Square-Free Discriminants and Affect-Free Equations

Kenzo KOMATSU

Keio University

§1. Square-free discriminants.

Unramified A_{n}-extensions of quadratic number fields are discussed by Uchida [5], [6] and Yamamoto [10]. Their results are closely related to the fact that there are infinitely many algebraic number fields K of degree $n(n>1)$ with the following properties:

1. The Galois group of \bar{K} / Q is the symmetric group S_{n}, where \bar{K} denotes the Galois closure of K / \mathbf{Q}.
2. The discriminant of K is square-free.

It is the purpose of the present paper to discuss square-free discriminants and affect-free (affektlos) equations. We begin by proving the following theorem. The Galois closure of K / \boldsymbol{Q} means the minimal Galois extension of \boldsymbol{Q} which contains K.

Theorem 1. Let K denote an algebraic number field of degree $n(n \geq 1)$ and let \bar{K} denote the Galois closure of K / Q. Suppose that the discriminant d of K is square-free. Then we have:

1. The Galois group of \bar{K} / Q is the symmetric group S_{n}.
2. The Galois group of $\bar{K} / Q(\sqrt{d})$ is the alternating group A_{n}.
3. Every prime ideal is unramified in $\bar{K} / Q(\sqrt{d})$.

Proof. We may assume that $n>1$. Let G denote the Galois group of \bar{K} / \boldsymbol{Q}. Then G is a transitive permutation group on $\{1,2, \cdots, n\}$. Suppose that K has a subfield F such that

$$
Q \subset F \subset K, \quad F \neq Q, \quad F \neq K
$$

Let d_{F} denote the discriminant of F. Then d is divisible by d_{F}^{m}, where $m=[K: F]$ ([1], Satz 39). Since $m>1$, by Minkowski's theorem we see that d cannot be square-free. This implies that G is primitive ([9], Theorem 7.4). Let p denote a prime number which divides d; by hypothesis d is exactly divisible by p. Then (van der Waerden [7]) the prime ideal decomposition of p (in K) is of the form

$$
p=\mathfrak{p}_{0}^{2} \mathfrak{p}_{1} \cdots \mathfrak{p}_{s}, \quad N\left(\mathfrak{p}_{0}\right)=p
$$

Let \mathfrak{P} be a prime ideal in \bar{K} which divides p. Then the inertia group of \mathfrak{P} contains a transposition ([7], Satz I). Hence $G=S_{n}$ ([9], Theorem 13.3). Since the ramification index of \mathfrak{P} with respect to \bar{K} / \boldsymbol{Q} is equal to 2 ([7], Satz I), \mathfrak{P} is unramified in $\bar{K} / \boldsymbol{Q}(\sqrt{d})$. Every prime number which ramifies in \bar{K} also ramifies in K ([7]). This proves the assertion (3). The assertion (2) follows from the fact that $Q(\sqrt{d})$ is the fixed field of A_{n}.

From Theorem 1 and a result of [2] we obtain the following theorem.
Theorem 2. Let $a_{0}, a_{1}, \cdots, a_{n-1}(n>1)$ be rational integers such that

$$
f(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

is irreducible over Q. Let α be a root of $f(x)=0$, and let $\delta=f^{\prime}(\alpha), D=\operatorname{norm} \delta($ in $Q(\alpha))$. Let $x_{0}, x_{1}, \cdots, x_{n-1}$ be rational integers such that

$$
D / \delta=x_{0}+x_{1} \alpha+\cdots+x_{n-1} \alpha^{n-1}
$$

Suppose that

$$
\left(D, x_{0}, x_{1}, \cdots, x_{n-1}\right)=1
$$

Then the discriminant of $\mathbb{Q}(\alpha)$ is square-free, and the Galois group of $f(x)=0$ over \boldsymbol{Q} is the symmetric group S_{n}.

Proof. Every prime factor p of the discriminant d of $\boldsymbol{Q}(\alpha)$ is also a prime factor of D. Therefore there exists a number i such that x_{i} is not divisible by p. By Theorem 1 of [2] we see that d is not divisible by p^{2}. Hence d is square-free, and the Galois group of $f(x)=0$ is S_{n} (Thoerem 1).

§ 2. Examples.

In [8] Wegner proved that the Galois group over \boldsymbol{Q} of the equation

$$
f(x)=x^{p}+a x+b=0
$$

of prime degree $p>3$ is the symmetric group S_{p} if $f(x)$ is irreducible and if $(a, b)=(p, a)=(p-1, b)=1$. We generalize Wegner's result as follows:

Theorem 3. Let $n(n>1), a, b$ be rational integers such that $f(x)=x^{n}+a x+b$ is irreducible over \boldsymbol{Q}. If $((n-1) a, n b)=1$, then the Galois group of $f(x)=0$ over \boldsymbol{Q} is the symmetric group S_{n}, and the discriminant of $\mathbf{Q}(\alpha)$ is square-free, where α denotes a root of $f(x)=0$.

Proof. The result follows immediately from Theorem 2 and [2] (Theorem 2).
Selmer [4] proved that $x^{n}-x-1$ is irreducible for every $n>1$. From Theorem 3
we obtain the following theorem.
Theorem 4. The Galois group of

$$
x^{n}-x-1=0
$$

over Q is the symmetric group S_{n} for every $n>1$.
It follows from a theorem of Perron [3] that $x^{n}+a x+1$ is irreducible if $n>1, a \in Z$, $|a| \geq 3$ ([4], Theorem 2). Hence we have the following theorem.

Theorem 5. If $n(n>1)$ and a are rational integers such that $|a| \geq 3,(n, a)=1$, then the Galois group of

$$
x^{n}+a x+1=0
$$

over \boldsymbol{Q} is the symmetric group S_{n}.

§ 3. Unramified $\boldsymbol{A}_{\boldsymbol{n}}$-extensions of quadratic number fields: An explicit construction.

Since $x^{n}+a x+1$ is irreducible for $|a| \geq 3$, it is not difficult to construct (for any integer $n>1$) infinitely many algebraic number fields of degree n with square-free discriminants ($\S 1$). It is also possible to give an explicit construction of infinitely many quadratic number fields which have unramified A_{n}-extensions (cf. [6], Theorem 2): Let $n(n>1)$ be a fixed integer. Define $a_{k}, D_{k}(k=1,2, \cdots)$ by

$$
\begin{array}{ll}
a_{1}=n+1, & D_{1}=(-1)^{n-1}(n-1)^{n-1} a_{1}^{n}+n^{n}, \\
a_{k}=D_{1} D_{2} \cdots D_{k-1}, & D_{k}=(-1)^{n-1}(n-1)^{n-1} a_{k}^{n}+n^{n} .
\end{array}
$$

Let $f_{k}(x)=x^{n}+a_{k} x+1$, and let α_{k} be a root of $f_{k}(x)=0$; let d_{k} denote the discriminant of the field $A_{k}=\boldsymbol{Q}\left(\alpha_{k}\right)$, and let \bar{A}_{k} denote the Galois closure of A_{k} over \boldsymbol{Q}; let $F_{k}=\boldsymbol{Q}\left(\sqrt{d_{k}}\right)$. Then $f_{1}(x)$ is irreducible, since $\left|a_{1}\right| \geq 3 ; D_{1}$ is divisible by d_{1}, and so $\left|D_{1}\right| \geq\left|d_{1}\right| \geq 3$. By induction, we see that (for every $k)\left|a_{k}\right| \geq 3, f_{k}(x)$ is irreducible, and $\left(n, a_{k}\right)=\left(n, D_{k}\right)=1$. Since D_{k} is the norm of $f_{k}^{\prime}\left(\alpha_{k}\right)\left([2]\right.$, Theorem 2), we have $F_{k}=\boldsymbol{Q}\left(\sqrt{(-1)^{n(n-1) / 2} D_{k}}\right)$. Clearly $i<j$ implies $\left(D_{i}, D_{j}\right)=1,\left(d_{i}, d_{j}\right)=1$, and so $A_{i} \neq A_{j}, F_{i} \neq F_{j}$. Since $\left(n, a_{k}\right)=1, d_{k}$ is squarefree (Theorem 3). Therefore, for every k, the Galois group of $\bar{A}_{k} / \boldsymbol{Q}$ (resp. \bar{A}_{k} / F_{k}) is the symmetric (resp. alternating) group of degree n, and no prime ideals are ramified in \bar{A}_{k} / F_{k} (Theorem 1).

References

[1] D. Hilbert, Die Theorie der algebraischen Zahlkörper, Jahrsber. Deutsch. Math.-Verein., 4 (1897), 175-546.
[2] K. Komatsu, Integral bases in algebraic number fields, J. Reine Angew. Math., 278/279 (1975), 137-144.
[3] O. Perron, Neue Kriterien für die Irreduzibilität algebraischer Gleichungen, J. Reine Angew. Math., 132 (1907), 288-307.
[4] E. S. Selmer, On the irreducibility of certain trinomials, Math. Scand., 4 (1956), 287-302.
[5] K. Uchida, Unramified extensions of quadratic number fields, I, Tôhoku Math. J., 22 (1970), 138-141.
[6] K. Uchida, Unramified extensions of quadratic number fields, II, Tôhoku Math. J., 22 (1970), 220-224.
[7] B. L. van der Waerden, Die Zerlegungs- und Trägheitsgruppe als Permutationsgruppen, Math. Ann., 111 (1935), 731-733.
[8] U. Wegner, Über trinomische Gleichungen von Primzahlgrad, Math. Ann., 111 (1935), 734-737.
[9] H. Wielandt, Finite permutation groups, Academic Press, 1964.
[10] Y. Yamamoto, On unramified Galois extensions of quadratic number fields, Osaka J. Math., 7 (1970), 57-76.

Present Address:

Department of Mathematics, Faculty of Science and Technology, Keio University Hiyoshi, Kohoku-ku, Yokohama 223, Japan-

