressions of V}, V; and A, for $3"*!
and compute A,f and the Hessian of f for a bigraded spherical harmonic f of type
(1,0) or (0, 1) at least. We write 9;=0/0z;, 0;=0/0z;. Set Z, =Z;0,—Z,0;. It is not diffi-
cult to derive that

1 -
(2.2) Vif =— Z (ijf)Z Jjk

2 1<j<ksn+1
for £ on S?"*1, One way to derive (2.2) is to apply the canonical isomorphism ¢
between T'§ ; and T, , induced by the Levi metric L, to Geller’s formula ([G]) for J,:

a-bf = Z (Z jkf)g-jk
1gj<k=sn+1
where 8, = Z,dz, — z,dz;. Note that (1/2)82 + L, coincides with the induced metric in [G]
on §?"*1 Therefore dz, and 6% are mapped to 0, and 2Z, respectively under ¢ (we
have taken h,;=240,5 here). According to the formula of Geller ([G] p. 420 for a=n)
and Lee ([L1], p. 414) for [, acting on functions, we have

Ab.f=(——l') > (ZypZp+ZyZ3)f .

2 l1<j<k<n+1

It follows that A,z;=(n/2)z; and
(2.3) Apf=@/2)f

for all bigraded spherical harmonic f of type (1, 0) or (0, 1) or their linear combinations.
(A bigraded spherical harmonic of type (p, g) on C"*1! is a harmonic polynomial which
is a linear combination of terms of the form z*z#, a,  multi-indices with |a|=p, | B|=g¢.)

Next we compute H, the Hessian of f, in the direction V,u. First observe that
D,W=[Z, W]g, ,, the orthogonal projection of [Z, W] onto T, , for Z, We T, o ([T1],
p. 31). It follows that

2.4 D, jkzlm = (0uiZ;— 0321 )(Om — Zm0*) + (O jmZi — OmZ X0, —z,6%)
where 6*=Y 1123, Therefore writing Vyu=(1/2)}(Zw)Zy and Vyu=(1/2)3 (Z ;W) Z

j=

by (2.2), we have for f=2Z,
2.5.1) H (Viu, Vyu)

=7 HAZ, Z\XZyuXZ,,u) (summation convention)
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1 _ _
= Y [(Z jkzlm —D, szlm)f] (Z pulZ 1)
1 : _
=— 1 S1zdZ0m—Zk0 jm) + Zn 210 j1— Z 01 ) N Z X Z,,i )  (by (2.4))

1 - =

=(—f)Ly(Vu, Vyu), and
25.2) H{(Vyu,Vyuy=0  for f=z, by the type reason.

On the other hand, we observe that Dy Y for X, Ye T, , is uniquely determined by the
condition:

LO(DXY’ W)=XL0(Ya W)“LO(Ya [X’ W]To,x)

for We T, , (e.g. [T1] p. 31). A straightforward computation shows that the right-hand
side of the above formula vanishes for X=Z,, Y=Z;, W=2Z,,. It follows that
D,,,Zu=0 since {Z,,} spans T, ;. Then it is easy to see that H(Z, Z,,)=0 and

(2.6) H (Vyu, Viyu)=H(Vyu, Viu)=0
for either f=z, or f=2,. Now, for the same f and u real,
2.7 H(Vyu, Vyu)=HVyu, Viu)+ H(Vyu, Viu) (by (2.6))

= H(Viyu, Viu)+ Hy(Vyu, Viu)

- _% fL(Vyu, Vo) (by (2.5.1) and (2.5.2)) .

3. An integrability condition: Proof of Theorem A.

By letting Y=V,u in the following identity:

ViV V, 1)+ Y=% LHAY, Vo f)+ HAY, V)],

we obtain
(3. 1) 2(Vbu * be)A,,u = H“(Vbu, be) + Hf(Vbu, V,,u)
where the symbol “=" denotes equality modulo terms which are subdivergences. Set

| V,u|2=Vu-Vyu for u real. Since, for 4, B=1, ---,n,1,---,4, a,p=1,---,n,
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2u,pf4uP = (up fuP) 4+ 2uup—up) fAu® —upf4 u°
=2A, f| Vyu |2 + 2iugh,s(f*uf — u* f7)
by the commutation relations (2.1), we obtain
3.2) H(Vu-V,)=A, fI Vot |2+ 2iug(Vyf - Viou—Vyf-Viu)

for u real and f complex.
Remember that we are working on S2"*! with 6=i(c —&) (see §2). Therefore T
equals (i/2)((;0;—{;0,) if the ambient space C"*! has coordinates {y, * * -, {4 1-
Substituting (2.3), (2.7) in (3.1), (3.2) for f =z, or Z, gives

- (3.3) 4(Vyu Vo )Au=(n—1)f| Vyu|§ +4iug(Vyf - Viu—Vif-Viu).

To get an idea of how to deal with the u,-term, we carry out a variational argument
which has an analogue in the Riemannian case ([R], [KW]).
Consider now u to be a solution of the equation

(3.4) Agu=q(x, u)

on §2"*! where x denotes a point of $2"*1. Let
o(x, u)=j q(x, s)ds .
0

Then u is a critical point of the functional

(3.5) F(u)= [ Vo5 — Q(x, u)]dvs

S2n+1
where dvy =0 A (dB)". Let H" denote the Heisenberg group whose underlying manifold
is C"x R with coordinates (z,t)=(z,, - -, z,, ) (e.g. [JL]). Let ¢, : H*—>H" be the
dilation defined by y,(z, t)=(Az, A%t), A>0. Then {y,} induces a family of CR
automorphisms {¢,} on S2"*! under the Cayley transform ([JL]). Since ¢, =id, so

dF(u-g;)

3.6) 7

=0.

A=1

If the Cayley transform reads

1—
w=i(ﬂ>, S TR
1+{,4 1+,4 4
for (z4, - - -, z,, Rew)e H", Imw=z;=1]éj|2, and {=((y, - ", {ps)€S?" L= C** ! with
(0, - - -, —1) deleted, then {=¢,({) is given by
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{Ek=2ilik/[i(1 +A+i(1—ADpei],  k=1,m
Gy =L =A%)+ i(1 + A4 /LA + A2) + i1 =A%) 04 1] -
It follows that

d
3.7 —
(3.7 di P

n+1 a

=Y, (u+1la—06%4+1)—+conjugate .
a=1 a=1 0L,

On the other hand, using the extrinsic expression (2.2) for V; (hence V}), we easily
obtain

0 0
(38) 2Van+1'|-.4(TCn+ 1)T=‘aﬂ—c"+ ICaEC': .
Comparing (3.7) and (3.8) gives
d

3.9 — = —2V,h—4h,T
3.9) i Pa et oh 0
for h={,,,+C,+. Therefore

d d

3.10 — (uo = — u

(3.10) a e, (dl P M)
= —4(Vbh 'V,,u+ houo) .

Substituting (3.5) in (3.6) and using (3.10), we have

(3.11) —iF(u )

| an

d
Vi —q(x, u) E(u °@,;)

d
- J.slni- 12Vbd—l(u ° (pl)

A=1 A=1

= J‘ - 8V,,(V,,h M V,,u) * V,,u bt 8Vb(hou0) * V,,u + 4qV,,h * V,,u + 4qhouo .
s2n+1

The second term in the integrand of (3.11) is expected to deal with the u, term in (3.3).
So we compute V,(fouo)* Vyu modulo terms of subdivergences: for f={(,,, (hereafter
through (3.19))

(3. 1 2) zvb(fouo) * Vbu = uAb(fouo)
=(n/2)uuy fo +ufoqo— ifuo"

by (2.3), (3.4) and the commutation relation uy, = t,o. (See [L2]. Note that the torsion
for our sphere vanishes.) Similar computation shows that
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(3.13) 2iug(Vaf - Vou—Vif - Viu)=iuo(f*u, — f*uz)
= iuuo(f*a— S ") + it f*uoz — [“Uod)
= —nuug fo + iufuy*

by (2.1). Adding (3.12) and (3.13) gives

(3.14) 2iug(Vyf -Vyu—Vif Vi) = —(n/2Quuo fo + ufodo —uofoq

since the left-hand side of (3.12) = fyu,g by (3.4).
Let Q,, denote the V, of Q in the variable x while u is considered to be fixed. Then

(3.15) qVyu Vo f =(V,0—0,,)'V,f (by the chain rule)
=(1/2)QA,f — Qpx* Vi f
=n/HQf — Qpx* VS

by (2.3). One more V,u term to be estimated:

(3.16) SIVsu|§ = —(1/8) fAy(?) +(1/2) fuhyu

= —(n/8) fu*+(1/2) fuq
by (2.3) and (3.4). For our purpose, assume that g(x, u) has the form
3.17) Au+ R(x)u®

where both A and a are constants with a> 1 and R is a (smooth) real function on S?"*1.
Now we estimate terms involving u, on the right-hand side of (3.14):

 (uuofo =(1/2)w?)o fo=(—1/2u foo =(1/8)u*f

(3.18) ufodo = —uofoqd —ufooq = —uofoq +(1/ufq
uofoq =[(1/2)Au? +(1/(a+ 1)Ru* 1o fo —(1/(@+ 1)Ro fou !
=(1/8)Au* £ +(1/4a+ )R+ f —(1/(@+ 1))Rofou* !
by foo=(—1/4)f. Now substituting (3.14), (3.15) (by (3.4)) and (3.16) in (3.3) and using
(3.17), (3.18), we finally obtain
(4/(@+ DYV,R-V,f + Ro fohu"**
=(n*/8+(1/2u*f +[(n+1)/(a+1)—n/2]Ru"*1 1.

Letting A= —n?/4 in the above identity and integrating give

(3.19) f u“*1(V,,R-V,,f+R0f0)dv9=%(n+2—na) W RS dv, .
S2n+1

S2n+1

Let V be the gradient operator relative to the metric <, >=(1/4)02+ L,. Then
Vg=2V,g+4g,T for a function g. It follows that
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(3.20) 4VpR:Vyf +Rofo)=<{VR, V).

By substituting (3.20) in (3.19) and using symmetry, (1.3) holds for f=(,
a=1, - -+, n+1. Taking conjugation and observing the linearity of (1.3) in f complete

the proof of Theorem A.

REMARK 1. Our pseudohermitian sphere (S2"*!, 6) has constant pseudohermitian
scalar curvature n(n+ 1)/2. If another contact form & changes according to =u?"9,

u>0, then its associated pseudohermitian scalar curvature Ry and u satisfy the following
equation:

nz
Ayu+——u—
M T 2m)
REMARK 2. When a=(n+2)/n, the volume form transforms like dvg=u*"'dv,.
Therefore (3.19) can be rewritten as

Ryu+2in—g

3.21) J XRpdvg=0
S2n+1
by (3.20) where X=V =2V, f+4f,T. By (3.9),
d
X=——"-0,
O PR
for f=(,+1+,+1 (hence Re{, or Im{,, a=1, ---,n+1 with the suitable choice of

Cayley transform) is a CR vector field. It is in the form of (3.21), which we generalize
to certain pseudohermitian manifolds in the next section.

4. Geometric interpretation and generalization: Proof of Theorem B.

Let M be a compact oriented CR manifold of dimension 2n+1. Set H=
Re(T, o @ T,,,) as before (see §2). Let 6 be a non-vanishing real (smooth) 1-form an-
nihilating H. Let Q be the set of all §= f0 where f is a smooth positive function on
M. The space Q2 is a Frechet manifold modelled on the Frechet space C*(M) through

the correspondence 8—¢ where 8=e?0. Thus TpQ= {pe C°(M)}. A 1-form w on Q is
defined by

Wy = Rydvy : @ —>j @Rgdv, .
M

Let G=Aut2(M). G acts on Q by gf=(g~!)*0 where geG. It follows that
g : ToR—T,Q is given by g,(0)=(9™ ')*o.
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LEMMA. w is a G-invariant closed form.

PROOF. (9* gl P) = W69, 0) = f (9~ 1)*(PRaOdva9
M
= J (@™ )*o(g ™ ')*(Rqdvy)
M

= f @Rydvy=wy(p) .
M

Hence w is G-invariant.

Let 0;,=€'/0, j=1, 2. Then

d d
“4.1) dwg(@,, 902):[ (Pz‘(}t‘(kol,,dvo,,,) |r=o— J Py E(Roz,,dvoz,,) |x=o .
M M

By definition, dvy,,=0;, A (d6; )" =e"* **idv,. And
Ry, .= [exp(—1—n/2)t91[(2+2/n)A, exp(ntp;/2) + Ry exp(ntep;/2)]
([L1]). Therefore '

d
4.2) ar (Roj,,dvoj_,) lc =o=nQ;Ry+(n+1)A,p; .

Substituting (4.2) in (4.1), we obtain

dwy@,, ¢;)=0

by self-adjointness of A,. Hence w is closed. Q.E.D.
A CR vector field X on M induces a vector field ¢, on Q by L 0= @,.00. It follows

that :

4.3) L.dvg=(n+1)p, gdvy .

Let i(¢,) denote the operator of taking interior product in the direction ¢,. Applying
the basic formula: L, =i(¢,)od+d-i(¢,) to w and using the above lemma give that
(@,) is constant on Q. On the other hand, by definition,

wO((Px,G) = f (px,OROdUG
M

1
= R,L.d by (4.3
—— J.M oL dve (by (4.3))
=— L f XRydv, (by the divergence theorem) .
n+1Jy
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We denote | ,, X Rydv, by u(6). Since p(6) is constant, we only have to show that it vanishes
for some specific 6. If G is compact, we can construct a G-invariant contact form 4 by
averaging the action:

= f g*6dg
geG

for a given 0 € Q where dg denotes the Haar measure of G. (Note that if dim G=0, we
do not have any non-vanishing CR vector field at all.) Since L =0, it follows that
L.dvg=0 and u(@)=0. If G is non-compact and =,(M) is finite, it can be shown that
M is globally CR equivalent to $2"*! ([W2] p. 55). So with respect to the standard
contact form 6, Rg is constant. Hence u(@)=0. We have completed the proof of
Theorem B.

Added in proof.

After this paper was submitted, the author gave a talk on results of this paper at
the University of Washington, Seattle. Later Robin Graham pointed out that the
conformal analogue of Theorem B can be proved directly by integrating by parts. (The
author learned that Bourguignon also obtained this integrating-by-parts proof in a
paper jointly with Ezin.) Inspired by Robin’s argument, Jack Lee was able to give an
integrating-by-parts proof of our Theorem B in full generality. '
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