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1. Introduction.

In a series of recent papers ([4], [5], [14]) the technique of finite type immersions
(see [9] for details) has been sistematically used to characterize certain interesting
families of Riemannian submanifolds. The authors have used these arguments to try
to classify surfaces satisfying certain characteristic differential equations in the
Lorentzian space forms (see [2], [3] and [12]). It is well known that the shape operator
of a pseudo-Riemannian surface does not need to be diagonalizable; because of this fact
there are substantial differences between the definite and indefinite cases. Actually, it
is possible to find a wide family of examples of surfaces in indefinite space forms having
no Riemannian counterparts; the B-scrolls ([10] and [13]) and the complex circles
([16]) are some of these examples.

The finite type immersion tool allows to discover certain hidden facts in non flat
Lorentzian ambient spaces $\overline{M}_{1}^{3}(c)$ , with $c=\pm 1$ . For instance, a totally umbilical surface
does not need to be of l-type; however both conditions are equivalent if and only if
the surface is non flat. Actually, the following two quite interesting facts can be obtained
from the pseudo-Riemannian version of Takahashi’s theorem ([6] and [17]): (i) a
surface in $\overline{M}_{1}^{3}$ is of l-type if and only if it is either minimal or non flat totally umbilical
in $\overline{M}_{1}^{3}$ ; and (ii) there exist flat totally umbilical surfaces in $\overline{M}_{1}^{3}$ which are biharmonic,
i.e. its mean curvature vector field is harmonic, and therefore they are of infinite type.

On the other hand, B-scrolls as well as complex circles come out as surfaces in
$\overline{M}_{1}^{3}$ ; it seems then reasonable to try to characterize them according to its finite type
character. It should be noticed that B-scrolls already appeared in studying surfaces
satisfying the condition $\Delta H=\lambda H$ in Lorentzian space forms.

In a more general situation, we look for 2-type isometric immersions into $\overline{M}_{1}^{3}$ . The
equation $\Delta H=\lambda H$ allows to reach only up to surfaces of 2-type with a zero eigenvalue
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(the so called null 2-type surfaces); therefore a natural extension of that equation should
be considered. On the other hand, going back to the Riemannian case, it is known that
the only 2-type surfaces in $S^{3}$ are the non minimal products of two plane circles ([5],
[7] and [14]). Then a first question naturally arises as follows:

What is the family of 2-type surfaces in $S_{1}^{3}$ or $H_{1}^{3_{7}}$

We know that there exist no surfaces of null 2-type in $S^{3}$ and $H^{3}$ ([11]). Comparing
the Riemannian and the Lorentzian cases it could be interesting to state this other
question:

$\iota$

Are there null 2-type surfaces in $S_{1}^{3}$ and $H_{1}^{3}$ ’ If the answer is affirma-
tive, Would it be possible to compare the size of this family with that
of 2-type 7

It is worthwhile pointing out that the key to obtain the characterization of 2-type
surfaces is to show that they are isoparametric. This property can be deduced from the
following more general result (see Lemma 2.1): A surface in $S_{1}^{3}$ or $H_{1}^{3}$ satisfying the
equation $\Delta H=\lambda H+\mu(x-x_{0})$ has constant mean curvature. To get a complete
classification of 2-type surfaces, the isoparametric ones are studied in section 4 (see
Proposition 4.1). As a consequence of above results we solve all stated questions (see
Theorems 4.2 and 4.3 and Corollary 4.4).

The first question, for space-like surfaces, has been solved in [8] and, in some
sense, the last two questions have been also considered in [15] for space-like surfaces in
$L^{3}$ and $S_{1}^{3}$ .

2. Preliminaries.

Let us denote by $\overline{M}_{1}^{3}$ the standard model of a 3-dimensional Lorentz space with
constant curvature $c=\pm 1$ , i.e., the De Sitter space $S_{1}^{3}\subset R_{1}^{4}$ and the anti De Sitter space
$H_{1}^{3}\subset R_{2}^{4}$ , respectively. Let $R_{t}^{4}$ be the corresponding pseudo-Euclidean spaoe where $\overline{M}_{1}^{3}$

is lying. Let $x;M_{s}^{2}\rightarrow\overline{M}_{1}^{3}\subset R_{t}^{4}$ be an isometric immersion of a surface $M_{s}^{2}$ into $\overline{M}_{1}^{3}$

and let $N$ be a unit vector field normal to $M_{s}^{2}$ in $\overline{M}_{1}^{3}$ . Then we have

(2.1) $H=\alpha N-cx$ ,

where $H$ is the mean curvature vector field of $M_{s}^{2}$ in $R_{t}^{4}$ and $\alpha$ is the mean curvature
of $M_{s}^{2}$ in $\overline{M}_{1}^{3}$ .

By supposing that $M_{s}^{2}$ is a 2-type surface, it is well known that

(2.2) $\Delta H=\lambda H+\mu(x-x_{0})$ ,

where $x_{0}$ is a constant vector and $\lambda$ and $\mu$ are two real constants such that the polynomial
$ t^{2}-\lambda t+2\mu$ has exactly two distinct real roots. Now, from (2.1) and the formula for $\Delta H$

given in [6] we find that (2.2) holds if and only if the following set of equations is valid
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(2.3) $(AH)^{T}=-\mu x_{0}^{T}=2S(\nabla\alpha)+2\epsilon\alpha\nabla\alpha$ ,

(2.4) $\lambda\alpha-\epsilon\mu\langle x_{0}, N\rangle=\Delta\alpha+\epsilon\alpha tr(S^{2})+2c\alpha$ ,

(2.5) $\lambda-c\mu+\mu\langle x_{0}, x\rangle=2(c+\epsilon\alpha^{2})$ ,

where $($ $)^{T}$ is written down for tangential components, $S$ stands for the shape operator
$ofM_{s}^{2}in\overline{M}_{1}^{3},$ $\nabla\alpha$ is the gradient of $\alpha$ and $\epsilon=\langle N, N\rangle$ .

Then, for any vector field $X$ tangent to $M_{s}^{2}$ , we have from (2.3) that $\langle\Delta H, X\rangle=$

$-\mu X(\langle x_{0}, x\rangle)$ . By using (2.5) we get $\mu X(\langle x_{O}, x\rangle)=2\epsilon X(\alpha^{2})$ , which along with (2.3)
leads to $(\Delta H)^{T}=-4\epsilon\alpha\nabla\alpha$ and

(2.6) $ S(\nabla\alpha)=-3\epsilon\alpha\nabla\alpha$ .

Now we are ready to prove the following useful result.

LEMMA 2.1. Let $x:M_{s}^{2}\rightarrow\overline{M}_{1}^{3}\subset R_{t}^{4}$ be an isometric immersion satisfying the
equation $\Delta H=\lambda H+\mu(x-x_{0})$ . Then $M_{s}^{2}$ has constant mean curvature in $\overline{M}_{1}^{3}$ .

$PR\infty F$ . Our goal is to prove that the set $\mathcal{U}=\{p\in M_{s}^{2} : \nabla\alpha^{2}(p)\neq 0\}$ is empty.
Otherwise $\mathcal{U}isanopensubsetofM_{s}^{2}$ where, by (2.6), Va is an eigenvector ofSwith
associate non-zero $eigenvalue-3\epsilon\alpha$ . Therefore, the shape operator is diagonalizable on
$\mathcal{U}$ and we can choose a local orthonormal frame $\{E_{1}, E_{2}, E_{3}, E_{4}\}$ , such that $E_{3}=N$,
$E_{4}=x$ and $\{E_{1}, E_{2}\}$ are eigenvectors of $S,$ $E_{1}$ being parallel to $\nabla\alpha,$ $SE_{1}=-3\epsilon\alpha E_{1}$ and
$SE_{2}=5\epsilon\alpha E_{2}$ . Let $\{\omega^{i}\}$ and $\{\omega_{i}^{j}\}$ be the dual frame and the connection forms of the
chosen frame, respectively. Then we see that

(2.7) $\omega_{3}^{1}=3\epsilon\alpha\omega^{1}$ ,

(2.8) $\omega_{3}^{2}=-5\epsilon\alpha\omega^{2}$ ,

(2.9) $d\alpha=\epsilon_{1}E_{1}(\alpha)\omega^{1}$ ,

where $\epsilon_{i}=\langle E_{i}, E_{i}\rangle$ .
Taking exterior differentiation in (2.7) and using the structure equations, we have

$d\omega^{1}=0$ and thus there locally exists a function $u$ such that $\omega^{1}=du$ . From (2.9) we get
$d\alpha\wedge du=0$ and therefore $\alpha$ depends on $u,$ $\alpha=\alpha(u)$ , and $E_{1}(\alpha)=\epsilon_{1}\alpha^{\prime}$ .

Differentiating in (2.8) and using again the structure equations we deduce that

(2.10) $8\alpha\omega_{2}^{1}=5\epsilon_{1}\alpha^{\prime}\omega^{2}$

A straightforward computation from (2.10) yields the following differential equation

(2.11) $\alpha\alpha^{\prime\prime}-\frac{13}{8}(\alpha^{\prime})^{2}-\frac{8}{5}c\epsilon_{1}\alpha^{2}+24\epsilon\epsilon_{1}\alpha^{4}=0$ ,

whose solution in the new variable $\beta=(\alpha^{\prime})^{2}$ is given by
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(2.12) $\beta=C_{1}\alpha^{13/4}-64\epsilon\epsilon_{1}\alpha^{4}-\frac{64}{65}c\epsilon_{1}\alpha^{2}$ ,

$C_{1}$ being a real constant.
On the other hand, from the expression of $\Delta\alpha$ in $\{E_{1}, E_{2}\}$ , the fact that $E_{1}$ is paral.

lel to $\nabla\alpha$ and (2.10) we have

(2.13) $\alpha\Delta\alpha=-\epsilon_{1}\alpha\alpha^{\prime\prime}+\frac{5}{8}\epsilon_{1}(\alpha^{\prime})^{2}$

Now from (2.3) and (2.6) we deduce that

$\mu X(\langle x_{0}, N\rangle)=\langle\Delta H, SX\rangle=4X(\alpha^{3})$ ,

for any tangent vector field $X$, which along with (2.4) and (2.13) leads to

(2.14) $\alpha\alpha^{\prime\prime}-\frac{5}{8}(\alpha^{\prime})^{2}+(\lambda-2c)\epsilon_{1}\alpha^{2}-38\epsilon\epsilon_{1}\alpha^{4}+C_{2}\alpha$ ,

$C_{2}$ being a real constant. Then from (2.11) and (2.14) we have

$\beta=62\epsilon\epsilon_{1}\alpha^{4}+(\frac{2}{5}c-\lambda)\epsilon_{1}\alpha^{2}-C_{2}\alpha$ ,

and by (2.12) and this equation we deduce that $\alpha$ is locally constant on $\mathcal{U}$ , whicl
contradicts its own definition.

3. Some examples.

In this section we will describe some examples of surfaces into $\overline{M}_{1}^{3}$ which will $b_{1}$

useful later in order to give the classification results. We will show examples not only
of 2-type surfaces but also surfaces satisfying the condition (2.2) and being of $infinit|$

type.

EXAMPLE 3.1. An easy computation shows that the following pseudo-Riemannia]
products, with an appropriate choice of $r>0$ to avoid minimality,

1) $H^{1}(-r)\times S^{1}(\sqrt{}\overline{1+r^{2}})$ and $S_{1}^{1}(r)\times S^{1}(\sqrt{}\overline{1-r^{2}})$ into $S_{1}^{3}$ , and
2) $H_{1}^{1}(-r)\times S^{1}(\sqrt{}\overline{r^{2}-1}),$ $S_{1}^{1}(r)\times H^{1}(-\sqrt{}\overline{1+r^{2}})$ and $H^{1}(-r)\times H^{1}(-\sqrt{}\overline{1-r^{2}}$

into $H_{1}^{3}$ ,
are all 2-type surfaces into $\overline{M}_{1}^{3}$ . We will refer them as the non-minimal standardproduct.
Notice that all of them have diagonalizable shape operators.

EXAMPLE 3.2. Let $\gamma(s)$ be a null curve in $\overline{M}_{1}^{3}\subset R_{t}^{4}$ with an associated Carta
frame $\{A, B, C\}$ , i.e., $\{A, B, C\}$ is apseudo-orthonormal frame ofvector fields along $\gamma(s)$
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$\langle A, A\rangle=\langle B, B\rangle=0$ , $\langle A, B\rangle=-1$ ,

$\langle A, C\rangle=\langle B, C\rangle=0$ , $\langle C, C\rangle=1$ ,

such that

$\dot{\gamma}(s)=A(s)$ ,

$\dot{C}(s)=-aA(s)-k(s)B(s)$ ,

where $a$ is a nonzero constant and $k(s)\neq 0$ for all $s$ . Then the map $x:(s, u)\rightarrow\gamma(s)+uB(s)$

parametrizes a Lorentzian surface into $\overline{M}_{1}^{3}$ which is called a B-scroll (see [10]).
It is not difficult to see that a unit normal vector field is given by

$N(s, u)=-auB(s)+C(s)$ ,

and the shape operator can be put in the usual frame $\{\partial x/\partial s, \partial x/\partial u\}$ as

$S=\left(\begin{array}{ll}a & 0\\k(s) & a\end{array}\right)$ .

Thus the B-scroll has non-diagonalizable shape operator with minimal polynomial
$P_{S}(t)=(t-a)^{2}$ . It has constant mean and Gaussian curvatures $\alpha=a$ and $K=c+a^{2}$ ,
respectively, and satisfies $\Delta H=2KH$. Therefore, one sees that a non-flat B-scroll is a
null 2-type surface into $\overline{M}_{1}^{3}$ , whereas a flat B-scroll, i.e., $c=-1$ and $a^{2}=1$ , is a biharmonic
surface into $H_{1}^{3}$ and of infinite type.

EXAMPLE 3.3. Let $a$ and $b$ be two real numbers such that $a^{2}-b^{2}=-1$ and $ab\neq 0$ .
Then the map $x$ : $R_{1}^{2}\rightarrow H_{1}^{3}\subset R_{2}^{4},$ $x=(x^{1}, x^{2}, x^{3}, x^{4})$ , given by

$x^{1}(u_{1}, u_{2})=b$ cosh $u_{2}$ cos $u_{1}-a$ sinh $u_{2}$ sin $u_{1}$ ,

$x^{2}(u_{1},\dot{u}_{2})=a$ sinh $u_{2}$ cos $u_{1}+b$ cosh $u_{2}$ sin $u_{1}$ ,

$x^{3}(u_{1}, u_{2})=a$ cosh $u_{2}$ cos $u_{1}+b$ sinh $u_{2}$ sin $u_{1}$ ,

$x^{4}(u_{1}, u_{2})=a$ cosh $u_{2}$ sin $u_{1}-b$ sinh $u_{2}$ cos $u_{1}$ ,

where $(u_{1}, u_{2})$ is the usual coordinate system in $R_{1}^{2}$ , parametrizes a non-minimal flat
surface into $H_{1}^{3}$ whose shape operator is given, in the usual frame $\{\partial x/\partial u_{1}, \partial x/\partial u_{2}\}$ , by

$S=\left(\begin{array}{ll}\alpha & -\beta\\\beta & \alpha\end{array}\right)$ ,

with $\alpha=2ab/(a^{2}+b^{2})$ and $\beta=-1/(a^{2}+b^{2})$ . Magid, [16], called this surface a complex
circle of radius $a+bi$ .

It is not difficult to show that a complex circle satisfies the condition (2.2) with
$x_{0}=0,$ $\lambda=-4/(a^{2}+b^{2})^{2}$ and $\mu=2/(a^{2}+b^{2})^{2}$ . However, it is not a finite type surface
because the discriminant of $ t^{2}-\lambda t+2\mu$ vanishes.

REMARK 3.4. From the pseudo-Riemannian version of Takahashi’s theorem
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one knows that $M_{s}^{2}$ is a l-type surface if and only if it is minimal in $\overline{M}_{1}^{3}$ or an $opel$

piece of a non-flat totally umbilical surface in $\overline{M}_{1}^{3}$ , i.e., $M_{s}^{2}$ is nothing but $S_{s}^{2}(r)0$

$H_{s}^{2}(r)$ . It is worth pointing out that there exists a flat totally umbilical surface in botl
$S_{1}^{3}$ and $H_{1}^{3}$ , which is explicitly given by $x$ : $R_{s}^{2}\rightarrow\overline{M}_{1}^{3}\subset R_{s+1}^{4},$ $x=f-x_{0},$ $x_{0}$ being a fixe$($

vector and $f:R_{s}^{2}\rightarrow R_{s+1}^{4}$ the function defined by $f(u_{1}, u_{2})=(q(u_{1}, u_{2}),$ $u_{1},$ $u_{2},$ $q(u_{1}, u_{2}))$

where $q(u)=a\langle u, u\rangle+\langle b, u\rangle+c,$ $a\neq 0$ . This surface is of infinite type with $\Delta x=$

$(-4a, 0,0, -4a)$ .

4. Main results.

Let $M_{s}^{2}$ be a 2-type surface into $\overline{M}_{1}^{3}$ . As a consequence of Lemma 2.1 we knov
that $M_{s}^{2}$ has non-zero constant mean curvature and then from (2.4) and (2.5) we deduct
that $tr(S^{2})$ is constant, i.e., $M_{s}^{2}$ is a non-minimal isoparametric surface into $\overline{M}_{1}^{3}$ .

Now let us discuss according to the character of its shape operator $S$. First, if $\llcorner t$

is diagonalizable we have from Remark 3.4 that $M_{s}^{2}$ is not totally umbilical and by $[1_{-}^{-}$

it is an open piece of one of the non-minimal standard products. Secondly, if $S$ is $no|$

diagonalizable with a double real eigenvalue, then $M_{1}^{2}$ can be locally parametrized $a($

a B-scroll over a null curve, as it is shown in the following result.

PROPOSmON 4.1. Let $M_{1}^{2}$ be a Lorentzian surface in $\overline{M}_{1}^{3}\subset R_{t}^{4}$ and let $(t-a)^{2},$ $\iota$

being a non-zero constant, be the minimal polynomial of its shape operator. Then, in $\iota$

neighborhood of any point, $M_{1}^{2}$ is a B-scroll over a null curve.
$PR\infty F$ . Pick a point $p$ in $M_{1}^{2}$ and choose a pseudo-orthonormal frame $\{A, B\}01$

tangent vector fields in a neighborhood of $p$ such that

$SA=aA+kB$ ,

$SB=aB$ ,

where $k\neq 0$ . Let $N$ be a unit vector field normal to $M_{1}^{2}$ into $\overline{M}_{1}^{3}$ . Considering $M_{1}^{2}$ as
an embedded surface into $\overline{M}_{1}^{3}$ , we can take an integral curve $\gamma(s)$ of $A$ starting from $p$

For short, let us write $A(s)=A(\gamma(s)),$ $B(s)=B(\gamma(s)),$ $C(s)=N(\gamma(s))$ and $k(s)=k(\gamma(s))$

Then

$\dot{C}(s)=\frac{\tilde{D}C}{ds}(s)=-aA(s)-k(s)B(s)$ .

For each $s$, let $x_{s}(t)$ denote an integral curve of $B$ starting from $\gamma(s)$ . Then $takin\not\in$

covariant derivate we get

$\frac{\tilde{D}B}{dt}(x_{s}(t))=\nabla_{\dot{x}_{s}\{t)}B(x_{s}(t))=\nabla_{B}B(x_{s}(t))=\nabla_{B}B(x_{s}(t))$ .

By using now Codazzi’s equation we have $\nabla_{B}B$ is in span $\{B\}$ , and then the above
equation yields
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$\frac{\tilde{D}B}{dt}(x_{s}(t))=f(x_{s}(t))B(x_{s}(t))$ ,

for a certain diferentiable function $f$ It is not difficult to see that the solution of that
differential equation is given by

$B(x_{s}(t))=g_{s}(t)B(s)$ ,

for a certain positive function $g_{s}(t)$ with $g_{s}(0)=1$ . Then we get

$x_{s}(t)=\gamma(s)+\int_{0}^{t}g_{s}(v)dvB(s)$ ,

and $M_{1}^{2}$ is, in a neighborhood of $p$ , a B-scroll as in Example 3.2.
Finally, suppose $S$ has complex eigenvalues and choose a local orthonormal frame

$\{E_{1}, E_{2}\}$ such that

$SE_{1}=aE_{1}+bE_{2}$ ,

$SE_{2}=-bE_{1}+aE_{2}$

where $a$ and $b$ are two non-zero constants. Now from Codazzi’s equations we deduce
$\omega_{2}^{1}=0$ and therefore $M_{1}^{2}$ is a flat Lorentzian surface in $H_{1}^{3}$ with parallel second
fundamental form in $R_{2}^{4}$ . Thus from [16] $M_{1}^{2}$ is congruent to a complex circle, which
is not of 2-type as we have already seen.

Summing up we have proved the following main results, which solve both questions
stated in \S 1.

THEOREM 4.2. A surface $M_{s}^{2}$ into $S_{1}^{3}$ is of 2-type if and only if it is an open piece

of one of the following surfaces:
1) $H^{1}(-r)\times S^{1}\overline{\underline{(\sqrt 1+}r^{2}})$ ,

2) $S_{1}^{1}(r)\times S^{1}(\sqrt 1-r^{2})$ , and
3) a B-scroll over a null curve.

THEOREM 4.3. A surface $M_{s}^{2}$ into $H_{1}^{3}$ is of 2-type if and only if it is an open piece
of one of the following surfaces:

1) $H_{1}^{1}(-r)\times S^{1}(\sqrt{}\overline{r^{2}-1})$ ,

2) $S_{1}^{1}(r)\times H^{1}(-\sqrt{}\overline{1+r^{2}})$ ,

3) $H^{1}(-r)\times H^{1}(-\sqrt{}\overline{1-r^{2}})$ , and
4) a non-flat B-scroll over a null curve.

Putting together the above theorems, we see that the families of 2-type surfaces
into $S_{1}^{3}$ and $H_{1}^{3}$ are essentially the same. Actually, it consists of non-minimal standard
products and non-flat B-scrolls over null curves. Once again B-scrolls make the difference
with regard to the Riemannian case and, as we point out in the following corollary, they
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solve the second question.

COROLLARY 4.4. The only null 2-type surfaces in $S_{1}^{3}$ and $H_{1}^{3}$ are non-flat B-scrolls
over null curves.
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