Токуо Ј. Матн. Vol. 14, No. 1, 1991

Square-Free Discriminants and Affect-Free Equations

Kenzo KOMATSU

Keio University

§1. Square-free discriminants.

Unramified A_n -extensions of quadratic number fields are discussed by Uchida [5], [6] and Yamamoto [10]. Their results are closely related to the fact that there are infinitely many algebraic number fields K of degree n (n > 1) with the following properties:

- 1. The Galois group of \overline{K}/Q is the symmetric group S_n , where \overline{K} denotes the Galois closure of K/Q.
- 2. The discriminant of K is square-free.

It is the purpose of the present paper to discuss square-free discriminants and affect-free (affectios) equations. We begin by proving the following theorem. The Galois closure of K/Q means the minimal Galois extension of Q which contains K.

THEOREM 1. Let K denote an algebraic number field of degree $n \ (n \ge 1)$ and let \overline{K} denote the Galois closure of K/Q. Suppose that the discriminant d of K is square-free. Then we have:

- 1. The Galois group of \overline{K}/Q is the symmetric group S_n .
- 2. The Galois group of $\overline{K}/Q(\sqrt{d})$ is the alternating group A_n .
- 3. Every prime ideal is unramified in $\overline{K}/Q(\sqrt{d})$.

PROOF. We may assume that n > 1. Let G denote the Galois group of \overline{K}/Q . Then G is a transitive permutation group on $\{1, 2, \dots, n\}$. Suppose that K has a subfield F such that

$$Q \subset F \subset K, F \neq Q, F \neq K.$$

Let d_F denote the discriminant of F. Then d is divisible by d_F^m , where m = [K: F] ([1], Satz 39). Since m > 1, by Minkowski's theorem we see that d cannot be square-free. This implies that G is primitive ([9], Theorem 7.4). Let p denote a prime number which divides d; by hypothesis d is exactly divisible by p. Then (van der Waerden [7]) the prime ideal decomposition of p (in K) is of the form

Received April 24, 1990

KENZO KOMATSU

$$p = \mathfrak{p}_0^2 \mathfrak{p}_1 \cdots \mathfrak{p}_s, \quad N(\mathfrak{p}_0) = p.$$

Let \mathfrak{P} be a prime ideal in \overline{K} which divides p. Then the inertia group of \mathfrak{P} contains a transposition ([7], Satz I). Hence $G = S_n$ ([9], Theorem 13.3). Since the ramification index of \mathfrak{P} with respect to \overline{K}/Q is equal to 2 ([7], Satz I), \mathfrak{P} is unramified in $\overline{K}/Q(\sqrt{d})$. Every prime number which ramifies in \overline{K} also ramifies in K ([7]). This proves the assertion (3). The assertion (2) follows from the fact that $Q(\sqrt{d})$ is the fixed field of A_n .

From Theorem 1 and a result of [2] we obtain the following theorem.

THEOREM 2. Let a_0, a_1, \dots, a_{n-1} (n > 1) be rational integers such that

$$f(x) = x^n + a_{n-1}x^{n-1} + \cdots + a_1x + a_0$$

is irreducible over Q. Let α be a root of f(x)=0, and let $\delta = f'(\alpha)$, $D = \operatorname{norm} \delta$ (in $Q(\alpha)$). Let x_0, x_1, \dots, x_{n-1} be rational integers such that

$$D/\delta = x_0 + x_1\alpha + \cdots + x_{n-1}\alpha^{n-1}.$$

Suppose that

$$(D, x_0, x_1, \cdots, x_{n-1}) = 1$$
.

Then the discriminant of $Q(\alpha)$ is square-free, and the Galois group of f(x)=0 over Q is the symmetric group S_n .

PROOF. Every prime factor p of the discriminant d of $Q(\alpha)$ is also a prime factor of D. Therefore there exists a number i such that x_i is not divisible by p. By Theorem 1 of [2] we see that d is not divisible by p^2 . Hence d is square-free, and the Galois group of f(x)=0 is S_n (Theorem 1).

§2. Examples.

In [8] Wegner proved that the Galois group over Q of the equation

$$f(x) = x^p + ax + b = 0$$

of prime degree p>3 is the symmetric group S_p if f(x) is irreducible and if (a, b)=(p, a)=(p-1, b)=1. We generalize Wegner's result as follows:

THEOREM 3. Let n (n > 1), a, b be rational integers such that $f(x) = x^n + ax + b$ is irreducible over Q. If ((n-1)a, nb) = 1, then the Galois group of f(x) = 0 over Q is the symmetric group S_n , and the discriminant of $Q(\alpha)$ is square-free, where α denotes a root of f(x) = 0.

PROOF. The result follows immediately from Theorem 2 and [2] (Theorem 2).

Selmer [4] proved that $x^n - x - 1$ is irreducible for every n > 1. From Theorem 3

we obtain the following theorem.

THEOREM 4. The Galois group of

 $x^n - x - 1 = 0$

over Q is the symmetric group S_n for every n > 1.

It follows from a theorem of Perron [3] that $x^n + ax + 1$ is irreducible if n > 1, $a \in \mathbb{Z}$, $|a| \ge 3$ ([4], Theorem 2). Hence we have the following theorem.

THEOREM 5. If n (n > 1) and a are rational integers such that $|a| \ge 3$, (n, a) = 1, then the Galois group of

$$x^n + ax + 1 = 0$$

over Q is the symmetric group S_n .

§3. Unramified A_n -extensions of quadratic number fields: An explicit construction.

Since $x^n + ax + 1$ is irreducible for $|a| \ge 3$, it is not difficult to construct (for any integer n > 1) infinitely many algebraic number fields of degree n with square-free discriminants (§1). It is also possible to give an explicit construction of infinitely many quadratic number fields which have unramified A_n -extensions (cf. [6], Theorem 2): Let n (n > 1) be a fixed integer. Define a_k , $D_k (k = 1, 2, \cdots)$ by

$$a_1 = n+1$$
, $D_1 = (-1)^{n-1}(n-1)^{n-1}a_1^n + n^n$,
 $a_k = D_1 D_2 \cdots D_{k-1}$, $D_k = (-1)^{n-1}(n-1)^{n-1}a_k^n + n^n$.

Let $f_k(x) = x^n + a_k x + 1$, and let α_k be a root of $f_k(x) = 0$; let d_k denote the discriminant of the field $A_k = Q(\alpha_k)$, and let \overline{A}_k denote the Galois closure of A_k over Q; let $F_k = Q(\sqrt{d_k})$. Then $f_1(x)$ is irreducible, since $|a_1| \ge 3$; D_1 is divisible by d_1 , and so $|D_1| \ge |d_1| \ge 3$. By induction, we see that (for every k) $|a_k| \ge 3$, $f_k(x)$ is irreducible, and $(n, a_k) = (n, D_k) = 1$. Since D_k is the norm of $f'_k(\alpha_k)$ ([2], Theorem 2), we have $F_k = Q(\sqrt{(-1)^{n(n-1)/2}}D_k)$. Clearly i < j implies $(D_i, D_j) = 1$, $(d_i, d_j) = 1$, and so $A_i \ne A_j$, $F_i \ne F_j$. Since $(n, a_k) = 1$, d_k is squarefree (Theorem 3). Therefore, for every k, the Galois group of \overline{A}_k/Q (resp. \overline{A}_k/F_k) is the symmetric (resp. alternating) group of degree n, and no prime ideals are ramified in \overline{A}_k/F_k (Theorem 1).

References

- [1] D. HILBERT, Die Theorie der algebraischen Zahlkörper, Jahrsber. Deutsch. Math.-Verein., 4 (1897), 175-546.
- [2] K. KOMATSU, Integral bases in algebraic number fields, J. Reine Angew. Math., 278/279 (1975), 137-144.
- [3] O. PERRON, Neue Kriterien f
 ür die Irreduzibilit
 ät algebraischer Gleichungen, J. Reine Angew. Math., 132 (1907), 288-307.

KENZO KOMATSU

- [4] E. S. SELMER, On the irreducibility of certain trinomials, Math. Scand., 4 (1956), 287-302.
- [5] K. UCHIDA, Unramified extensions of quadratic number fields, I, Tôhoku Math. J., 22 (1970), 138-141.
- [6] K. UCHIDA, Unramified extensions of quadratic number fields, II, Tôhoku Math. J., 22 (1970), 220-224.
- B. L. VAN DER WAERDEN, Die Zerlegungs- und Trägheitsgruppe als Permutationsgruppen, Math. Ann., 111 (1935), 731-733.
- [8] U. WEGNER, Über trinomische Gleichungen von Primzahlgrad, Math. Ann., 111 (1935), 734-737.
- [9] H. WIELANDT, Finite permutation groups, Academic Press, 1964.
- [10] Y. YAMAMOTO, On unramified Galois extensions of quadratic number fields, Osaka J. Math., 7 (1970), 57-76.

Present Address:

DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE AND TECHNOLOGY, KEIO UNIVERSITY HIYOSHI, KOHOKU-KU, YOKOHAMA 223, JAPAN

60