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Abstract. The totally geodesic 2-sphere and the Clifford torus in $S^{3}$ are the only compact, minimal
surfaces in $S^{3}$ whose quadric representations yield minimally in hyperquadrics.

1. Introduction.

In 1970, H. B. Lawson, [La], showed that every compact surface but the projective
plane (which is prohibited) can be minimally immersed into $S^{3}$ . Even more, he discovered
that one can find compact, orientable, minimal surfaces in $S^{3}$ of arbitrary genus. New
examples of compact embedded minimal surfaces in $S^{3}$ were given in [K-P-S]. Therefore
the class of compact minimal surfaces in the 3-sphere is enormous. On the other hand,
if we see $S^{3}$ in the Euclidean space $E^{4}$ as usual (that is embeded by its first standard
immersion), then the minimal surfaces in $S^{3}$ are constructed by using eigenfunctions
of their Laplacian associated to the same eigenvalue $\lambda=2$ . This is clear after a well-known
result of T. Takahashi, [Ta].

Therefore, if we want to study minimal surfaces in $S^{3}$ from the point of view of
the spectral behaviour of their position vectors in the Euclidean space, it seems natural
to immerse $S^{3}$ in the Euclidean space by using a different embedding.

The second standard immersion of $S^{3}$ in the Euclidean space can be defined in
$SM(4)$ , the Euclidean space of 4-order real symmetric matrices, by using the products
of coordinate functions of $S^{3}\subset E^{4},$ $[T]$ . So minimal surfaces in $S^{3}$ can be regarded
into $SM(4)$ by means of their quadric representations (see the next section for details).

This idea has been exploited by several authors to give nice characterizations of some
minimal surfaces in $S^{m}$ (including: The totally geodesic 2-sphere in $S^{3}$ , the Clifford
torus in $S^{3}$ , the Veronese surfaces in $S^{4}$ and $S^{6}$ respectively and the equilateral flat
torus in $S^{5}$) in the context of Finite Type theory of B. Y. Chen, [Chl], (see for instance
[R], [Ba-Chl], [Ba-Ch2] and [Ba-Ur]).

It is known that the totally geodesic 2-sphere is the only surface in $S^{3}$ whose
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quadric representation yields minimally in some hypersphere of $SM(4)$ and consequent-
ly it is of mass-symmetric in such a hypersphere. Also one can see that the quadric
representation of a Clifford torus in $S^{3}$ is of mass-symmetric in some hypersphere 01
$SM(4)$ and yields minimally in some hyperquadric of $SM(4)$ concentric with the above
mentioned hypersphere (see [Ba-Ga] and section 4). Furthermore in [Ba-Ga], the
authors proved that the described situation characterizes the Clifford torus among all
compact, minimal and non-totally geodesic surfaces of $S^{3}$ .

However a natural and more general question appears:

PROBLEM. Besides the Clifford torus and the totally geodesic 2-sphere, are $ ther\epsilon$

other compact minimal surfaces of $S^{3}$ whose quadric representation is minimal in some
hyperquadric of $SM(4)$ ?

In this paper we shall deal with this problem and answer this question by proving
the following result:

MAIN THEOREM. Let $x:M^{2}\rightarrow S^{3}$ be a compact, minimal surface ofthe 3-dimensional
unit sphere and $\Phi:M^{2}\rightarrow SM(4)$ its quadric representation. Then $(M^{2}, \Phi)$ is minimal in
some canonical hyperquadric of $SM(4)$ , if and only if $(M^{2}, x)$ is either totally geodesic
or the Clifford torus in $S^{3}$ .

In order to prove this result, we first observe that the hyperquadric, say $Q$ , in which
$(M^{2}, \Phi)$ yields minimally can not be a graph and so it is a hyperquadric with center,
say $\Psi_{o}$ . Then we use our main argument based in a systematic study of the nodal sets
associated with the coordinate functions of $(M^{2}, x)$ in $E^{4}$ (which are eigenfunctions of
the Laplacian of $M$ as we mentioned earlier) in order to get control on $\Psi_{o}$ . In this
manner, we are able to prove that $\Psi_{o}$ is a diagonal matrix in $SM(4)$ (see Theorem 1).
Then we see that $\Psi_{o}$ is not only a diagonal matrix but also $\Psi_{o}=\neq I$ (I being the identity
matrix of order 4 in $SM(4))$ (see Proposition 3). Finally we can prove that the center
of gravity, say $\Phi_{o}$ , of $(M^{2}, \Phi)$ coincides with $\Psi_{o}$ and so $(M^{2}, \Phi)$ is of mass-symmetric
in some hypersphere of $SM(4)$ . Therefore the proof of our main theorem here is reduced
to the main result of [Ba-Ga] to which we have already alluded in connection with the
statement of the Problem.

In view of our main theorem it is interesting to inquire whether the same kind of
result can be achieved for compact minimal surfaces of $S^{m}$ with $m>2$ . In this direction,
we can obtain a rational uniparametric family of minimal surfaces in $S^{5}\subset R^{6}$ (one of
whose members is the equilateral torus in $S^{5}$) whose quadric representations are minimal
in certain hyperquadrics of $SM(6)$ , (see Proposition 2). This shows that our result can
not sharpened in this respect.

Our method does not work for minimal submanifolds of $S^{m}$ with dimension greater
than two. Probably, arbitrary dimension and codimension decreases the possibility of
classification of this sort of submanifolds and further hypothesis would be necessary.

During a visit to the University of Ioannina, we posed the problem of finding new
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methods for dealing with the classification of minimal hypersurfaces of the sphere with
minimal quadric representation in some hyperquadric. Our natural feelings would have
expected a richer family than that of the 2-dimensional case. However, the results of
Hasanis-Vlachos in [H-V2], extending our characterization of the Clifford torus in
[Ba-Ga], express a plausible state of affairs which stands in contradiction to our
native geometrical intuition. Nevertheless the problem for minimal hypersurfaces of $S^{m}$

is still open. It is expected that rather weak additional assumptions will suffice to restrict
the domain of possibilities to those with which we are familiar.

2. The second standard immersion of $S^{3}$ .
First of all, we describe the most important of the notions discussed in subsequent

paragraphs. We start then by enumerating the main facts about the second standard
immersion of $S^{3}$ and conclude by explaining the idea of quadric representation.

Let $R^{4}$ be the Euclidean space of dimension 4, endowed as usual with the inner
product $\langle u, v\rangle=u\cdot v^{t}$ for any $u,$

$v\in R^{4}$ , where a vector in $R^{4}$ is regarded as a l-row
matrix and $v^{t}$ denotes the transpose of $v$ . Thus, we have that the unit 3-sphere centered
at the origin of $R^{4}$ is given by $S^{3}=\{u\in R^{3}|\langle u, u\rangle=1\}$ . Let $SM(4)=\{P\in gl(4, R)|P=P\}$

be the space of symmetric $4\times 4$ matrices over $R$ endowed with the metric
$g(P, Q)=\neq tr(P\cdot Q)$ for any $P,$ $Q\in SM(4)$ . Consider the mapping $f:S^{3}\rightarrow SM(4)$ defined
by $f(u)=u^{t}\cdot u$ , then $f$ is an isometric immersion which is actually the second standard
immersion of $S^{3}$ .

For each point $u\in S^{3}$ , the normal space of $S^{3}$ in $SM(4)$ at $u$ (or more precisely at
$f(u))$ is given by

$T_{u}^{\perp}S^{3}=$ {$P\in SM(4)|u\cdot P=\mu u$ for some $\mu\in R$}.
In particular, we have that $f(u)\in T_{u}^{\perp}S^{3}$ .

If $\overline{\sigma}$ denotes the second fundamental form of $f$, then

$\overline{\sigma}(X, Y)=X^{t}\cdot Y+Y^{t}\cdot X-2\langle X, Y\rangle f(u)$

for any $X,$ $Y\in T_{u}S^{3}$ . It is also well known, that $\overline{\sigma}$ is parallel and satisfies the following
properties (see for instance [R]):

$ g(\overline{\sigma}(X, Y),\overline{\sigma}(V, W))=2\langle X, Y\rangle\langle V, W\rangle+\langle X, V\rangle\langle Y, W\rangle+\langle X, W\rangle\langle Y, V\rangle$ ,

$\overline{A}_{\overline{\sigma}\langle X,Y)}V=2\langle X, Y\rangle V+\langle X, V\rangle Y+\langle Y, V\rangle X$ ,

$g(\overline{\sigma}(X, Y),$ $ f(u))=-\langle X, Y\rangle$ ,

$g(\overline{\sigma}(X, Y),$ $I$) $=0$ ,

where $\overline{A}$ is the Weingarten map of $f,$ $X,$ $Y,$ $V,$ $W$ are tangent vectors of $S^{3}$ and $I$ is the
identity matrix.
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It is also known that $S^{3}$ is immersed via$f$as a minimal submanifold ofa hyperspher $($

of $SM(4)$ centered at $\neq I$ and of radius $r=\sqrt{}\overline{3/8}$ .
Now, let us consider an isometric immersion of a Riemannian surface $M$ into th $($

3-sphere, $x:M^{2}\rightarrow S^{3}$ . We can combine both immersions, $x$ and $f$ to obtain an isometri $($

immersion $\Phi=f\circ x:M\rightarrow SM(4)$ , and since the coordinates of $\Phi$ depend quadraticalll
on the coordinates of $x$, we say that $\Phi$ is the quadric representation of $x$ (or of $M$)

Also, $\Phi(M)$ will be called the quadric representation image of $M$ (see [Di] for som
properties related with this topic).

3. Basic properties.

With a view to future applications, we wish to establish some properties of ou
immersion. Let $x:M\rightarrow S^{3}\subset E^{4}$ be a compact, minimal surface in the unit 3-spher
and consider its quadric representation $\Phi:M\rightarrow SM(4)$ . We already know that $\Phi(M)i$

contained in some hypersphere of $SM(4)$ with center $*I$ (I being the identity matrix $c$

order 4). The center of gravity of $\Phi$ is $\Phi_{o}=(a_{ij})$ where

$a_{ij}=\frac{1}{vol(M)}\int_{M}x_{i}x_{j}dv$ . (1

Let $Q$ be a canonical hyperquadric, that is, a hyperquadric which in the coordinat
system $u_{ij}=x_{i}x_{j}$ takes one of the following forms:

$\sum_{i\leq j}r_{ij}(u_{ij}-b_{ij})^{2}=k$ ,

$\sum_{i\leq j.i\neq 3}r_{ij}(u_{ij}-b_{ij})^{2}+2u_{33}=0$ ,

$r_{ij},$
$b_{ij},$ $k\in R$ .
Now let assume that $(M, \Phi)$ is minimal in some canonical hyperquadric, say $\zeta$

with center $\Psi_{o}=(b_{ij})$ . As we shall see (Remark 1) one can assume without loss $($

generality that $Q$ is given in the coordinate system $u_{ij}=x_{i}x_{j}$ by

$\sum_{i\leq j}r_{ij}(u_{ij}-b_{ij})^{2}=k$

for some real constants $r_{ij}$ and $k$ .
We define $h:SM(4)\rightarrow R$ by $h(u_{ij})=\sum_{i\leq j}r_{ij}(u_{ij}-b_{ij})^{2}$ and denote by $H$ the mea

curvature vector field of $(M, \Phi)$ . Then one has

$\Delta\phi=-2H$ . $($ .

Since $(M, \Phi)$ is minimal in $Q,$ $H$ must be normal to $Q$ in $SM(4)$ , so there exists
smooth function $\mu$ on $M$ with
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$H=\mu\nabla h$ (4)

where $\nabla h$ denotes the gradient of $h$ in $SM(4)$ restricted to $(M, \Phi)$

Notice that since $(M, \Phi)$ has non-zero constant mean curvatue, namely $|H|^{2}=3$ ,

then $\mu(p)\neq 0$ at any point $p$ of $M$. Therefore we combine (3) with (4) to get

$\Delta(x_{i}x_{j})=-4\mu r_{ij}(x_{i}x_{j}-b_{ij})$ . (5)

From now on, we will consider that $(M, x)$ is a non-totally geodesic surface in $S^{3}$ .
Consequently $r_{ii}\neq 0$ , otherwise we use (5) to see that $x_{i}^{2}=c_{i}$ is constant on $M$ and so
$c_{i}=0$ which is impossible.

LEMMA 1. The following properties hold:

$\sum_{i=1}^{4}b_{ii}=1$ , $r_{ij}\neq 0$ , $r_{11}=r_{22}=r_{33}=r_{44}=r$ .

PROOF. First we use (5) to get $\int_{M}\mu(x_{i}^{2}-b_{ii})dv=0$ and so $\int_{M}\mu dv=\int_{M}\mu dv(\sum_{i=1}^{4}b_{ii})$

which proves the first formula.
Next let us assume $r_{ij}=0$ then $x_{i}x_{j}$ must be a constant and so it must be zero

because $x_{i}$ are eigenfunctions of $M$. Set $U=\{p\in M|x_{j}(p)\neq 0\}$ , if $U$ is a non-empty open
subset of M, then we apply (5) $toobtain4\mu r_{ii}b_{ii}=0onUandsob_{ii}=0$ . Now we come
back to (5) to get

$\Delta x_{i}^{2}=-4\mu r_{ii}x_{i}^{2}$ (6)

which is impossible because $(M, x)$ is not totally geodesic in $S^{3}$ .
Finally we use again (5) to have $4\mu\sum_{i=1}^{4}r_{ii}(x_{i}^{2}-b_{ii})=0$ and because $\mu$ does not

vanish, $M$ is contained in the hypersurface of $E^{4}$ given by

$\sum_{i=1}^{4}r_{ii}(x_{i}^{2}-b_{ii})=0$ . (7)

Then we apply $\Delta$ to this relation to prove that $M$ also satisfies

$\sum_{i=1}^{4}r_{ii}^{2}(x_{i}^{2}-b_{ii})=0$ . (8)

Since $M$ is contained in $S^{3}$ we use an easy argument involving (7) and (8) to see that
$r_{ii}1\leq i\leq 4$ are roots of a second order polynomial. Now it is easy to see that the only
possibility that one has is that described in the statement. (Q.E.D.)

Now we can combine (5) with the fact that $\Delta x_{i}=2x_{i}$ , to get the following useful
equation

$\langle\nabla x_{i}, \nabla x_{j}\rangle=2(1+r_{ij}\mu)x_{i}x_{j}-2\mu r_{ij}b_{ij}$ (9)

where $\nabla x_{i}$ denotes the gradient of $x_{i}$ in $M$.
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The mean curvature vector field $H$ of $(M, \Phi)$ regarded in $SM(4)$ can be written as

$H=\frac{1}{2}\sum_{i=1}^{2}\overline{\sigma}(E_{i}, E_{i})=E_{1}^{t}E_{1}+E_{2}^{t}E_{2}-2x^{t}x$ (10)

where $\{E_{1}, E_{2}\}$ denotes an orthonormal basis on the tangent plane of $M$. We set
$\Omega=\Delta\Phi=-2H$ which can be certainly regarded as a field of endomorphisms on $R^{4}$

along $M$ and in particular

$\Omega(x)=x\cdot\Omega=4x$ . (11)

This relation gives us

$\mu(x_{j}\sum_{i=1}^{4}r_{ji}x_{i}^{2}-\sum_{i=1}^{4}r_{ji}b_{ji}x_{i})+x_{j}=0$ (12)

where $1\leq j\leq 4$ .

REMARK 1. If $F:SM(4)\rightarrow R$ is a differentiable map and we suppose that $(M, \Phi)$

is minimal in some hypersurface $F^{-1}(c)$ , then its mean curvature vector field $H$ satisfies
$H=\mu\nabla F$

where $\nabla F$ denotes the gradient of $F$ in $SM(4)$ restricted to $(M, \Phi)$ and $\mu$ is nothing but a
smooth function on $M$ which is non-zero anywhere. The above equation can be written
as follows:

$\Delta(x_{i}x_{j})=-2\mu\frac{\partial F}{\partial u_{ij}}$

where $u_{ij}=x_{i}x_{j},$ $1\leq i,j\leq 4$ . This shows that $F^{-1}(c)$ can not be a graph. For this reason
we have assumed that $Q$ is a hyperquadric with center.

4. Some examples.

We postpone for the time being the proofs of the main results and first, as a kind
of illustrative exercise, we give examples of minimal surfaces of $S^{5}$ whose quadric
representation is minimal in hyperquadrics. This digression is in fact more than a
preliminary exercise. We shall see, Proposition 2, that our main theorem has no
equivalent in higher codimension.

Let $a$ be any non-zero, positive real number and define a surface in $E^{4}$ by
$M_{a}$ : $x(u, v)=$ ($\cos u\cos av$, cosu sinav, sinucosv, sinu sinv). (13)

These surfaces were studied by H. B. Lawson, [La], and they are minimal surfaces in
$S^{3}\subset E^{4}$ . In particular when $a=1$ , one obtains the Clifford torus in $S^{3}\subset E^{4}$ .

The Laplacian of $M_{a}$ with the induced metric is given by
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$\Delta=-\frac{\partial^{2}}{\partial u^{2}}-\frac{1}{g}\frac{\partial^{2}}{\partial v^{2}}-\frac{1}{g}(1-a^{2})$ cos $u$ sin $u\frac{\partial}{\partial u}$ (14)

where $g=a^{2}\cos^{2}u+\sin^{2}u$ , (the determinant of the first fundamental form of $M_{a}$).
Now we consider the quadric representation of $M_{a},$ $\Phi_{a}$ : $M_{a}\rightarrow SM(4)$ defined by

$\Phi_{a}(x(u, v))=x^{t}(u, v)\cdot x(u, v)=(u_{ij}(u, v)=x_{i}(u, v)\cdot x_{j}(u, v))$ (15)

where $1\leq i,j\leq 4$ .
A long and direct computation shows that along $M_{a}$ one has

$\Delta u_{11}=6u_{11}-\frac{2a^{2}}{g}u_{22}-\frac{2u_{11}}{u_{11}+u_{22}}$ , (16)

$\Delta u_{22}=6u_{22}-\frac{2a^{2}}{g}u_{11}-\frac{2u_{22}}{u_{11}+u_{22}}$ . (17)

Also notice that $g=a^{2}(u_{11}+u_{22})+u_{33}+u_{44}$ .
It is clear that $(M_{a}, \Phi_{a})$ is minimal in a hyperquadric, say $F^{-1}(0)$ , where $F$ is some

polynomial of degree two on $SM(4)$ if and only if there exists some smooth function,
say $\mu$ , on $M_{a}$ such that

$\Delta\Phi_{a}=-2\mu\nabla F$ . (18)

In particular if $(M_{a}, \Phi_{a})$ is minimal in $F^{-1}(0)$ , we use (16), (17) and (18) to get

$\frac{\partial F}{\partial u_{22}}(6u_{11}g(u_{11}+u_{22})-2a^{2}u_{11}(u_{11}+u_{22})-2u_{22}g)$

$=\frac{\partial F}{\partial u_{11}}(6u_{22}g(u_{11}+u_{22})-2a^{2}u_{11}(u_{11}+u_{22})-2u_{22}g)$ . (19)

A new direct computation, involving the fact that $\partial F/\partial u_{11}$ and $\partial F/\partial u_{22}$ are
polynomials of degree one and (18), shows that the only possibility is $a=1$ . Therefore
we have:

PROPOSITION 1. $(M_{a}, \Phi_{a})$ is minimal in some hyperquadric of $SM(4)$ if and only if
$a=1$ and so $(M_{1}, \Phi_{1})$ is the $Cl\iota fford$ torus in $S^{3}\subset E^{4}$ .

REMARK 2. Notice that our main theorem is an extension of the statement proved
in the above proposition.

The next example will show that our main theorem is the best possible in the sense
that it does not admit extension to minimal surfaces in $S^{m}\subset E^{m+1}$ . In fact we are going
to obtain a rational uniparametric family ofminimal surfaces in $S^{5}\subset E^{6}$ whose quadric
representations are minimal in hyperquadrics of $SM(6)$ . Let $t$ be a real number with
$0<t\leq+$ and $\sqrt{2t}\in Q$ . Define a surface in $E^{6}$ by
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$M_{t}$ : $ x(\theta, \tau)=\frac{1}{\sqrt{2(2-t)}}(\cos\theta$, sin $\theta$ , cos $\tau$ , sin $\tau$ ,

$\sqrt{2(1-t)}\cos\frac{\theta+\tau}{\sqrt{2t}},$
$\sqrt{2(1-t)}$ sin $\frac{\theta+\tau}{\sqrt{2t}})$ . $(2($

These surfaces were studied by K. Kenmotsu, [Ke], and they are minimal flat tori $i$

$S^{5}\subset E^{6}$ . In particular when $ t=\neq$ one obtains the so-called equilateral torus. Th
Laplacian of $M_{t}$ with the induced flat metric is given by

$\Delta=-2(\frac{\partial^{2}}{\partial\theta^{2}}-2(1-t)\frac{\partial^{2}}{\partial\theta\partial\tau}+\frac{\partial^{2}}{\partial\tau^{2}})$ . (21

Let us consider the quadric representation $(M_{t}, \Phi_{t})$ of $M_{t}$ into $SM(6)$ . We pu
$\Phi_{t}=(u_{ij}=x_{i}\cdot x_{j}),$ $1\leq i,j\leq 6$ . From a direct, long computation we obtain $\Delta\Phi_{t}$ which ca
be described as follows:

$\Delta(u_{ii}-\frac{1}{4(2-t)})=8(u_{ii}-\frac{1}{4(2-t)})$ ,

$\Delta(u_{jj}-\frac{1-t}{2(2-t)})=8(u_{jj}-\frac{1-t}{2(2-t)})$ ,

$\Delta u_{12}=8u_{12}$ , $\Delta u_{13}=4u_{13}+4(1-t)u_{24},$ $\Delta u_{14}=4u_{14}-4(1-t)u_{23}$ ,

$\Delta u_{15}=4u_{15}-\frac{4t}{\sqrt{2t}}u_{26}$ ,

$\Delta u_{23}=4u_{23}-4(1-t)u_{14}$ ,

$\Delta u_{16}=4u_{16}+\frac{4t}{\sqrt{2t}}u_{25}$ ,

$\Delta u_{24}=4u_{24}+4(1-t)u_{13}$ ,

$\Delta u_{25}=4u_{25}+\frac{4t}{\sqrt{2t}}u_{16}$ , $\Delta u_{26}=4u_{26}-\frac{4t}{\sqrt{2t}}u_{15}$ , $\Delta u_{34}=8u_{34}$ ,

$\Delta u_{35}=4u_{35}-\frac{4t}{\sqrt{2t}}u_{46}$ , $\Delta u_{36}=4u_{36}+\frac{4t}{\sqrt{2t}}u_{45}$ ,

$\Delta u_{45}=4u_{45}+\frac{4t}{\sqrt{2t}}u_{36}$ , $\Delta y_{46}=4u_{46}-\frac{4t}{\sqrt{2t}}u_{35}$ , $\Delta u_{56}=8u_{56}$ ,

where $1\leq i\leq 4$ and $5\leq j\leq 6$ .
Let us define $F_{t}$ : $SM(6)\rightarrow R$ by

$F_{t}((u_{ij}))=\frac{1}{2}\sum_{i=1}^{4}(u_{ii}-\frac{1}{4(2-t)})^{2}+\frac{1}{2}\sum_{j=5}^{6}(u_{jj}-\frac{1-t}{2(2-t)})^{2}$

$+\neq(u_{12}^{2}+u_{34}^{2}+u_{56}^{2})+\neq(u_{13}^{2}+u_{24}^{2})++(u_{14}^{2}+u_{23}^{2}+u_{15}^{2}+u_{26}^{2}+u_{16}^{2})$

$+\neq(u_{25}^{2}+u_{35}^{2}+u_{46}^{2}+u_{36}^{2}+u_{45}^{2})+\neq(1-t)(u_{13}u_{24}-u_{14}u_{23})$
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$+\frac{t}{2\sqrt{2t}}(u_{16}u_{25}+u_{3\text{\’{o}}}u_{45}-u_{15}u_{26}-u_{35}u_{46})$
.

It is not difficult to see that $\Delta\Phi_{t}=8\nabla F_{t}$ along $M_{t}$ which proves that $(M_{t}, \Phi_{t})$ is

minimal in some hyperquadric $F_{t}^{-1}(r)$ for all $t$ .

PROPOSITION 2. For a given $t\in R$ satisfying $0<t\leq\neq and$ $\sqrt{2t}\in Q,$ $M_{t}$ is a minimal

flat torus in $S^{5}\subset E^{6}$ whose quadric representation $(M_{t}, \Phi_{t})$ is minimal in some hyperquadric

of $SM(6)$ .

This proposition is particularly noteworthy because, as a consequence, the

codimension of the surface has a very clear geometrical influence and leaves open the

problem for surfaces of $S^{m},$ $m>3$ .

5. The nodal lines.

We must undertake in this section a somewhat complicated way of studying the

nodal sets of the eigenfunctions $x_{i}$ on $M$, in order to get control on the center $\Psi_{o}=(b_{ij})$

of the hyperquadric $Q$ in which $(M, \Phi)$ yields minimally.
First of all, under the assumption that $\Psi_{o}$ is not a diagonal matrix, we derive a

group of lemmas in which a role is played by the geometry of the nodal sets of the

coordinate functions. Then, by using our work [Ba-Ga] we show how the conclusions
of these lemmas would lead to contradiction, so that $\Psi_{o}$ must be a diagonal matrix.

Denote by $C_{j}=x_{j}^{-1}(0)=\{p\in M|x_{j}(p)=0\}$ the nodal set associated to the

eigenfunctions $x_{j},$
$1\leq j\leq 4$ , on $M$. Let us assume that $\Psi_{o}$ is not a diagonal matrix so

that without loss of generality we consider $b_{12}\neq 0$ .

LEMMA 2. $C_{1}=x_{1}^{-1}(0)$ is a great circle of the unit 2-sphere $S^{2}=S^{3}\cap\{x_{1}=0\}$ .
Moreover $\mu$ is a constant on $C_{1}$ and it satisfies

$r\mu=-3/2$ . (22)

PROOF. We start by using the first equation of (12) and the above mentioned fact

that $\mu$ does not vanish to see that $C_{1}$ must satisfy

$x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=1$ ,

$r_{12}b_{12}x_{2}+r_{13}b_{13}x_{3}+r_{14}b_{14}x_{4}=0$ . (23)

Since $b_{12}\neq 0$ , the last formulae prove the first statement of the lemma. In particular

one can parametrize $C_{1}$ as $\alpha_{1}(s)=(0, x_{2}(s),$ $x_{3}(s),$ $x_{4}(s))$ in such a way that $|\alpha_{1}^{\prime}(s)|=1$

and
$x_{i}^{\prime\prime}(s)=-x_{i}(s)$ (24)

where $2\leq i\leq 4$ . Then we systematically use (9) to prove
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$|\nabla x_{1}(s)|^{2}=-2\mu(s)rb_{11}\neq 0$ , (25)

$\nabla x_{j}(s)=x_{j}^{\prime}(s)\alpha_{1}^{\prime}(s)+\frac{r_{1j}b_{1j}}{rb_{11}}\nabla x_{1}(s)$ . (26)

Once more we use (9) and combine it with (26) to obtain

$x_{j}^{\prime}(s)x_{k}^{\prime}(s)=2(1+r_{jk}\mu(s))x_{j}(s)x_{k}(s)+2\mu(s)c_{jk}$ (27)

with $c_{J^{X}}=r_{1j}r_{1k}b_{1j}b_{1k}/(rb_{11})-r_{J^{\lambda}}b_{jk}$ .
In particular

$(x_{j}^{\prime}(s))^{2}=2(1+r\mu(s))x_{j}^{2}(s)+2\mu(s)c_{jj}$ (28)

$andsumminguptheseidentitiesforjrunningfrom2to4wegettheconstancyof\mu$
along $C_{1}$ .

Next we combine (24) with (27) and (28) respectively to obtain
$(3+2r_{jk}\mu)x_{j}(s)x_{k}(s)=0$ , (29)

$(3+2r\mu)x_{j}(s)^{2}=0$ . (30)

Now we already know that $C_{1}$ is a great circle of $S^{2}$ , then it must intersect to any other
great circle of $S^{2}$ , in particular to those defined by $x_{j}=0,2\leq j\leq 4$ . Now (30) proves
(22). (Q.E.D.)

LEMMA 3. The following relations hold:

$b_{13}=b_{14}=b_{23}=b_{24}=b_{34}=0$ , $r_{12}^{2}b_{12}^{2}-r^{2}b_{11}b_{22}=0$ ,

$r_{34}=r$, $b_{33}=b_{44}=1/3$ .
$PR\infty F$ . Using (29) and (30) in (27) and (28) we have

$x_{j}^{\prime}(s)x_{k}^{\prime}(s)=-x_{j}(s)x_{k}(s)+2\mu c_{jk}$ , (31)

$(x_{j}^{\prime}(s))^{2}=-x_{j}(s)^{2}+2\mu c_{jj}$ . (32)

On the other hand one may consider the quadric representation of $C_{1}=S^{1}$ whose
center of gravity, say $\overline{\Phi}_{o}$ , is a diagonal matrix. So if A denotes its Laplacian, one uses
(23) and (31) to obtain

$Z(x_{j}(s)x_{k}(s))=-\frac{d^{2}}{\&^{2}}(x_{j}(s)x_{k}(s))=4x_{j}(s)x_{k}(s)-4\mu c_{J^{\lambda}}$ .

Thus $ifj\neq k$

$0=\int_{c_{1}}E(x_{j}(s)x_{k}(s))ds=-8\pi\mu c_{J^{\lambda}}$

which proves that
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$c_{jk}=0$ (33)

where $j\neq k$ .
Equation (24) allows us to write $x_{j}(s)=m_{j}\cos s+n_{j}\sin s,$ $2\leq j\leq 4$ , for certain real

constants $m_{j}$ and $n_{j}$ . Hence we use (31) and (33) to prove

$m_{j}m_{k}+n_{j}n_{k}=0$ (34)

where $j\neq k$ . Now it is easy to see that (34) implies that some $x_{j}(s),$ $2\leq j\leq 4$ , vanishes
identically along $C_{1}=x_{1}^{-1}(0)$ . Since we are assuming that $b_{12}\neq 0$ , it is clear from (23)
that $x_{2}(s)$ vanishes identically on $C_{1}$ and so $C_{1}=C_{2}$ . Consequently $b_{13}=b_{14}=0$ . Also
one uses the same argument on $C_{2}=C_{1}$ to obtain $b_{23}=b_{24}=0$ . Furthermore we can
choose $x_{3}(s)=\cos s$ and $x_{4}(s)=\sin s$ , along $C_{1}$ and then use them in (31) and (32) to get
$b_{34}=0,$ $r_{12}^{2}b_{12}^{2}-r^{2}b_{11}b_{22}=0$ and $b_{33}=b_{44}=1/3$ . Finally combining the information we
have just obtained with (12) we have

$\mu(r\cos^{2}s+r_{34}\sin^{2}s)+\frac{3}{2}=0$ , $\mu$($r_{34}\cos^{2}s+r$ sin2 $s$) $+\frac{3}{2}=0$ ,

in particular, we obtain $r_{34}=r$ and the proof is complete. (Q.E.D.)

Our next step is the study of the nodal set $C_{4}=x_{4}^{-1}(0)$ associated with the
eigenfunction $x_{4}$ on M. $C_{4}$ consists of a finite number of circles, [Che], but actually it
can be checked that it is regular. Thus we parametrize $C_{4}$ by $\alpha_{4}(s)=(x_{1}(s), x_{2}(s),$ $x_{3}(s),$ $0$)
with $|\alpha_{4}^{\prime}(s)|=1$ . From (9), one has $\langle\nabla x_{j}(s), \nabla x_{4}(s)\rangle=0,1\leq j\leq 3$ , along $C_{4}$ and so
$\nabla x_{j}(s)=x_{j}^{\prime}(s)\alpha_{4}^{\prime}(s),$ $1\leq j\leq 4$ . Once more we use (9) to obtain

$x_{1}^{\prime}(s)x_{2}^{\prime}(s)=2(1+r_{12}\mu(s))x_{1}(s)x_{2}(s)-2\mu(s)r_{12}b_{12}$ , (35)

$x_{1}^{\prime}(s)x_{3}^{\prime}(s)=2(1+r_{13}\mu(s))x_{1}(s)x_{3}(s)$ , (36)

$x_{2}^{\prime}(s)x_{3}^{\prime}(s)=2(1+r_{23}\mu(s))x_{2}(s)x_{3}(s)$ , (37)

$(x_{1}^{\prime}(s))^{2}=2(1+r\mu(s))x_{1}^{2}(s)-2r\mu(s)b_{11}$ , (38)

$(x_{2}^{\prime}(s))^{2}=2(1+r\mu(s))x_{2}^{2}(s)-2r\mu(s)b_{22}$ , (39)

$(x_{3}^{\prime}(s))^{2}=2(1+r\mu(s))x_{3}^{2}(s)-2r\mu(s)b_{33}$ , (40)

along $C_{4}$ .
One can combine (38), (39) and (40) with Lemmas 1 and 3 to prove that $\mu(s)$ must

be a constant along $C_{4}$ , namely $r\mu=-3/2$ . Therefore (38), (39) and (40) tum to
$(x_{1}^{\prime}(s))^{2}=-x_{1}^{2}(s)+3b_{11}$ , (41)

$(x_{2}^{\prime}(s))^{2}=-x_{2}^{2}(s)+3b_{22}$ , (42)

$(x_{3}^{\prime}(s))^{2}=-x_{3}^{2}(s)+1$ . (43)
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LEMMA 4. The nodal line $C_{4}=x_{4}^{-1}(0)$ consists of a finite number of great circles
in the 2-sphere $S^{3}\cap\{x_{4}=0\}$ .

$PR\infty F$ . According to a well-known result of S. Y. Cheng, [Che], we already know
that $C_{4}$ consists of a finite number of circles immersed in $M\subset S^{3}$ . Therefore it is enough
to prove that $(d^{2}/ds^{2})x_{i}(s)=-x_{i}(s),$ $1\leq i\leq 3$ , along $C_{4}$ .

First we use (43), (41) and (42) to see that $x_{i}^{\prime\prime}(s)x_{i}^{\prime}(s)=-x_{i}(s)x_{i}^{\prime}(s),$ $1\leq i\leq 3$ . Thus
we will prove that $x_{i}^{\prime}(s)\neq 0$ on an open subset which is dense in $C_{4}$ and then use continuity.

Since $\alpha_{4}(s)$ is regular we see from (43) that, $s_{o}$ is a critical point of $x_{3}(s)$ if and
only if $x_{3}(s_{o})=\pm 1$ and so $\alpha_{4}(s_{o})=(0,0, \pm 1,0)$ . Consequently, $x_{3}(s)$ has isolated critical
points on $C_{4}$ which proves that $x_{3}^{\prime\prime}(s)=-x_{3}(s)$ along $C_{4}$ .

Next let us prove that $1+r_{13}\mu\neq 0$ and the same argument works for $1+r_{23}\mu\neq 0$

In fact, otherwise (36) proves that $x_{1}^{\prime}(s)x_{3}^{\prime}(s)=0$ along $C_{4}$ and so $x_{1}^{\prime}(s)$ vanishes
identically on an open subset, dense in $C_{4}$ . This fact combined with (35) proves thal
$x_{1}(s)$ and $x_{2}(s)$ are constant on $C_{4}$ , which is impossible.

Finally let us consider $R=\{p\in C_{4}|x_{3}(p)\neq 0\}$ . It is an open subset which is dense
in $C_{4}$ . In fact since $b_{34}=0$ , one can use (9) along $C_{4}$ to see that $C_{4}-R$ can not contain
any open subset. It is also clear that $x_{1}^{\prime}(s)\neq 0$ and $x_{2}^{\prime}(s)\neq 0$ on $R$ otherwise either $(37_{J}^{t}$

or (36) would imply that either $x_{1}(s)$ and $x_{1}^{\prime}(s)$ at a point vanish or $x_{2}(s)$ and $x_{2}^{\prime}(s_{\supset}^{\backslash }$

vanish, which is impossible. (Q.E.D. $\backslash \supset$

Now we use the last lemma and come back to (37), (35) and (36) to get

$(3+2r_{ij}\mu)(x_{i}(s)x_{j}(s))^{\prime}=0$ $(44^{\backslash }$

where $1\leq i\neq j\leq 3$ .
If $3+2r_{ij}\mu\neq 0$ , then $x_{i}(s)x_{j}(s)$ must be constant on $C_{4}$ . Since Lemma 4 shows $thal$

$x_{i}(s)$ are eigenfunctions of the Laplacian of $C_{4}$ , such a constant is zero and so $x_{i}(s)x_{j}(s$

vanishes identically on $C_{4}$ . Therefore on the open subset $U=\{p\in C_{4}|x_{j}(p)\neq 0\},$ $x_{i}(s$

vanishes identically and this is impossible by (9) and $b_{j4}=0,1\leq j\leq 3.$ Consequentl]
$r_{12}\mu=r_{13}\mu=r_{23}\mu=-3/2$ . Now we use this information in (12) to get $\mu r=-3/2$ ir
$M-C_{3}$ . But that is also true along $C_{3}$ because we can use the same argument as tha
we did along $C_{4}$ . Therefore we prove that $\mu$ is a constant on $M$.

THEOREM 1. Let $(M, x)$ be a compact minimal surface in the unit 3-sphere $S^{3}\subset E^{4}$

If its quadric representation is minimal in some canonical hyperquadric $Q$ of $SM(4)$ wit)

center $\Psi_{o}$ , then $\Psi_{o}$ is a diagonal matrix.

$PR\infty F$ . If $\Psi_{o}$ were not a diagonal matrix, then we already know that the smootl
function $\mu$ must be some non-zero constant on $M$.

On the other hand, from (5) we have

$b_{ij}=\frac{1}{vol(M)}\int_{M}x_{i}x_{j}dv=a_{ij}$
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which would prove that the center of gravity $\Phi_{o}$ of $\Phi$ coincides with the center $\Psi_{o}$ of
$Q$ . Now we use the lemma and the main theorem of [Ba-Ga] to see that $(M, x)$ would
be a Clifford torus in $S^{3}$ and this is impossible because in that case $\Phi_{o}=\Psi_{o}$ would be
a diagonal matrix. (Q.E.D.)

6. Proof of the main theorem.

We tum now to a circle of questions centered around how one is to decide whether
the centre of $(M, \Phi),$ $\Phi_{o}$ , coincides with that of $Q,$ $\Psi_{o}$ , or not. According to the last
section, we can suppose from now on that $\Psi_{o}$ is a diagonal matrix. The aim is to prove
that $\Psi_{o}$ is not only a diagonal matrix but also a multiple of the identity matrix. In
order to prove that we first notice that all nodal curves associated to the eigenfunctions
$x_{i}$ have the same behaviour and so without loss of generality we will consider the nodal
set $C_{1}$ . From (9) we have $|\nabla x_{1}|^{2}=-2\mu rb_{11}>0$ along $C_{1}$ , so $C_{1}$ is a regular curve
which can be parametrized by the length of the arc as $\alpha_{1}(s)=(0, x_{2}(s),$ $x_{3}(s),$ $x_{4}(s))$ .
Then we use (9) once more to get

$\nabla x_{j}(s)=x_{j}^{\prime}(s)\alpha_{1}^{\prime}(s)$ , (45)

$x_{j}^{\prime}(s)x_{k}^{\prime}(s)=2(1+r_{jk}\mu(s))x_{j}(s)x_{k}(s)$ , (46)

$(x_{j}^{\prime}(s))^{2}=2(1+r\mu(s))x_{j}^{2}(s)-2\mu(s)rb_{jj}$ (47)

where $2\leq j\neq k\leq 4$ .
LEMMA5. The smooth function $\mu$ is constant along the nodal lines $C_{j}=x_{j}^{-1}(0)$ .

Namely $\mu=-1/(2rb_{jj})$ along $C_{j}$ .
PROOF. Without loss of generality one can prove the lemma for $j=1$ . But this

follows automatically from (47). (Q.E.D.)

Now (47) can be written as

$(\chi_{j}^{\prime}(S))^{2}=\frac{2b_{11}-1}{b_{11}}x_{j}^{2}(s)+\frac{b_{jj}}{b_{11}}$ . (48)

LEMMA 6. There exists an open subset $U$ in $C_{1}$ in which one of the coordinate
functions $x_{j}(s),$ $2\leq j\leq 4$ , must be a non-zero constant.

PROOF. $If1+r_{34}\mu=0$ , then we use (46) to get

$x_{3}^{\prime}(s)x_{4}^{\prime}(s)=0$ (49)

and so consider $U=\{p\in C_{1}|x_{4}^{\prime}(p)\neq 0\}$ , an open subset of $C_{1}$ on which $x_{3}(s)$ is a non-zero
constant because of (48) and $b_{33}\neq 0$ .

In the case $1+r_{34}\mu\neq 0$ , one can use systematically (46) and (48) to obtain
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$(\frac{2(1+r_{23}\mu)(1+r_{24}\mu)}{1+r_{34}\mu}+\frac{1-2b_{11}}{b_{11}})x_{2}^{2}(s)x_{3}(s)x_{4}(s)=\frac{b_{22}}{b_{11}}x_{3}(s)x_{4}(s)$

and so take $U=\{p\in C_{1}|x_{3}(p)x_{4}(p)\neq 0\}$ to have that $x_{2}(s)$ must be a non-zero constan
on U. (Q.E.D.

REMARK 3. One should compare the last lemma with the behaviour of the noda
lines for the coordinate functions of the Clifford torus in $S^{3}$ .

From now on and without loss of generality we will assume $x_{2}(s)$ is a non-zer $($

constant, say $k$, on an open subset $U$ of $C_{1}$ . Then we use again (48) and (47) to get

$ r_{23}=r_{24}=-1/\mu$ , (50

$k^{2}=\frac{b_{22}}{1-2b_{11}}$ . (51

Since $b_{13}=b_{14}=0$ , we see from (9) that $x_{3}(s)$ and $x_{4}(s)$ can not vanish identicall
on $U$. Consequently one can parametrize $U$ as follows

$\beta(s)=(0,$ $k,$ $R\cos\frac{s}{R},$ $R\sin\frac{s}{R})$ (52

where $R^{2}=1-k^{2}$ .
Then we use (52) in (48) to obtain

$\sin^{2}\frac{s}{R}=\frac{R^{2}(2b_{11}-1)}{b_{11}}\cos^{2}\frac{s}{R}+\frac{b_{33}}{b_{11}}$ ,

$\cos^{2}\frac{s}{R}=\frac{R^{2}(2b_{11}-1)}{b_{11}}\sin^{2}\frac{s}{R}+\frac{b_{44}}{b_{11}}$ ,

and so $b_{33}=b_{44}=b_{11}$ .
The same argument works on any nodal line so that $b_{ii}=1/4$ for $1\leq i\leq 4$ . Therefor

we use Lemma 1 to conclude the following:

PROPOSITiON 3. The center of the hyperquadric $Q$ is $\Psi_{o}=_{4}^{1}I$, where I denotes th
identity matrix of order 4.

Now we make a straightforward long computation involving (12) in order to $sho\backslash $

that $\mu$ must be a non-zero real constant along $M$. Then we use (5) and (1) to prov
that $\Phi_{o}=\Psi_{o}$ . But this means that $(M, \Phi)$ is of mass-symmetric in a hypersphere $c$

$SM(4)$ , hence by using the main result of [Ba-Ga], we obtain the main theorem.
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