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\S 1. Introduction.

In recent years there has been considerable progress in the study of certain linear
maps of $C^{*}$-algebras which preserve the natural partial ordering. Suppose $A$ is a unital
$C^{*}$-algebra and $P$ a unital positive projection of $A$ into itself. It is known $[6, 22]$ that
$P(A)$ is a $C^{*}$-algebra under the product $a\circ b=P(ab)$ if $P$ is completely positive, and $P$

is automatically completely positive if $P(A)$ is a $C^{*}$-algebra. E. Strmer [18] linked the
decomposability of $P$, which is weaker than complete positivity, to the theory of
JC-algebras. In [15], A. G. Robertson has showed that the decomposability of $P$ is
equivalent to the existence of decomposition of $P$ as a sum of a 2-positive map and a
2-copositive map under some condition. The global structure of positive linear maps
is, however, very complicated, even in the finite dimensional case [3, 4, 9, 18, 21].

In this paper we shall investigate the difference between complete positivity and
positivity of contractive projections on $C^{*}$-algebras, particularly in case of matrix
algebras. As an application, we shall describe general $C^{*}$-algebras for which n-positivity
coincides with $(n+1)$-positivity in the class of projections.

Let A. and $B$ be $C^{*}$-algebras. We do not assume units for $C^{*}$-algebras. The $n\times n$

matrix space over $A$ , that is, $M_{n}(A)$ naturally inherits the corresponding order as a
$C^{*}$-algebra. A $C^{*}$-algebra is said to be n-subhomogeneous if every irreducible
representation of the algebra is finite dimensional with dimension not greater than $n$ .
Let $\phi$ be a positive linear map of $A$ into $B$ . Recall that $\phi$ is said to be n-positive
(respectively, n-copositive) if the n-multiplicity map $\phi(n)$ (respectively, the n-
comultiplicity map $\phi^{c}(n))$ ,

$\phi(n)$ : $[a_{i,j}]\in M_{n}(A)\rightarrow[\phi(a_{i,j})]\in M_{n}(B)$

(respectively, $\phi^{c}(n):[a_{j,j}]\in M_{n}(A)\rightarrow[\phi(a_{j,i})]\in M_{n}(B)$)

is positive. The map $\phi$ is completely positive if it is n-positive for every positive integer
$n$ . It is, however, known that every n-positive map on an n-subhomogeneous $C^{*}-$
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algebra, particularly on $M_{n}(C)$ , is completely positive. Completely copositive maps are
defined in a similar way and the saturation of copositivity on an n-subhomogeneous
$C^{*}$-algebra also occurs. We call $\phi$ decomposable if $\phi$ can be decomposed into a sum
of a completely positive map and a completely copositive map and $\phi$ is called a
Schwarz map if it satisfies the Schwarz inequality; $\phi(a^{*}a)\geq\phi(a)^{*}\phi(a),$ $a\in A$ . Our main
result is the following:

THEOREM. Let $P$ be a contractive positive projection on $M_{n}(C)$ . Then we have
(i) For $n=2,3,$ $P$ is completely positive if and only if $P$ is aSchwarz map.
(ii) $Forn\geq 4,$ $PiscompletelypositiveifandonlyifPis[n/2]$-positive, $where[$ $]$

means the Gauss’s symbol.

In general, a 2-positive linear map is a Schwarz map [2, Corollary 2.8], but the
converse is false [5, appendix $A$]. By the above assertion (1), we know that there is a
non-trivial case in which these properties are coincident [see 13, Lemma 2.4]. As an
application, we obtain the following result:

THEOREM. Let $A$ be a $C^{*}$-algebra and consider the following assertions:
(1) Every k-positive projection on $A$ is $(k+1)$-positive,
(2) Every k-positive contractive projection on $A$ is completely positive,
(3) Every k-positive contractive projection on $A$ is $(k+1)$-positive,
(4) $A$ is $(2k+1)$-subhomogeneous which has at most one equivalent class of irreduci-

ble representations $\pi’ s$ with $\dim\pi\geq k+1$ .
We have then the following implications;

(1) $\Rightarrow$ (4) $\Rightarrow$ (2)

$\searrow$ $\ovalbox{\tt\small REJECT}$

(3)

This result partially sharpens [24, Theorem 1.2].

\S 2. Positive projections on general $C^{*}$-algebras.

Let $A$ be a $C^{*}$-algebra and let $P$ be a contractive positive projection of $A$ into
itself. Let $p**denote$ the normal extension of $P$ to the second dual $A^{**}$ of $A$ , and
consider $A$ as a $C^{*}$-subalgebra of $A^{**}$ . Let $e$ be the support projection of $P^{**}$ and let
$N=\{a\in A^{**} : P^{**}(a^{*}a)=0=P^{**}(aa^{*})\}$ . Suppose that $P$ satisfies the Schwarz inequali-
ty: $fla)^{*}\eta a$) $\leq P(a^{*}a),$ $a\in A$ , then $P^{**}$ also satisfies the Schwarz inequality because
of approximating elements of $A$ in the $\sigma- strong^{*}$ topology. By [8, Theorem 2.3],
$P^{**}(A^{**})+N$ is a von Neumann algebra. For each subset $S$ of $B(H)$ the set of all
bounded linear operators on a Hilbert space $H$, let $S^{\prime}=\{x\in B(H);xs=sx, \forall s\in S\}$ .
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Since $N=(1-e)A^{**}(1-e)$ and $e\in P(A)^{\prime}$ by [7, Lemma 1.2], we know that $P^{**}(A^{**})e$

is a von Neumann algebra. Then we consider the following three linear maps

$\varphi_{1}$ : $A^{**}\ni a\rightarrow eae\in eA^{**}e$ ,

$\varphi_{2}$ : $eA^{**}e\ni eae\rightarrow P^{**}(eae)e\in P^{**}(A^{**})e$ , and

$\varphi_{3}$ : $P^{**}(A^{**})e\ni P^{**}(a)e\rightarrow P^{**}(a)\in P^{**}(A^{**})$ , $a\in A^{**}$

It is obvious that $P(a)=(\varphi_{3}\circ\varphi_{2}\circ\varphi_{1})(a)(a\in A)$ and $\varphi_{1}$ is completely positive. Since
$P^{**}(A^{**})e$ is a von Neumann algebra and $\varphi_{2}$ is a contractive positive projection, $\varphi_{2}$ is
completely positive ([20, III Theorem 3.4], [22]). Therefore $P$ is completely positive if
and only if $\varphi_{3}$ is completely positive. Note that $\varphi_{3}$ is an order isomorphism (i.e. linear
isomorphism and $\varphi_{3}$ and $\varphi_{3}^{-1}$ are positive) and $\varphi_{3}^{-1}$ is completely positive.

We summarize the above argument in the following,

PROPOSITION 2.1. Let $A$ be a $C^{*}$-algebra and $P$ a contractive projection of $A$ into
itself. Then $P$ is completely positive ifand only if $P$ is a Schwarz map and $\varphi_{3}$ is completely
positive.

COROLLARY 2.2. Let $A$ be a $C^{*}$-algebra and $P$ a contractive projection of $A$ into

itself. Suppose $P$ is faithful when restricted to the $C^{*}$-algebra $C^{*}(P(A))$ generated by $P(A)$ .
Then, if $P$ is a Schwarz map, $P$ is completely positive.

PROOF. From the assumption, the map $P(a)e\rightarrow P(a)(a\in A)$ extends to a
$*$-isomorphism $\pi$ of $C^{*}(P(A))e$ onto $C^{*}(P(A))$ . Since $\varphi_{3}=\pi$ on $P(A)e,$ $\varphi_{3}$ is completely
positive. Hence the corollary follows from Proposition 2.1. Q.E.D.

$AvonNeumannalgebraMissaidtobeafactorifM\cap M^{\prime}=C1$ .

COROLLARY 2.3. Let $A$ be a $C^{*}$-algebra and $P$ a contractive projection of $A$ into

itself. Suppose the von Neumann algebra generated by $P(A)$ is a factor. Then if $P$ is a
Schwarz map, $P$ is completely positive.

PROOF. Let $e$ be a support projection of $P^{**}$ . Then $e\in P(A)^{\prime}$ . Since $P(A)^{\prime\prime}$ is a
factor from the assumption, the map $P(a)\rightarrow P(a)e(a\in A)$ extends to $a*$-isomorphism $\pi$

of $P(A)^{\prime\prime}$ onto $P(A)^{\prime\prime}e$ [ $11$ , Corollary 2.6.8]. As in the argument of Corollary 2.2, we
get the assertion. Q.E.D.

COROLLARY 2.4. Let $P$ be a contractive projection of $M_{2}(C)$ into itself. Then if $P$

is a Schwarz map, $P$ is completely positive.

PROOF. The algebra $P(M_{2}(C))^{\prime\prime}$ is either $M_{2}(C),$ CI, or unitarily equivalent to
$C\oplus C$. When $P(M_{2}(C))^{\prime\prime}=M_{2}(C)$ , the corollary follows from the previous result. In
other cases, it is obvious that $P$ is completely positive ([1, Theorem 7]). Q.E.D.

REMARK 2.5. We notice that the Schwarz property of $P$ in Corollary 2.4 deter-
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mines complete positivity of $P$ . To clarify further situation, we give below the example
of a unital positive projection which is not 2-positive.

EXAMPLE. Let $P:M_{2}(C)\rightarrow M_{2}(C)$ be defined by

$P(\left\{\begin{array}{ll}\alpha & \beta\\\gamma & \delta\end{array}\right\})=\left\{\begin{array}{ll}\alpha & 1/2(\beta+\gamma)\\1/2(\beta+\gamma) & \delta\end{array}\right\}$ .

Then this map is a unital positive projection but not 2-positive.
$PR\infty F$ . Let $\{E_{i,j}\}$ be canonical matrix units for $M_{2}(C)$ . Then we have

$[P(E_{1.j})]=\left\{\begin{array}{llll}l & 0 & 0 & l/2\\0 & 0 & 1/2 & 0\\0 & l/2 & 0 & 0\\1/2 & 0 & 0 & 1\end{array}\right\}$ .

Let $\det([\alpha_{i,j}])$ be the determinant of $[\alpha_{l,j}]$ , then we have $\det([\mathfrak{q}E_{i.j})])=-3/16<0$ .
Hence, by [3, Theorem 2], $P$ is not 2-positive. It is obvious that $P$ is a unital pro-
jection. Let $[\overline{\alpha}_{i}\alpha_{j}]\in M_{2}(C)^{+}$ . Then we have $\det(\mathfrak{q}[\overline{\alpha}_{i}\alpha_{j}]))\geq 0$ and $Ct_{1}Ct_{1}\geq 0$ , hence $P$ is
positive. Q.E.D.

In the end of this section, we consider a connection between complete positivity
of contractive projections on $C^{*}$-algebra and JC-algebras as in the work of $[13, 18]$ .
A JC-algebra is a norm closed Jordan subalgebra of the self-adjoint part of a
$C^{*}$-algebra, equipped with the product $a\circ b=1/2(ab+ba)$ . A JC-algebra is said to be
reversible if it is closed under arbitrary symmetric products $a_{1}a_{2}\cdots a_{n}+a_{n}a_{n-1}\cdots a_{1}$ ,
where each $a_{k}$ is an element of the algebra and $n$ is a positive integer.

The following lemma is indebted to [12].

LEMMA 2.6. Let $A$ be a $C^{*}$-algebra and $\phi$ a contractive Schwarz linear map of $A$

into itself. Let $A_{\hslash}$ be the self-adjoint part of $A$ and $A^{\phi}=\{a\in A_{\hslash} ; \phi(a)=a, \phi(a^{2})=a^{2}\}$ .
Then $A^{\phi}$ is a reversible JC-algebra.

$PR\infty F$ . Let $B=\{a\in A : \phi(a)=a, \phi(a^{*}a)=a^{*}a, \phi(aa^{*})=aa^{*}\}$ . By [12] we know that
$B$ is a $C^{*}$-algebra.

It is obvious that $A^{\phi}\subset B$ and for any $a\in A^{\phi},$ $a^{2}\in A^{\phi}$ . Therefore $A^{\phi}$ is a JC-algebra.
Since $A^{\phi}$ is the self-adjoint part of $B,$ $A^{\phi}$ is reversible. Q.E.D.

PROPOSmON 2.7. Let $A$ be a $C^{*}$-algebra and $P$ a contractive positive projection of
$A$ into itself. Then $P(A)$ is a $C^{*}$-algebra if and only if $\mathfrak{q}A_{\hslash}$) is a JC-algebra and $P$ is a
Schwarz map.

$PR\infty F$ . Suppose $flA_{\hslash}$) is a JC-algebra and $P$ is a Schwarz map. Since $P(A)$ is a
JC-algebra, $P(A_{h})=\{a\in A_{h} ; P(a)=a, fla^{2})=a^{2}\}$ . As in the proof of Lemma 2.6, P $A_{h}$)
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is the self-adjoint part of a $C^{*}$ -algebra. Hence $P(A)$ is a $C^{*}$-algebra.
Conversely, if $P(A)$ is a $C^{*}$-algebra, $P$ is automatically completely positive. Hence,

it is obvious that P$(A_{h})$ isaJC-algebra. Q.E.D.

REMARK 2.8. Compared with [13, Propositions 2.1 and 2.2], Lemma 2.6 seems
to indicate that the property of 2-positivity is stronger than that of the decomposability
in some sense. In general, JC-algebra is not necessarily the self-adjoint part of a
$C^{*}$-algebra, but $A^{\phi}$ in Lemma 2.6 is the self-adjoint part of a C’-algebra. Therefore,

it seems to be natural to ask the following question.

QUESTION. What is the difference between the property of complete positivity and
that of decomposability?

More explicitly, let $A$ be a $C^{*}$-algebra and $P$ be a contractive positive projection
of $A$ into itself. If $P$ is decomposable and 2-positive, then is $P$ completely positive?

Note that the Schwarz property can not replace the 2-positivity in the above
problem. In fact, we can easily construct the following counter example.

EXAMPLE. Define $\phi:M_{2}(C)\rightarrow M_{2}(C)$ by

$\phi(X)=X^{tr}/2+tr(X)1/4$

where $X^{tr}$ stands for the transpose of $X$ and tr(X) is the canonical trace of $X$. It is
known that $\phi$ is a unital Schwarz map and decomposable, but not 2-positive [5, Ap-
pendix $A$]. Let $P:M_{4}(C)\rightarrow M_{4}(C)$ be defined by

$P(\left\{\begin{array}{ll}a & b\\c & d\end{array}\right\})=\left\{\begin{array}{ll}a & 0\\0 & \phi(a)\end{array}\right\}$

where $a,$ $b,$ $c$ , and $d\in M_{2}(C)$ . It is obvious that $P$ is a unital projection with Schwarz
property and moreover decomposable, but this map is not 2-positive.

\S 3. Positive projections on matrix algebras.

In this section we study the difference between complete positivity and positivity
of contractive projections on matrix algebras. The following assertion is our main
theorem.

THEOREM 3.1. Let $P$ be a contractive positive projection on $M_{n}(C)$ . Then we have
(i) $Forn=2or3$ , Pis completely positive if and only ifP isa Schwarz map.
(ii) $Forn\geq 4,$ $PiscompletelypositiveifandonlyifPis[n/2]$ -positive, $where[$ $]$

means the Gauss’s symbol.

$PR\infty F$ . Lete beasupport projection for P. We assumeP isaSchwarz map. As
in the previous section, we consider three positive linear maps $\varphi_{1},$ $\varphi_{2}$ and $\varphi_{3}$ suth that
$P=\varphi_{3}\circ\varphi_{2^{O}}\varphi_{1}$ . Since $e\in P(M_{n}(C))^{\prime}$ , we have
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$\varphi_{3}(x)=e\varphi_{3}(x)e+(1-e)\varphi_{3}(xX1-e)$

$=x+(1-e)\varphi_{3}(xX1-e)$

for any $x\in P(M_{n}(C))e$ . Therefore, in both cases of (i) and (ii), we have only to show
that $(1-e)\varphi_{3}()(1-e)$ is completely positive.

If $n=3$ , then $\dim(e)$ ( $=the$ dimension of $eC^{3}$) is either 3, or 2, or 1. When $\dim(e)=$
$3$ , then $P$ is faithful, hence $P$ is completely positive by Corollary 2.2. When $\dim(e)=1$ ,
then $P(M_{3})e=C$, hence $\varphi_{3}$ is completely positive. When $\dim(e)=2$ , then $\dim(1-e)=1$
and the map $(1-e)\varphi_{3}()(1-e)$ is a positive linear functional. Hence $\varphi_{3}$ is completely
positive. Therefore, the proof of case (i) is completed combining with Corollary 2.4.

Case (ii): When $[n/2]+1\leq\dim(e)\leq n$ , the map $(1-e)\varphi_{3}()(1-e)i\dot{s}$ completely
positive [1, Theorem 5]. It follows that $\varphi_{3}$ is completely positive. Suppose $\dim(e)\leq[n/2]$ .
There is a projection of norm one $E;eM_{n}(C)e\rightarrow P(M_{n}(C))e$ because $P(M_{n}(C))e$ is an
injective $C^{*}$-subalgebra of $eM_{n}(C)e$ ([25]). Considering the map $(1-e)\varphi_{3}()(1-e)\circ E$ :
$eM_{n}(C)e\rightarrow(1-e)M_{n}(C)(1-e)$ , we know that it is completely positive [1, Theorem 6].
Since the map

$(1-e)\varphi_{3}(1-e)\circ E|flM_{n}(C))e:\mathfrak{q}M_{n}(C))e\rightarrow(1-e)M_{n}(CK1-e)$

is equal to the map $(1-e)\varphi_{3}()(1-e),$ $\varphi_{3}$ is completely positive. Therefore, we complete
the proof of case (ii). Q.E.D.

REMARK 3.2. We remark that the condition of Theorem 3.1 is the best condition
for deciding a contractive positive projection to be completely positive. We give below
examples as in Remark 2.6.

EXAMPLES. Let $P:M_{2}(C)\rightarrow M_{2}(C)$ be a unital positive projection in Remark 2.6
which is not 2-positive. We define, then, the map $\tilde{P}:M_{3}(C)\rightarrow M_{3}(C)$ by

$\tilde{P}(\left\{\begin{array}{lll}\alpha_{1.1} & \alpha_{1,2} & \alpha_{1.3}\\\alpha_{2,1} & \alpha_{2.2} & \alpha_{2.3}\\\alpha_{3,1} & \alpha_{3.2} & \alpha_{3.3}\end{array}\right\})=[P(\left\{\begin{array}{ll}\alpha_{1.1} & \alpha_{1.2}\\\alpha_{2.1} & \alpha_{2.2}\end{array}\right\})_{0}^{0}00\alpha_{3,3}]$ .

It is obvious that $\tilde{P}$ is a unital positive projection but not 2-positive.
When $n\geq 4$ and $n$ is even, there is a unital positive map $\Phi$ of $M_{(n/2)}(C)$ into itself

which is $((n/2)-1)$-positive but not $(n/2)$-positive [1, Theorem 1]. We define the
map $P:M_{n}(C)\rightarrow M_{n}(C)$ by

$P(\left\{\begin{array}{ll}a & b\\c & d\end{array}\right\})=\left\{\begin{array}{ll}a & 0\\0 & \Phi(a)\end{array}\right\}$ , where $a,$ $b,$ $c,$ $d\in M_{(n/2)}(C)$ ,

then it is obvious that $P$ is a unital $((n/2)-1)$-positive projection but not $(n/2)$-positive.
When $n\geq 4$ and $n$ is odd, we take the map $P$ on $M_{(n-1)}(C)$ as a unital

$([n/2]-1)$-positive projection but not $[n/2]$-positive by the above construction. We then
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define the map $\tilde{P}:M_{n}(C)\rightarrow M_{n}(C)$ by

$\tilde{P}([\alpha_{i,j}])=[P(\left\{\begin{array}{lll}\alpha_{1,1} & \cdots & \alpha_{1,\langle n-1)}\\\vdots & & \vdots\\\alpha_{\langle n-1).1} & \cdots & \alpha_{\langle n-1),\langle n-1)}\end{array}\right\}0$

. . . . . . . . . . . . . . . . . . . .

$1_{0}$ $\alpha_{nn}00.]$

It is obvious that $\tilde{P}$ is a unital $([n/2]-1)$-positive projection but not $[n/2]$ -positive.

\S 4. Applications.

In this section we shall apply the preceding result to study the link of finite
multiplicity with the complete positivity of projections in general $C^{*}$ -algebras. Previous
results in this direction are the theorems by Stinespring [16], Choi [1], and Takasaki
and Tomiyama [19] which state that for those linear maps between $C^{*}$-algebras, or
between spaces associated to operator algebras one-positivity coincides with two-

positivity if and only if either of $C^{*}$-algebras, or either of spaces associated to operator
algebras, is commutative. On the other hand, Tomiyama [24] has shown the difference

between n-positivity and complete positivity in $C^{*}$ -algebras. Let $M$ be a von Neumann

algebra. At first we investigate the connections between the algebraic structure of $M$

and the class of positive projections on $M$.

PROPOSITION 4.1. Let $M$ be a von Neumann algebra, then the following assertions
are equivalent:

(1) Every k-positive contractive projection of $M$ into itself is $(k+1)$-positive.
(2) Every k-positive contractive projection of $M$ into itself is completely positive.
(3) $M=\sum_{n\Leftarrow 1}^{k}M_{n}(A_{n})\oplus B$, where $\{A_{n}\}$ are commutative von Neumann algebras and

$B=M_{l}(C)(k+1\leq l\leq 2k+1)$ (Some of $\{A_{n},$ $B\}$ may be zero.).

$PR\infty F$ . (1) $\rightarrow(3)$ . As in the argument similar to the below, we know that by
Theorem 3.1 $M$ is $(2k+1)$-subhomogeneous (See [24, Theorem 1.2].).

Suppose that $M$ has $M_{l}(A)(k+1\leq l\leq 2k+1)$ as a direct summand where $A$ is a
non trivial commutative von Neumann algebra. Then $M_{l}(C)\oplus M_{l}(C)$ is regarded as a
$C^{*}$-subalgebra of $M$. Since $M_{l}(C)\oplus M_{l}(C)$ is injective, there is a projection of norm
one $E$ of $M$ onto $M_{l}(C)\oplus M_{l}(C)$ . Let $\phi$ be a $k$-positive unital linear map of $M_{l}(C)$ into
itself but not $(k+1)$-positive ([1, Theorem 1]). We define $ P:M_{l}(C)\oplus M_{l}(C)\rightarrow$

$M_{l}(C)\oplus M_{l}(C)$ by $P(a\oplus b)=a\oplus\phi(a)$ , then $P$ is a k-positive projection but not
$(k+1)$-positive. Considering the map $\tilde{P}=P\circ E:M\rightarrow M,\tilde{P}$ is a k-positive contractive
projection but not $(k+1)$-positive. This is a contradiction.

By the structure theorem ofvon Neumann algebras of type I we obtain the assertion
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(1) $\rightarrow(3)$ .
(3) $\rightarrow(2)$ . If $B$ is zero, the assertion is obvious from [24, Theorem 1.2], so that

we assume $B$ is not zero. Let $P$ be a k-positive contractive projection of $M$ into itself
and $P^{**}$ be the double transpose of $P$ . Let $e$ be the support projection of $P^{**}$ .

As in \S 1, we consider three positive linear maps $\varphi_{1},$ $\varphi_{2}$ and $\varphi_{3}$ such that
$P=\varphi_{3}\circ\varphi_{2}\circ\varphi_{1}$ on $M$. Since $\varphi_{1}$ and $\varphi_{2}$ are completely positive, we have only to show
that $\varphi_{3}$ is completely positive. Since $e\in P^{**}(M)^{\prime}$ , we have

$\varphi_{3}(x)=e\varphi_{3}(x)e+(1-e)\varphi_{3}(xX1-e)$ , $x\in P^{**}(M^{**})e$ .
The map $e\varphi_{3}()e$, moreover, is the identity map on $P^{**}(M^{**})e$, and we have only to
show that the map $(1-e)\varphi_{3}(X1-e):P^{**}(M^{**})e\rightarrow P^{**}(M^{**}X1-e)$ is completely
positive.

Since $B=M_{l}(C)(k+1\leq l\leq 2k+1)$ is also a direct summand of $M^{**}$ , there is a
central projection $z\in M^{**}$ such that $M^{**}z=M_{1}(C)$ . If the dimension of $(1-e)z$

$(=\dim((1-e)z))\leq k$, then $P^{**}(M^{**}X1-e)$ is k-subhomogeneous. We have, then,
$(1-e)\varphi_{3}(X1-e)$ is completely positive from [24, Theorem 1.2]. If $\dim((1-e)z)\geq k+1$ ,
then $\dim(ez)\leq k$ and $eM^{**}e$ is k-subhomogeneous. There is a projection of norm one
$E:eM^{**}e\rightarrow P^{**}(M^{**})e$ because $P^{**}(M^{**})e$ is an injective von Neumann algebra.
Considering the map $(1-e)\varphi_{3}(X1-e)\circ E:eM^{**}e\rightarrow P^{**}(M^{**}X1-e)$ , we know that it
is completely positive. Since the map

$(1-e)\varphi_{3}(X1-e)\circ E|P^{**}(M^{**})e:P^{**}(M^{**})e\rightarrow P^{**}(M^{**}X1-e)$

is equal to the map $(1-e)\varphi_{3}(X1-e),$ $\varphi_{3}$ is completely positive. Hence $P$ is completely
positive.

(2) $\rightarrow(1)$ . It is trivial. Q.E.D.

Next, we consider the case of $C^{*}$-algebras.

THEOREM 4.2. Let $A$ be a $C^{*}$-algebra and consider the following assertions:
(1) Every k-positive projection on $A$ is $(k+1)$-positive,
(2) Every k-positive contractive projection on $A$ is completely positive,
(3) Every k-positive contractive projection on $A$ is $(k+1)$-positive,
(4) $A$ is $(2k+1)$-subhomogeneous which has at most one equivalent class ofirreducible

representations $\pi’ s$ with $\dim\pi\geq k+1$ .
Then we have the following implications;

(1) $=$ (4) $=$ (2)

$\searrow$ $\swarrow$

(3)
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PROOF. (1) $\rightarrow(4)$ . As in the argument of (1) $\rightarrow(3)$ in Proposition 4.1, it is obvious
that $A$ is $(2k+1)$-subhomogeneous. Suppose that there are disjoint irreducible
representations $\pi_{1},$ $\pi_{2}$ of $\hat{A}$ with $\dim\pi_{i}\geq k+1(i=1,2)$ . Let $\pi_{i}(A)=M_{l_{i}}(C)(i=1,2$ ;
$k+1\leq l_{1}\leq l_{2}\leq 2k+1)$ . Let $\{e_{i.j}\}(1\leq i,j\leq l_{1})$ and $\{f_{p,q}\}(1\leq p, q\leq l_{2})$ be matrix units for
$M_{l_{1}}(C)$ and $M_{l_{2}}(C)$ , respectively. Since $\pi_{1}$ and $\pi_{2}$ are disjoint, for $1\leq\forall i\leq l_{1}$ and $1\leq\forall p\leq l_{2}$

there exist elements $a_{i}$ and $b_{p}$ in $A$ such that $\pi_{1}(a_{i})=e_{1,i},$ $\pi_{2}(a_{i})=0$ and $\pi_{1}(b_{p})=0$ ,
$\pi_{2}(b_{p})=f_{1,p}$ (see [23]). We have, then,

$e_{i,j}\oplus f_{p,q}=(\pi_{1}\oplus\pi_{2}Xa_{i}^{*}a_{j}+b_{p}^{*}b_{q})$ ,

where $1\leq i,j\leq l_{1}$ and $1\leq p,$ $q\leq l_{2}$ . Define the map $\rho$ of $M_{l_{1}}(C)\oplus M_{l_{2}}(C)$ into $A$ by

$\rho([\alpha_{i.j}]\oplus[\beta_{p,q}])=\sum_{i=1}^{l_{1}}\sum_{j=1}^{l_{1}}\alpha_{t_{J}},a_{l}^{*}a_{j}+\sum_{p=1}^{l_{2}}\sum_{q=1}^{l_{2}}\beta_{p,q}b_{p}^{*}b_{q}$ ,

then $\rho$ is completely positive. Moreover for every element $[\alpha_{i,j}]\oplus[\beta_{p,q}]\in M_{l_{1}}(C)\oplus M_{l_{2}}(C)$ ,
we have the equality

$(\pi_{1}\oplus\pi_{2})\circ\rho([\alpha_{i,j}]\oplus[\beta_{p,q}])=[\alpha_{i,j}]\oplus[\beta_{p.q}]$ .
Let $\phi$ be a unital k-positive linear map of $M_{l_{1}}(C)$ into itself but not $(k+1)$-positive.

We define $P$ of $M_{l_{1}}(C)\oplus M_{l_{2}}(C)$ into itself by

$P([\alpha_{i.j}]\oplus[\beta_{p,q}])=[\alpha_{i,j}]\oplus[\cdot\cdot\cdot\cdot:\cdot\cdot.\cdot\cdots\cdot\cdot]$ ,

where $[\alpha_{i.j}]\oplus[\beta_{p,q}]\in M_{l_{1}}(C)\oplus M_{t_{2}}(C)$ . Then $P$ is k-positive projection but not $(k+1)-$

positive. By the properties of $\pi_{1}\oplus\pi_{2}$ and $\rho$ one may easily verify that the composed
map $\rho\circ P\circ(\pi_{1}\oplus\pi_{2})$ is a k-positive projection of $A$ into itself but not $(k+1)$-positive.
This is a contradiction.

(4) $\rightarrow(2)$ . From the assumption, we see that $A^{**}$ is $(2k+1)$-subhomogeneous, too.
If $A$ has no irreducible representation $\pi$ with $\dim\pi\geq k+1$ , then $A$ is k-subhomogeneous
and the assertion is trivial. Thus, we assume that $A$ has an irreducible representation
$\pi$ with $\dim\pi=l(k+1\leq l\leq 2k+1)$ . By the structure theorem of von Neumann algebras
of type I, we have

$A^{**}=\sum_{n=1}^{k}M_{n}(A_{n})\oplus M_{1}(A_{l})$ ,

where $\{A_{n}\}$ and $A_{l}$ are commutative von Neumann algebras (Some of $A_{n}$ may be zero.).
Suppose $A_{l}$ is a non trivial von Neumann algebra. Since $\pi$ is irreducible, then there

is a minimal central projection $z\in A^{**}$ such that $A^{**}z=M_{l}(C)$ . Therefore, $A^{**}z$ is a
non-trivial direct summand of $M_{1}(A_{l})$ and we can write; $M_{l}(A_{\iota})=A^{**}z\oplus M_{l}(A_{l})z_{l}$ . Since
$M_{l}(A_{l})z_{l}$ is l-subhomogeneous, there is a normal irreducible representation $\rho^{\prime}$ of $A^{**}$

with $\rho^{\prime}(z)=0$ and $\dim\rho^{\prime}=l$. Let $p=\rho^{\prime}|A$ , then $\rho$ is an irreducible representation of $A$
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and disjoint of $\pi$ . This isacontradiction. We have, therefore,

$A^{**}=\sum_{n=1}^{k}M_{n}(A_{n})\oplus M_{l}(C)$ ,

where $\{A_{n}\}$ are commutative von Neumann algebras (Some of them may be zero.).
Let $P$ be a k-positive contractive projection of $A$ into itself. Then the double

transpose $P^{**}$ of $P$ is a k-positive contractive projection of $A^{**}$ into itself. By Proposi-
tion 4.1, $P^{**}$ is completely positive, hence $P$ is completely positive.

The implications (2) $\rightarrow(3)$ and (1) $\rightarrow(3)$ are trivial. Q.E.D.

REMARK 4.3. In case of general positive maps, the assertions (3) and (4) in
Theorem 4.2 are equivalent ([24, Theorem 1, 2]). Unfortunately, we could not prove
the implication (3) $\rightarrow(4)$ in case of contractive projections.
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