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\S 1. Introduction.

Let $P$ be a $2n$-dimensional symplectic manifold with the symplectic structure $\omega$ ,
and $L,$ $L^{\prime}$ be two Lagrangian submanifolds of $P$ . We assume, in this paper, that $L$ and

$L^{\prime}$ intersect transversally with a non-empty intersection, and a smooth map

$f$ : $I\times I\rightarrow P$ , $I=[0,1]$

is given with the following properties:

$f(\tau, O)\in L$ , $f(\tau, 1)\in L^{\prime}$ for any $\tau\in I$ ,
(1-1)

$f(O, t)\equiv x$ , $f(1, t)\equiv y$ for any $t\in I$ ,

where $x,$ $y\in L\cap L^{\prime}$ . Under these assumptions, two homotopic invariants arise. One is
the spectral flow associated to a family of certain operators, and the other is the Maslov
index of a curve which relates with the boundary conditions imposed on the operators
in that family.

A. Floer has shown that these two are equal to relative Morse index from $x$ to $y$,
which is defined as the Fredholm index of a certain elliptic operator (see [F]).

Now let us explain the problem more precisely. Let $g$ be a Riemannian metric on
$P$ which is adapted to the symplectic structure $\omega$ , that is, if we write $\omega(X, Y)=g(X, JY)$ ,
for any vector fields $X,$ $Y$ on $P$, then $J$ is an almost complex structure of $P$ . Hence
$J^{2}=-Id$ and ${}^{t}J=-J$ ( ${}^{t}J$ is the transpose of $J$ with respect to the metric $g$). We fix such
a metric henceforth, and denote by $\nabla$ the Riemannian connection of the metric $g$ . Let
$\Omega$ be a path space of $P$ consisting of smooth paths $z:I\rightarrow P$ such that $z(O)\in L$ and
$z(1)\in L^{\prime}$ . Consider, at least locally, a symplectic action functional $a:\Omega\rightarrow R$ defined by
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the equation

$\langle k(z), \xi\rangle=\int_{0}^{1}oX\dot{z},$ $\xi$)$dt$ , (1-2)

where $\xi$ is a smooth section of the induced bundle $z^{*}(TP)$ on $I$, or $\xi$ is a vector field
along the curve $\{z(t)\}$ , which can be regarded also as a tangent vector at $z$ in $\Omega$ . Then
we obtain an operator field $\mathscr{A}_{z}$ on $\Omega$ as “Hessian of the functional $a’$ :

$d_{z}(\xi)=J\nabla_{p}\xi+(\nabla_{\xi}JK\dot{z})$ , $\xi\in C_{0}^{\infty}(z^{*}(TP))$ . (1-3)

Let $f$ : $I\times I\rightarrow P$ be a map as above, and we denote $d_{f}=d_{f}$. for the path $f_{f}(t)=f(\tau, t)$ .
We would like to associate two quantities, so-called spectral flow and Maslov index,
to the family ofoperators $\{,st_{\tau}\}$ both ofwhich depend only on the two points $x,y\in L\cap L^{\prime}$

and the homotopy class ofthe map $f$ . To do so, there are three problems to be made clear:
(1) It can be verified that, if $ z\in\Omega$ is a constant path, i.e. $z(t)\equiv x,$ $x\in L\cap L^{\prime}$ , then

$\mathscr{A}_{z}$ is formally symmetric, or if $P$ is K\"ahler and $g$ is the K\"ahler metric, then $d_{z}$ is
symmetric for any path $ z\in\Omega$ . But the operator $d_{z}$ is not even formally symmetric in
general.

(2) Each operator $sat_{z}$ acts on a different space of sections. We must make the
domains of the operators to be identical one, and give a definite meaning ofthe continuity
of the family $\{d_{\tau}\}$ with respect to the parameter $\tau$ .

(3) The family $\{d_{z}\}$ does not forma loop, $ifx\neq y$ . We would like to make it a
loop in a natural way.

Although A. Floer discussed on the coincidenoe of two quantities in his paper [F]
by interceding with a single Fredholm operator (desuspension’ of one parameter family
of selfadjoint Fredholm operators (see [APS])), it is not so clear for us about these
points (1), (2) and (3). So it is our aim of this paper to make clear these points together
with giving a definite description of the two homotopy invariants within the framework
given by [AS], [BW] and [V]. By making clear these points, especially by clarifying
the continuity of the family $\{d_{f}\}$ with respect to the parameter $\tau$ , we get a direct proof
(without ‘desuspending’ the family $\{.st_{\tau}\}$) of the coincidence of the two homotopy
invariants. Hence we think it is worth while to write this paper.

In \S 2, we review the notion ”spectral flow” by following [AS] and [BW], and
note a slight generalization in the proposition 2.4, which is used to.define the spectral
flow for loops of non-selfadjoint Fredholm operators. Also we explain an example to
which our case is reduced in the final step in the proof of the main Theorem 5.1, in \S 5.

In \S 3, we shall construct two loops in Lagrangian-Grassmannian manifold
$\Lambda(n)=U(n)/O(n)$ from the data given by the map $f:I\times I\rightarrow P$ with the property (1-1)
and show that the Maslov indices of these two loops coincide. One of the two loops is
used to construct a loop of operators from the family $\{d_{\tau}\}$ .

In \S 4, we construct a continuous loop in the space of bounded selfadjoint Fredholm
operators $fi_{*}$ (see \S 2) from the family $\{d_{f}\}$ , and in \S 5 we show our main Theorem 5.1.
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\S 2. Spectral flow.

In this section, we first describe the notion “spectral flow”. For more details see
[AS], [APS] and [BW].

Let $H_{C}$ be a separable complex Hilbert space of infinite dimension, $\mathscr{F}=\mathscr{F}(H_{C})$ the
space of bounded Fredholm operators on $H_{C}$ , and $\mathscr{J}$ the subspace of $\mathscr{F}$ consisting of
self-adjoint operators.

$\mathscr{J}$ has three components $ff_{+}$ Yr- and $\hat{\mathscr{F}}_{*}$ consisting of essentially positive
operators, essentially negative operators, and others respectively. It is easy to see that
$\hat{\mathscr{F}}_{\pm}$ are contractible.

Define a map
$\alpha$ : $\hat{\mathscr{F}}_{*}\rightarrow\Omega \mathscr{F}$

by assigning to each $A\in \mathscr{J}_{*}\iota he$ path

$\cos\pi t+\sqrt{-1}A$ $\sin\pi t$ for $t\in I$ ,

then we have the following theorem.

THEOREM [AS]. The map $\alpha$ is a homotopy equivalence, and so $\mathscr{J}_{*}$ is a classifying
space for the functor $K^{-1}$ , i.e., for any compact space $X$, we have an isomorphism

$K^{-1}(X)=[X,\hat{\mathscr{F}}_{*}]$ , (2-1)

where [X, $\hat{\mathscr{F}}_{*}$] is the set of homotopy classes of continuous maps from $X$ to $ff_{*}$ .
From the Bott periodicity theorem and this theorem, we have

$\pi_{1}(\hat{\mathscr{F}}_{*})\cong Z$ . (2-2)

The isomorphism (2-2) implies that a loop in $\mathscr{J}_{*}$ has just a homotopy invariant and
it can be characterized by an integer, called, “spectral flow”.

We now explain this. Let $t:I\rightarrow\hat{\mathscr{F}}_{*}$ be a continuous map, and $t_{0}$ and $\swarrow 1$ have the
same spectral set: $\sigma(t_{0})=\sigma(t_{1})$ . Then, roughly speaking, the spectral flow of the family
$\{t_{t}\}$ is the difference between the number of eigenvalues which change the sign from
-to $+on$ $I$ and the number of eigenvalues which change the sign from $+to-$ .

To put it more precisely, let $\hat{F}(\infty)$ be a subspace of $\hat{\mathscr{F}}_{*}$ such that $A\in\hat{F}(\infty)$ , if and
only if,

the intersection $\sigma(A)\cap(-1,1)$ consists of finite isolated eigenvalues with
finite multiplicities, $\sigma_{ess}(A)=\{-1,1\}$ and the norm $ofA$ is equal to 1, $\Vert A\Vert=1$ ,

where $\sigma_{88}(A)$ is the set of essential spectra of the operator $A$ (see [K] for the definitions).

PROPOSITION 2.1 (see [BW]). The space $\hat{F}(\infty)$ is a deformation retract of $\Phi_{*}$ .
Let $l:I\rightarrow\hat{F}(\infty)$ be a continuous loop ($\swarrow 0=\swarrow 1$

’ and the topology of $F(\infty)$ is of
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course the uniform topology). Then the graph of the spectrum of $t$ can be parametrized
through a finite monotone sequence of continuous functions

$\lambda_{j}$ : $I\rightarrow[-1,1]$ , $j=1,$ $\cdots,$ $N$ ,

$-1\leqq\lambda_{1}(t)\leqq\lambda_{2}(t)\leqq\cdots\leqq\lambda_{N-1}(t)\leqq\lambda_{N}(t)\leqq 1$ for $t\in I$ .
Then we have

PROPOSmON 2.2 [BW]. Let $t:I\rightarrow\hat{F}(\infty)$ be as above, then there exists an integer $s$

such that $\lambda_{k+s}(0)=\lambda_{k}(1)$, for each $k$, where we regard $\lambda_{-|s|}=\lambda_{-|s|+1}=\cdots=\lambda_{0}=-1$ , and
$\lambda_{N}=\lambda_{N+1}=\cdots=\lambda_{N+|s|}=1$ . Moreover the number $s$ is homotopically invariant.

From this proposition we can give the

DEFINITION. For a homotopy class of a loop 1: $I\rightarrow\hat{F}(\infty)$, we can define $sf\{t\}=s$,
where $s$ is an integer in the proposition 2.2 above, and we call it the spectral flow of
the loop $\parallel$ .

Hence by this definition together with the proposition 2.1 we have

PROPOSmON 2.3 ([BW]). The map definedby the spectralflowgives an isomorphism
sf: $\pi_{1}(\hat{\mathscr{F}}_{*})\cong Z$.

We will now explain some relations between real and complex cases briefly. Let
$H_{R}$ be a real Hilbert space, then $\mathscr{F}(H_{R}),\hat{\mathscr{F}}(H_{R}),$ $\mathscr{J}_{\pm}(H_{R})$ and $\hat{\mathscr{F}}_{*}(H_{R})$ are defined in
the same ways as for the complex cases, and $\mathscr{J}_{*}(H_{R})$ is, in this case, a classifying space
for the functor $KR^{-7}$ (real K-group). Although $ff_{*}(HJ$ and $ff_{s}(H_{R}\otimes C)$ are not
homotopic, we have

$\pi_{1}(p_{*}(HJ)\cong\pi_{1}(\hat{\mathscr{F}}_{*}(H_{R}\otimes C))$

through the complexification $\mathscr{J}_{*}(H_{R})\subset\hat{\mathscr{F}}_{*}(H_{R}\otimes C)$ . This can be done by defining an
isomorphism

sf: $\pi_{1}(\hat{\mathscr{F}}_{*}(H_{R}))\cong Z$

in the same way as in the complex case.

REMARK 1. In this paper we will work on real Hilbert spaoes.

REMARK 2. Let $\hat{F}(H_{R})$ be the space of skew-adjoint Fredholm operators on a real
Hilbert space $H_{R}$ . Various subspaces $\hat{F}^{-k}(Hd$ of $\hat{F}(H_{R})$, for $k=1,$ $\cdots,$

$7$ , are defined
through $the*$-representations of Clifford algebras on $H_{R}$, each of which is a classifying
space for the functor $KR^{-k}$ , the k-th real K-group (see [AS]). For example $\hat{F}(HJ$ itself
is a classifying space for $KR^{-1}$ . In this case the complexification

$\hat{F}(H_{R})\subset\hat{F}(H_{R}\otimes C)\cong\sqrt{-1}\mathscr{J}_{s}(H_{R}\otimes C)$

induces the trivial map $\pi_{1}(\hat{F}(H_{R}))\cong Z_{2}\rightarrow\pi_{1}(\hat{\mathscr{F}}_{*}(H_{R}\otimes C))\cong Z$. As for the case $k=7$ , the
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space $\hat{F}^{-7}(H_{R})$ is isomorphic to the space $\hat{\mathscr{F}}_{*}(H_{R})$ .

Next we give a proposition.

PROPOSITION 2.4. Let $\mathscr{K}$ be the space of all compact operators on $H(H$ is real or
complex), then the inclusion

$i;\hat{\mathscr{F}}_{*}\rightarrow\hat{\mathscr{F}}_{*}+\mathscr{K}$

is a homotopy equivalence.

PROOF. Let $A=S+K,$ $S\in\hat{\mathscr{F}}_{*}$ , KE $\mathscr{K}$ , then $(A+A^{*})/2=S+(K+K^{*})/2\in\hat{\mathscr{F}}_{*}$ . So
define a map

$j:\hat{\mathscr{F}}_{*}+\mathscr{K}\rightarrow\hat{\mathscr{F}}_{*}$

by $j(A)=(A+A^{*})/2$ , then $i\circ j$ is homotopic to Id through a homotopy $f_{t}(A)=$

$tA+(1-t)i\circ j(A)$ . Because, if $A=S+K,$ $S\in\hat{\mathscr{F}}_{*},$ $K\in \mathscr{K}$ , then

$f_{t}(A)=t(S+K)+(1-tXS+(K+K^{*})/2)$

$=S+((1+t)/2)K+((1-t)/2)K^{*}\in\hat{\mathscr{F}}_{*}+\mathscr{K}$

for each $t\in I$.
Owing to this proposition we have an integer “spectral flow” for a loop $\{l_{t}\}$ in

$\hat{\mathscr{F}}_{*}+\mathscr{K}$ , which can be regarded as a total number of eigenvalues of $\{l_{t}\}$ across the
imaginary axis with directions when $t$ moves from $0$ to 1. Especially we have

COROLLARY 2.5. Ifa loop $l:I\rightarrow\hat{\mathscr{F}}_{*}+\mathscr{K}$ has theform $l_{t}=S_{t}+K_{t}$ , where $S:I\rightarrow\hat{\mathscr{F}}_{*}$

and $K:I\rightarrow \mathscr{K}$ are both continuous loops, then $sf\{l_{t}\}=sf\{S_{t}\}$ .
Finally we discuss an important example to which our case will be reduced in \S 5.

Let

$J=\left(\begin{array}{ll}0 & -I_{n}\\I_{n} & 0\end{array}\right)$

where $I_{n}$ is the $n\times n$ unit matrix, and consider an operator

$A=J\frac{d}{dt}$ : $C_{0}^{\infty}(I)\otimes R^{2n}\rightarrow L_{2}(I)\otimes R^{2n}$

Here function spaces $C_{0}^{\infty}(I)$ and $L_{2}(I)$ (square integrable functions on the interval
$I=[0,1])$ are to be considered as those consisting of real valued functions. We will
denote $L_{2}(I)\otimes R^{2n}$ by $H_{R}$ and by $W_{1}$ , the first order Sobolev space, i.e., $f\in W_{1}$ , if and
only if, $f\in H_{R}$ and $f^{\prime}\in H_{R}$ (the norm of $f\in W_{1}$ will be defined as $\Vert f\Vert_{1}^{2}=\Vert f\Vert^{2}+\Vert f^{\prime}\Vert^{2}$).

Let $(R^{2n}, \omega)$ be the symplectic vector space with the skew symmetric form $\omega$ defined
by $J:\omega(x, y)=(x, Jy)$ , where $(\cdot, )$ is the standard Euclidean inner product on $R^{2}$“.

Henceforth we will use identifications:
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$R^{2}\cong C^{n}\cong R^{n}\oplus\sqrt{-1}R$

and

$s\mu n,$ $R$) $\cap SO(2n)\cong U(n)$ .
We also use the decomposition $R‘‘\oplus\sqrt{-1}R‘‘\equiv\lambda_{{\rm Re}}\oplus\sqrt{-1}\lambda_{{\rm Im}}$ . Let $\Lambda(n)$ be the set of
all Lagrangian subspaces of $R^{2}$“ (n-dim subspace on which $\omega$ vanishes). $\lambda_{{\rm Re}}$ and $\lambda_{{\rm Im}}$ are
in $\Lambda(n)$ . Under these identifications the unitary group $U(n)$ acts on $\Lambda(n)$ transitively, and
we have $\Lambda(n)=U(n)/O(n)$ ($O(n)$ is the stationary subgroup of the point $\lambda_{{\rm Re}}$).

Let $\lambda$ be a Lagrangian subspace in $R^{2}$“, and define a subspace of $H_{R}$ as follows:

$D_{\lambda}=\{f : f\in W_{1}, f(0)\in\lambda_{{\rm Re}}, f(1)\in\lambda\}$ .
Then we have,

PROPOSmON 2.6. The operator $A$ can be extended to $D_{\lambda}$ as a selfadjoint operator.
We denote this operator by $A_{\lambda}$ .

Next, let $u:I\rightarrow U(n)$ be a $C^{2}$-class curve with $u_{0}=Id$ , and define orthogonal
operators $U_{f}$ : $H_{R}\rightarrow H_{R}$ by

$(U_{\tau}fXt)=u_{t\tau}(f(t))$ .
Put $\lambda_{f}=u_{\tau}(\lambda_{{\rm Re}})$ , and $A_{f}=A_{\lambda}.$ , then we have

PROPOSmON 2.7. The domain of the operator $U_{\tau}^{-1}A_{\tau}U_{\tau}$ is $D_{\lambda_{R}}$. , and

$U_{f}^{-1}\circ A_{\tau}\circ U_{\tau}=A_{0}+B_{\tau}$ , (2-3)

where $B_{f}$ is given by

$1^{B_{f}\emptyset Xt)=(u_{t\tau}^{-1}\circ J\circ\frac{d}{dt}(u_{t\tau})\lambda^{\phi(t))}}$ . (2-4)

Moreover $B_{f}(W_{1})\subset W_{1}$ , and $B_{f}$ and $U_{f}$ are continuous families of operators from $W_{1}$ to
$W_{1}$ with respect to the parameter $\tau$ and, of course, also as operators $H_{R}\rightarrow H_{R}$ .

$PR\infty F$ . By the definition $(U_{\tau}fX0)=f(0)$ and $(U_{f}fX1)=uJf(1))$ . So $D_{\lambda}.=U_{\tau}(D_{\lambda_{R}}.)$ .
Therefore the domain of $U_{f}^{-1}\circ A_{\tau}\circ U_{f}$ is $D_{\lambda_{R}}$ . By noting $J\circ u_{f}=u_{f}\circ J$, a direct calcu-
lation gives us the formula (2.3) and (2.4). Since $B_{\tau}$ is a matrix operator, we can easily
verify the remainder assertions.

Since the family $\{A_{\tau}\}$ consists of unbounded operators, we transform each $A_{\tau}$ as
follows to obtain a continuous path in $F_{*}$ : let

$X_{\tau}=A_{\tau}\circ(1+A^{2})^{-1/2}$ ,

where we regard that the operator $(1+A_{f}^{2})^{-1/2}$ is defined by an integral
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$\int_{\Gamma}(1+\lambda)^{-1/2}(\lambda-A_{\tau}^{2})^{-1}d\lambda$ ,

on a suitably taken contour $\Gamma$ in $C$ (note here that $A_{f}$ is a real operator for each $\tau$).
Then each $A_{\tau}$ is a bounded selfadjoint Fredholm operator on $H_{R}$ with eigenvalues of
the form $\lambda_{k}(\tau X1+\lambda_{k}(\tau)^{2})^{-1/2}$ , where $\lambda_{k}(\tau)$ is the k-th eigenvalue of $A_{\tau}$ . Then we have

PROPOSITION 2.8. The family $\{\tilde{A}_{f}\}$ is a continuous path in $\mathscr{J}_{*}(H_{R})$ .
PROOF. Put $T_{\tau}=A_{0}+B_{\tau}$ . First recall an inequality

$\Vert f\Vert_{1}\leqq C(\Vert TJ\Vert+\Vert f\Vert)$ (2-5)

for any $f\in W_{1}\otimes C$, where the constant $C$ does not depend on the parameter $\tau$ .
If we regard the resolvent operator $(\lambda-T_{\tau}^{2})^{-1}$ as an operator

$(\lambda-T_{f}^{2})^{-1}$ : $H_{R}\otimes C\rightarrow W_{1}\otimes C$ ,

then by the inequality (2-5) we obtain the following estimate:
$\Vert(\lambda-T_{\tau}^{2})^{-1}\Vert_{H_{R}QC,W_{1}\otimes C}=O(|\lambda|^{-1/2})$ , (2-6)

which is valid uniformly with respect to the parameter $\tau$ on the line $\arg\lambda=const\neq 0$ .
For $\tau,$

$\tau^{\prime}\in I$, the differences $T_{\tau}^{2}-T_{f}^{2}$ are first order differential operators with
$C^{1}$ -coefficients and the operator norms as operators from $W_{1}$ to $H_{R}$ satisfy

$\Vert T_{f}^{2}-T_{\tau^{\prime}}^{2}\Vert_{\hslash_{1}^{r}.W_{R}}=O(|\tau-\tau^{\prime} )$ . (2-7)

These properties (2-6) and (2-7) together with a resolvent equation

$(\lambda-T_{\tau}^{2})^{-1}-(\lambda-T_{\tau’}^{2})^{-1}=(\lambda-T_{\tau}^{2})^{-1}(T_{\tau’}^{2}-T_{\tau}^{2}X\lambda-T_{\tau’}^{2})^{-1}$

give us an estimate of the operator norm from $H_{R}$ to $W_{1}$ :
$\Vert(Id+T_{\tau}^{2})^{-1/2}-(Id+T_{\tau’}^{2})^{-1/2}\Vert_{W_{I},W_{1}}=O(|\tau-\tau^{\prime} )$ . (2-8)

From this estimate (2-8) and the fact that $\{T_{f}\}$ is a continuous family of operators from
$W_{1}$ to $H_{R}$ , we have the continuity of the family $\{T_{\tau}\circ(Id+T_{\tau}^{2})^{-1/2}\}$ in $\hat{\mathscr{F}}_{*}$ with respect
to the parameter $\tau$ , and also that of the family $\{\tilde{A}_{\tau}\}$ , since $\tilde{A}_{\tau}=U_{\tau}\circ T_{f}\circ(Id+T_{f}^{2})^{-1/2}\circ$

$U_{\tau}^{-1}$ . This completes the proof.

Especially take a path $s:I\rightarrow U(n)$,

$s(\tau)=\left(\begin{array}{llll}e^{jkt\pi} & & 0 & \\ & 1 & & \\ & & \ddots & \\0 & & & 1\end{array}\right)$
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for a fixed integer $k$ . Then the path $\{\tilde{A}_{\tau}\}$ corresponding to the curve $s$ forms a loop in
$\hat{\mathscr{F}}_{*}$ and by an explicit calculation of the eigenvalues of this operator $A_{\tau}$ for each $\tau$ , we
have

PROPOSITION 2.9. The spectralflow of this family is $k:sf\{\tilde{A}_{\tau}\}=k$ .
REMARK 3. Let take a $C^{2}$-map $u:I\times I\rightarrow U(n)$ such that $u(O, s)=Id$ for any $s\in I$,

instead of the path $u$ in the propositions 2.7 and 2.8, and denote by $\{A_{\tau,s}\}$ the selfadjoint
extension of the operator $A=Jd/dt$ to the domain

$D_{c.s}=\{f\in W_{1} : f(0)\in\lambda_{{\rm Re}}, f(1)\in u_{\tau,s}(\lambda_{{\rm Re}})\}$ .

Then by the same method as in the proof of the proposition 2.8, the family $\{\tilde{A}_{\tau.s}\}$ ,
$\tilde{A}_{\tau,s}=A_{\tau,s}\circ(Id+A_{\tau,s}^{2})^{-1/2}$ , can be shown to be a continuous family of the parameters $\tau$

and $s$ . We will use this fact in \S 5.

\S 3. Lagrangian intersection and Maslov index.

Let $\pi:E\rightarrow X$ be a symplectic vector bundle on a topological space $X$. The structure
group of this bundle is $Sp(n, R)$ , the symplectic group, where $2n$ is the fiber dimension
of $E$, and is reduced to its maximal compact subgroup $U(n)$ . This means that $E$ can be
regarded as a complex vector bundle on $X$. We denote by $\Lambda(E)$ the Lagrangian-
Grassmannian bundle on $X$ associated to $E$ with the fiber $\Lambda(n)=U(n)/O(n)$ .

Put $G(n)=\{U\in U(n):\det^{2}U=1\}$ , then the structure group of $E$ can be reduced to
the group G(n), if and only if, $2c_{1}(E)=0,$ $wherec_{1}(E)$ is the first Chem class ofEas a
complex vector bundle. If this condition is satisfied, then there is a map $\alpha:\Lambda(E)\rightarrow U(1)$ ,

which depends on the way of a reduction of the structure group of $E$ from $U(n)$ to
$G(n)$ . Let $Det^{2}$ : $\Lambda(n)\rightarrow U(1)$ be the map induced from the map $\det^{2}$ : $U(n)\rightarrow U(1)$ , and
denote by $[d\theta]$ the generator of $H^{1}(U(1), Z)$ , then the class $(Det^{2})^{*}([d\theta])$ is, so called,
Keller-Maslov-Amold characteristic class. If we restrict the class $\alpha^{*}([d\theta])$ to each fiber
of $\Lambda(E)$, then it is identified with $(Det^{2})^{*}([d\theta])$ .

Also let $\beta:\Lambda(E)\rightarrow U(1)$ be defined by another reduction of the structure group
from $U(n)$ to $G(n)$ of the symplectic vector bundle $E$. We have the difference

$\alpha^{*}([d\theta])-\beta^{*}([d\theta])=\pi^{*}(c)$

with a certain ce $H^{1}(X, Z)$ (see the appendices of [V]).
In particular, if both $H^{1}(X, Z)$ and $H^{2}(X, Z)$ vanish, then we have a unique class

$\alpha\in H^{1}(\Lambda(E), Z),$ $\alpha t=\alpha^{*}([d\theta])$ , through a map $\alpha;\Lambda(E)\rightarrow U(1)$ .
Based on these facts, we now proceed to our problem. Let $(P, \omega)$ be a symplectic

manifold of $2n$-dimension. Let $L$ and $L^{\prime}$ be two Lagrangian submanifolds of $P$, which
intersect transversally with a non empty intersection. Then the intersection $L\cap L^{\prime}$ con-
sists of a discrete set of points in $P$ . Let points $x$ and $y$ be in $L\cap L^{\prime}$ and a smooth
map $f$ : $I\times I\rightarrow P$ satisfy $f(\tau, 0)\in L,$ $f(\tau, 1)\in L^{\prime},$ $f(O, t)\equiv x$ and $f(1, t)\equiv y$ for all $\tau,$

$t\in I$.
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We take a Riemannian metric $g$ on $P$ which is adapted to the symplectic form $\omega$ ,
and denote by $J$ the almost complex structure defined by $g$ and $\omega$ as in the introduction.
Since $T_{x}(L)$ and $J_{x}(T_{x}(L))$ are orthogonal, we will use the following identification:

$T_{x}(L)\oplus J_{x}(T_{x}(L))\equiv R\oplus\sqrt{-1}R$ (3-1)

and by taking a suitable orthonormal basis in $T_{x}(L)$ , we have

$J_{x}=\left(\begin{array}{ll}0 & -I\\I_{n} & 0\end{array}\right)$ .

When two subspaces $\lambda$ and $\mu$ in $R^{2n}$ are transversal, we will write as follows: $\lambda\Phi\mu$ .
Let $P_{\tau,t}$ be the parallel displacement along the path $\{f(s, t)\}(0\leqq s\leqq\tau)$ for each fixed

$t\in I$:

$P_{\tau,t}$ : $T_{x}P\rightarrow T_{Jt\tau},{}_{t)}P$

is an isometry, and put

$J_{\tau,t}=P_{\tau,t}^{-1}\circ J_{f\langle\tau,t)}\circ P_{\tau,t}$ .
Then we have a smooth map $g:I\times I\rightarrow SO(2n)$ such that

$g_{\tau,t}^{-1}\circ J_{\tau,t}\circ g_{\tau,t}=J_{x}$ .
Put

$P_{\tau,0^{-1}}(T_{f\langle\tau,O)}(L))=\tilde{\lambda}_{o}(\tau)$ ,

$P_{\tau,1^{-1}}(T_{f\langle\tau,1)}(L^{\prime}))=\tilde{\lambda}_{1}(\tau)$

and

$g_{\tau,0}(\tilde{\lambda}_{0}(\tau))=\lambda_{0}(\tau)$ ,

$g_{\tau.1}(\tilde{\lambda}_{1}(\tau))=\lambda_{1}(\tau)$ .
We have the trivialization of $f^{*}(TP)$ by using the parallel displacement $\{P_{\tau,t}\}$ ;

$f^{*}(TP)\cong I\times I\times T_{x}(P)\cong I\times I\times R^{2}$ (3-2)

Then $\lambda_{0}(\tau)$ and $\lambda_{1}(\tau)$ are Lagrangian subspaces in $T.(P)\cong R^{2n}$ , i.e. $\{\lambda_{0}(\tau)\}$ and $\{\lambda_{1}(\tau)\}$

are two curves in $\Lambda(n)$ . Notice that
$\lambda_{0}(0)\Phi\lambda_{1}(0)$ , $\lambda_{0}(1)$ EEi $\lambda_{1}(1)$ . (3-3)

There are two ways of constructing loops in $\Lambda(n)$ from these two curves $\{\lambda_{0}\}$ and $\{\lambda_{1}\}$ ,
that have the same Maslov index.

We will now explain these ways: Since $\lambda_{0}(0)\Phi\lambda_{1}(0)$ and $\lambda_{o}(1)E\lambda_{1}(1)$, there is a
symplectic transformation $\sigma\in Sp(n, R)$ such that

$\sigma(\lambda_{0}(0))=\lambda_{O}(1)$ and $\sigma(\lambda_{1}(0))=\lambda_{1}(1)$ . (3-4)
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Take a path $C(\tau)(0\leqq\tau\leqq 1)$ in $\Lambda(n)$ with

$C(0)=\lambda_{0}(0)$ , $C(1)=\lambda_{1}(0)$ . (3-5)

Then four curves
$\lambda_{0}(\tau)$ , $\sigma(C(\tau))$ , $\lambda_{1}(1-\tau)$ and $C(1-\tau)$ $(0\leqq\tau\leqq 1)$

form a loop in $\Lambda(n)$ . We denote this loop by us) $(0\leqq s\leqq 4)$ . Since the Maslov class
$n\in H^{1}(\Lambda(n), Z)$ is invariant under the action of the group $s\mu n,$ $R$) on $\Lambda(n)$, the integer
$\int_{b}\alpha t$ is independent of the choice of the path $C$.

For constructing another loop, take a curve $U:I\rightarrow U(n)$ such that

$UJ\lambda_{0}(0))=\lambda_{0}(\tau)$ and $U_{0}=Id$ , (3-6)

where we used the identification (3-1). Put

$U_{\tau}^{-1}(\lambda_{1}(\tau))=\lambda_{2}(\tau)$ , (3-7)

then we have
$\lambda_{2}(0)$ di $\lambda_{0}(0)$ and $\lambda_{2}(1)$ di $\lambda_{0}(0)$ . (3-8)

So we join $\lambda_{2}(0)$ and $\lambda_{2}(1)$ by a curve $\xi(\tau)(0\leqq\tau\leqq 1)$ with the property

$c_{(\tau)}$ di $\lambda_{0}(0)$ (3-9)

for any $\tau\in I$. Notice that two such curves with the property (3-9) are homotopic to each
other. As before, the curves $C(\tau)$ and $\lambda_{2}(1-\tau)(0\leqq\tau\leqq 1)$ define the loop $\{ff(s)\}(0\leqq s\leqq 2)$ .
Then we have

PROPOSITION 3.1.

$\int_{b}\ovalbox{\tt\small REJECT}=\int_{5}\sim t$ . (3-10)

PROOF. Let $H:[0,1]\times[0,4]\rightarrow\Lambda(n)$ be a continuous map such that

$H(s, \tau)=\left\{\begin{array}{l}U_{s\tau}^{-1}(\lambda_{O}(\tau))\\U_{s}^{-1}(\sigma(C(\tau-1)))\\U_{s\langle 3-\tau)^{-1}}(\lambda_{1}(3-\tau))\\C(4-\tau)\end{array}\right.$ $0\leqq\tau\leqq 12\leqq\tau\leqq 33\leqq\tau\leqq 41\leqq\tau\leqq 2$

,
$0\leqq s\leqq 10\leqq s\leqq 10\leqq s\leqq 10\leqq s\leqq 1$

.
Then $H$ is a homotopy between the loop $tu\tau$)} and the loop $\{H(1, \tau)\}$ , where
$U:[0,1]\rightarrow U(n)$ is the map given in (3-6).

Next, owing to the fact that the group $s\mu n,$ $R$) acts transitively on the space of
pairs consisting of transversally intersecting Lagrangian subspaoes in $R^{2}$“, we have a
map $V:I\rightarrow S\mu n,$ $R$) with the properties:
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$V_{0}=Id$ , (3-11)

$V_{\tau}(\lambda_{0}(0))=\lambda_{0}(0)$ for any $\tau\in I$ , (3-12)

$V_{\tau}(\lambda_{2}(0))=\lambda_{2}(\tau)$ for any $\tau\in I$ , (3-13)

$ V_{1}=U_{1}^{-1}\circ\sigma$ . (3-14)

Note here that, if the map $ V_{1}^{-1}\circ U_{1}^{-1}\circ\sigma$ restricted to the subspace $\lambda_{0}(0)$ has deter-
minant $-1$ , then $\sigma$ should be replaced by another $\tilde{\sigma}\in Sp(n, R)$ such that

$\tilde{\sigma}(\lambda_{0}(0))=\lambda_{0}(1)$ , $\tilde{\sigma}(\lambda_{1}(0))=\lambda_{1}(1)$ ,

and

$\det(\tilde{\sigma}^{-1}\sigma_{|\lambda_{O}\langle 0)})=-1$ ,

for the sake that the map $V$ satisfies the property (3-11).
Let $G:[0,1]\times[0,1]\rightarrow\Lambda(n)$ be a continuous map defined by: $G(s, \tau)=V_{s}(C(\tau))$ .

Then

$\int_{\partial G}\ovalbox{\tt\small REJECT}=0$ ,

which implies

$\int_{5}^{\ovalbox{\tt\small REJECT} t}=\int_{U_{1}^{-1_{o}}\sigma\langle c)}v-\int_{\lambda_{2}}\alpha-\int_{C}nt$ .

Hence we have

$\int_{b}^{\ovalbox{\tt\small REJECT} t}=\int_{5}\alpha$ .

REMARK 4. Let 5 be the above loop. If there exists another Lagrangian subspace
$\mu$ satisfying $\mu\Phi\lambda_{2}(\tau)$ for every $\tau\in I$, then the integer $\int_{5^{nt}}$ equals the H\"ormander index
$\sigma(\lambda_{0}(0), \mu;\lambda_{2}(0),$ $\lambda_{2}(1))$ (see [H]), because of the very definition of it.

REMARK 5. The following example satisfies the situation in Remark 4: Let $\phi$ be
a Morse function on a smooth manifold $M$, the symplectic manifold $P$ be $T^{*}(M)$ in
this case, $L=M$, i.e., $M$ is seen as zero sections in $T^{*}(M)$ , and $L^{\prime}=d\phi(M)$ . Let $x$ and
$y$ be in $L\cap L^{\prime}$ , that is, $d\phi_{x}=0$ and $d\phi_{y}=0$ . Since the vertical foliation of $T^{*}(M)$ is
transversal to $d\phi(M)$ , we can take $T_{x}(T_{x}^{*}(M))$ as the Lagrangian subspace $\mu$ satisfying
the above condition in Remark 4. Now let $f$ : $I\times I\rightarrow T^{*}(M)$ be a smooth map satisfying
conditions (1-1). Then we have a formula:

$\int_{5}m=signH_{\phi}(y)$ -sign $H_{\phi}(x)$ , (3-15)
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where $H_{\phi}(\cdot)$ denotes the Hessian of $\phi$ at critical points. Note that the right hand side
of this formula is independent of the map $f$ .

\S 4. Lagrangian intersections and spectral flow.

Let $(P, \omega),$ $L$ and $L^{\prime}$ be as in \S 3. Let $\Omega$ be the path space of $P$ consisting of smooth
paths $z;I\rightarrow P$ such that $z(O)\in L$ and $z(1)\in L^{\prime}$ . We consider a smooth path $\{f_{\tau}\}$ in $\Omega$ :

$f$ : $I\times I\rightarrow P$ , $f_{\tau}(t)\equiv f(\tau, t)$ .
Along the path $\{f_{\tau}\}$ , we define a family of operators $\{d_{\tau}\}$ as follows:

$\mathscr{A}_{\tau}(\xi Xt)=J_{f_{t}\langle t)}(\nabla_{f_{\tau}\langle t)}(\xi X\iota))+(\nabla_{\xi}(J_{f_{\tau}(t)})X\dot{f}_{f}(t))$ , $\xi\in C_{O}^{\infty}(f_{\tau}^{*}(TP))$ .

In the sequel we will construct a loop of operators in $\hat{\mathscr{F}}_{*}$ starting from the family $\{\mathscr{A}_{\tau}\}$ .
Let $\Vert\cdot\Vert_{0}$ and $\Vert\cdot\Vert_{1}$ be the norms on $C^{\infty}(f_{\tau}^{*}(TP))$ defined by

$\Vert\xi\Vert_{0}^{2}=\int_{0}^{1}g_{f_{\tau}(t)}(\xi(t), \xi(t))dt$

and

$\Vert\xi\Vert_{1}^{2}=\int_{0}^{1}g_{f_{l}\langle t)}(\nabla_{f(t)}\xi(t), \nabla_{f_{t}\langle t)}\xi(t))dt+\Vert\xi\Vert_{0}^{2}$ ,

respectively. We denote the closure of $C^{\infty}(f_{\tau}^{*}(TP))$ with respect to the norms $\Vert\cdot\Vert_{0}$

and $\Vert\cdot\Vert_{1}$ by $H_{\tau}$ and $W_{\tau}$ respectively. Also let denote by $D_{\tau}$ a subspace of $W_{\tau}$ such
that

$D_{\tau}=\{\xi\in W_{\tau} : \xi(0)\in T_{f\langle\tau,0)}(L), \xi(1)\in T_{f\langle\tau.1)}(L^{\prime})\}$ .

Then we can extend the operator $\mathscr{A}_{\tau}$ to a closed operator in $H_{\tau}$ with the domain $D_{\tau}$,
denoting it by $A_{\tau}$ .

Henceforth, we first transform operators $A_{f}$ without changing the spectral set $\sigma(A_{\tau})$

in several steps corresponding to the deformations of the paths in \S 3. Consequently we
get a family of operators with the same principal part.

Let $P_{\tau}$ be the isomorphism from $H_{0}$ to $H_{\tau}$ defined by

$(P_{\tau}fXt)=P_{\tau,t}(f(t))$ , $f\in H_{0}$ ,

where $P_{\tau,t}$ is the parallel displacement cited in \S 3. Put $A_{\tau}^{(1)}=P_{\tau}^{-1}\circ A_{\tau}\circ P_{\tau}$ and
$D_{\tau}^{(1)}=P_{\tau}^{-1}(D_{\tau})$, then $D_{\tau}^{\langle 1)}$ is the domain of $A_{\tau}^{(1)}$ . By recalling

$J_{\tau,t}=P_{\tau.t}^{-1}\circ J_{f\langle c,t)}\circ P_{\tau,t}$

we get

$A_{\tau}^{\langle 1)}=J_{\tau,t}\frac{d}{dt}+B_{\tau}^{\langle 1)}$ ,
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$D_{\tau}^{\langle 1)}=\{\xi\in W_{0} : \xi(0)\in\tilde{\lambda}_{0}(\tau), \xi(1)\in\tilde{\lambda}_{1}(\tau)\}$ ,

where $B_{\tau}^{\langle 1)}$ is a matrix operator with smooth coefficients with respect to $\tau$ and $t$ .
Next, let $g_{\tau}$ be the orthogonal transformations on $H_{0}$ defined by

$(g_{\tau}fXt)=g(\tau, tXf(t))$ , $f\in H_{0}$ ,

where $g:I\times I\rightarrow SO(2n)$ is satisfying

$g_{\tau,t}^{-1}\circ J_{\tau.t}\circ g_{\tau,t}=J_{x}$ .
Put $A_{\tau}^{\langle 2)}=g_{\tau}^{-1}\circ A_{\tau}^{\langle 1)}\circ g_{\tau}$ and $D_{\tau}^{\langle 2)}=g_{\tau}^{-1}(D_{\tau}^{\langle 1)})$ , then $D_{\tau}^{(2)}$ is the domain of the operator
$A_{\tau}^{\langle 2)}$ and also we have

$D_{\tau}^{\langle 2)}=\{\xi\in W_{0} : \xi(0)\in\lambda_{0}(\tau), \xi(1)\in\lambda_{1}(\tau)\}$ ,

$A_{\tau}^{\langle 2)}=J_{x}\frac{d}{dt}+B_{\tau}^{\langle 2)}$ ,

where $B_{\tau}^{(2)}$ is a matrix operator with smooth coefficients with respect to $\tau$ and $t$ .
Let $U:I\rightarrow U(n)=Sp(n, R)\cap SO(2n)$ be a smooth curve such that $U_{0}=Id$ ,

$U_{\tau}(\lambda_{0}(0))=\lambda_{0}(\tau)$ as in \S 3. Put $A_{\tau}^{(3)}=U_{\tau}^{-1}\circ A_{\tau}^{\langle 2)}\circ U_{\tau}$ and $D_{\tau}^{\langle 3)}=U_{\tau}^{-1}(D_{\tau}^{(2)})$, where $U_{\tau}$ is
regarded as an orthogonal transformation on $H_{0}$ defined as usual. Then $D_{\tau}^{\langle 3)}$ is the
domain of $A_{\tau}^{\langle 3)}$ and since $U_{\tau}$ and $J_{x}$ commute with each other, we get

$A_{f}^{\langle 3)}=J_{x}\frac{d}{dt}+B_{\tau}^{\langle 3)}$ ,

$D_{\tau}^{t3I}=\{\xi\in W_{0} : \xi(0)\in\lambda_{0}(0), \xi(1)\in\lambda_{2}(\tau)\}$

where $B_{\tau}^{(3)}$ is a matrix operator with smooth coefficients with respect to $\tau$ and $t$ .
Let $\tilde{D}_{\tau}^{\langle 3)}$ be a subspace of $W_{O}$ such that

$\tilde{D}_{\tau}^{\langle 3)}=\{\xi\in W_{0} : \xi(0)\in\lambda_{0}(0), \xi(1)\in\tilde{C}(\tau)\}$ ,

where $\tilde{C}(\tau)$ is the (smooth) curve defined in \S 3, and denote by $\tilde{A}_{\tau}^{\langle 3)}$ a closed extension
of the formal differential operator

$(P_{\tau}\circ g_{\tau}\circ U_{\tau})^{-1}\circ \mathscr{A}_{\tau}\circ P_{\tau}\circ g_{\tau}\circ U_{\tau}$

to the domain $\tilde{D}_{\tau}^{\langle 3)}$ . Then, at this stage, we have a loop of unbounded closed operators
(not necessarily selfadjoint) corresponding to the loop $\{ff(\tau)\}$ in $\Lambda(n)$ (see \S 3). Let denote
this loop of operators by $\{l_{\tau}\}$ :

$t_{\tau}=\left\{\begin{array}{l}\tilde{A}_{\tau}^{\langle 3)}\\A_{2-\tau}^{\langle 3)}\end{array}\right.$

$ 0\leqq\tau\leqq$ ]

$1\leqq\tau\leqq 2$ .
Since the domain of the adjoint operator $l_{\tau}^{*}$ is the same with it of $\swarrow_{\tau}$ , the oper-

ator $l_{\tau}+l_{\tau}^{*}$ has the domain of definition: $\tilde{D}_{\tau}^{\langle 3)},$ $0\leqq\tau\leqq 1$ , and $D_{2-\tau}^{\langle 3)},$ $1\leqq\tau\leqq 2$ , and is self-
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adjoint. Put $S_{\tau}=1/2(t_{\tau}+t_{f}^{*})$ . Then $S_{\tau}$ has the form

$S_{f}=T_{\tau}+R_{\tau}$ ,

where $T_{f}=J_{x}d/dt$ with the domain $\tilde{D}_{\tau}^{(3)}$ for $0\leqq\tau\leqq 1,$ $D_{2-f}^{\langle 3)}$ for $1\leqq\tau\leqq 2$ . The zeroth
order term $R_{\tau}$ is a selfadjoint matrix operator with smooth coefficients and forms a
continuous family with respect to $\tau$ . Finally we have a proposition whose proof can be
reduced to the proposition 2.8.

PROPOSmON 4.1. Put $S_{\tau}=S_{\tau}\circ(Id+S_{\tau}^{2})^{-1/2}$ , then the family $\{\tilde{S}_{\tau}\}$ is a continuous
loop in $\mathscr{J}_{*}$ . Moreover $\{R_{\tau}\}$ is itself a continuous loop of bounded selfadjoint operators.

By means of this proposition and the proposition 2.4, we define the number $sf\{\tilde{S}_{f}\}$

as the spectral flow for the family $\{\mathscr{A}_{f}\}$ . It should be noted that the definition of $sf\{\mathscr{A}_{\tau}\}$

does not depend on the choice of the curve $\{\tilde{C}(\tau)\}$ owing to the remark 3 in \S 2.

REMARK 6. The Riemannian metric $g$ on $P$ was taken so that it adapts to the
symplectic form $\omega$ . If we take a Riemannian metric $g$ which satisfies moreover that the
spaces $T_{p}L$ and $T_{p}L^{\prime}(p=x, y)$ are orthogonal, then the curve $\{\lambda_{2}(\tau)\}$ is already a loop,
and so is the family $\{A_{\tau}\}$ .

\S 5. Coincidence of spectral flow and Maslov index.

At this stage the coincidence of the two quantities is easily shown:

THEOREM 5.1. Let $\{\tilde{S}_{\tau}\}$ be as above. Then

$sf\{d_{\tau}\}=sf\{\tilde{S}_{\tau}\}=\int_{5}\ovalbox{\tt\small REJECT}$ .

In particular $sf\{\mathscr{A}_{f}\}$ is independent of the choice of Riemannian metrics adapted to the
sympletic form $\omega$ and is a homotopy invariant of the smooth map $f$ : $I\times I\rightarrow P$ with the
properties (1-1).

PROOF. Let $h_{s.\tau}=(T_{\tau}+sR_{\tau})\circ(Id+(T_{f}+sR_{\tau})^{2})^{-1/2}(0\leqq s\leqq 1,0\leqq\tau\leqq 2)$, then we see
the map

$h$ : $[0,1]\times[0,2]\rightarrow\hat{\mathscr{F}}_{*}$

$(s, \tau)$ $\mapsto h_{s.\tau}$

is continuous according to the proposition 2.8. Note here that the continuity of the
map $h$ can be proved separately on $[0,1]\times[0,1]$ and $[0,1]\times[1,2]$ . Hence we have a
homotopy between the loop $\{\tilde{S}_{\tau}\}$ and $\{\tilde{T}_{\tau}\}$ , where $\tilde{T}_{\tau}=T_{\tau}\circ(Id+T_{\tau}^{2})^{-1/2}$ , and $T_{\tau}$ is as
follows:
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$T_{\tau}=J_{x}\frac{d}{dt}$ on $\tilde{D}_{\tau}^{\langle 3)}$ $(0\leqq\tau\leqq])$ ,

$T.=J_{x}\frac{d}{dt}$ on $D_{2-\tau}^{\langle 3)}$ $(1\leqq\tau\leqq 2)$ .

Since the spectral flow is homotopically invariant, it is enough to show that the spectral
flow of $\{\tilde{T}_{\tau}\}$ equals

$\int_{5}\ovalbox{\tt\small REJECT}$ .

Take a path $d:I\rightarrow U(n)$ such that

$d(\tau)=\left(\begin{array}{llll}e^{i\langle n/2)k\tau} & & 0 & \\ & 1 & & \\ & & \ddots & \\0 & & & 1\end{array}\right)$ , $0\leqq\tau\leqq 2$ ,

where $k=\int_{5^{\alpha t}}$ . Then there exist $C^{\infty}$ -maps $f^{\langle O)}$ and $f^{\langle 1)}$

$f^{\{i)}$ : $I\times I\rightarrow U(n)$ $(i=0,1)$

such that for $0\leqq\tau\leqq 1$

$f^{\langle 0)}(0, \tau)=d(\tau)$ , $f^{\langle 1)}(0, \tau)=d(1+\tau)$ ,

$f^{\langle 0)}(1, \tau)=\tilde{C}(\tau)$ , $f^{\langle 1)}(1, \tau)=\lambda_{2}(1-\tau)$ ,

and for any $s(0\leqq s\leqq 1)$

$f^{(0)}(s, 0)=f^{(1)}(s, 0)=Id$ ,

$f^{\langle O)}(s, 1X\lambda_{O}(0))=f^{\langle 1)}(s, 1)(\lambda_{O}(0))$ .
Again, owing to the proposition 2.8 and the remark 3 (\S 2), we have the loops $\{\tilde{T}_{\tau}\}$ and
$\{\tilde{A}_{f}\}$ (in \S 2) are homotopic in $ff_{*}$ . So we have

$sf\{\tilde{T}_{\tau}\}=sf\{\tilde{A}_{f}\}=k=sf\{\mathscr{A}_{f}\}$ .
REMARK 7. Let $T$ be a densely defined closed symmetric operator on a Hilbert

space with the same defect indices: $\dim{\rm Im}(T-\iota)^{\perp}=\dim{\rm Im}(T+\iota)^{\perp}=N<+\infty$ . If we fix
orthonormal basis of ${\rm Im}(T-l)^{\perp}$ and ${\rm Im}(T+\iota)^{\perp}$ , then selfadjoint extensions of $T$ are
parametrized (via Cayley transformation) by $N\times N$ unitary matrices. We denote by $T_{\theta}$

the selfadjoint extension corresponding to a matrix $\theta\in U(N)$ .
Now we assume that an extension $T_{\theta_{O}}$ has a compact resolvent (equivalently, all

resolvents of any extension are compact), and let $\tilde{T}_{\theta}=T_{\theta}\circ(Id+T_{\theta}^{2})^{-1/2}$ . Then we have
a map
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$\epsilon$ : $U(N)\rightarrow\hat{\mathscr{F}}$ , $\epsilon(\theta)=\tilde{T}_{\theta}$ .
In this paper, we have shown, for the case $T=Jd/dt$ (here, $N=2n$ and we regard

that it is complexified), that some curves in $U(2n)$ with a suitable differentiability
condition are mapped by $\epsilon$ to continuous curves in $\hat{\mathscr{F}}_{*}$ .

Whereas the spectrum of $T_{\theta}$ changes ‘continuously’, when $\theta$ moves continuously
(see [K]) and also the image of the map $\epsilon$ is contained in a component of $\hat{\mathscr{F}}$ , it seems
that the map $\epsilon$ itself will not be continuous in general. We are interested in what case
the map $\epsilon$ is continuous and how the map $\epsilon_{*}:$

$\pi_{1}(U(N))\rightarrow\pi_{1}(\hat{\mathscr{F}})$ is characterized.
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