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1. Introduction.

In the theory of harmonic maps between Riemannian manifolds, the problems of
existence and construction are basic and important. One of the methods of constructing
harmonic maps is the one by making use of ordinary differential equations. For example,
Ding [2], Eells and Ratto [3], Ratto [5] and Smith [6] use the join of two maps and
derive ordinary differential equations. They construct harmonic maps between spheres
or between spheres and ellipsoids. Xin [10] studies equivariant harmonic maps with
respect to Riemannian submersion. He applies this method to the existence of harmonic
representatives of $\pi_{2m+1}(S^{2m+1})([11])$ . Also Urakawa [8], Urakawa and author [9]

investigate the theory of equivariant harmonic maps between Riemannian manifolds
admitting large isometry group actions.

For constructing equivariant harmonic maps, it is important to study ordinary
differential equations with singularities. In particular, in relation with the regularity of
solutions and the problem asking how the image of equivariant harmonic maps expands,
we want to know the asymptotic behavior of a solution of the ordinary differential
equation nearby its singularities. On the other hand, from the viewpoint of ordinary
differential equation theory it is interesting to investigate a solution on the blow-up
phenomena or its regularity of a solution at singularities.

In this paper, we study the existence of a positive solution satisfying the following
equations (1.1) and (1.2):

$\ddot{r}(t)+\{p\frac{\dot{f}_{1}(t)}{f_{1}(t)}+q\frac{\dot{f}_{2}(t)}{f_{2}(t)}\}\dot{r}(t)$

(1.1)
$-\{\mu^{2}\frac{h_{1}(r(t))h_{1}^{\prime}(r(t))}{f_{1}(t)^{2}}+v^{2}\frac{h_{2}(r(t))h_{2}^{\prime}(r(t))}{f_{2}(t)^{2}}\}=0$ on $[0, \infty$);
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(1.2) $\lim_{t\rightarrow 0}r(t)=0$ ,

where $\dot{r}$ (resp. $h^{\prime}$) means $dr/dt$ (resp. $dh/dr$), and $\mu$ and $v$ are non-negative numbers, $\rfloor$

and $q$ are non-negative integers which satisfy $p+q\geq 2$ . The equation (1.1) appears $il$

the study ofequivariant harmonic maps between two complete non-compact Riemannia]

manifolds, for instance, the real (resp. complex) Euclidean spaoe $(R^{m}, g_{can})$ (resp
$(C^{m}, g_{can}))$, the real hyperbolic space $(RH^{m}, g_{can})$ of constant negative curvature $-1$ ant
the complex hyperbolic space $(CH^{m}, g_{can})$ .

Throughout this paper, we assume that $C^{\infty}$-functions $f_{i}=f_{i}(t)(i=1,2)$ on $[0,$ $\infty$

satisfy the following conditions:

(1.3) $\left\{\begin{array}{ll}f_{i}(t)>0 on (0, \infty), and \dot{f}_{i}(t)\geq 0 on [ & , \infty);\\there exist positive constants a_{i}>0 s & ch that\\f_{i}(t)=a_{i}t+O(t^{3}) & (as t\rightarrow 0);\\for any t_{0}>0 there exists a positive & onstant C=C(t_{0})>0 such that\\0\leq pt\frac{\dot{f}_{1}(t)}{f_{1}(t)}+qt\frac{\dot{f}_{2}(t)}{f_{2}(t)}-1 & \leq C on [0, t_{O}];\end{array}\right.$

and

(1.4) $\int_{t_{O}}^{\infty}\{\frac{1}{f_{1}(\tau)}+\frac{1}{f_{2}(\tau)}\}d\tau<\infty$ .

Moreover we assume the following conditions for $C^{\infty}$-functions $ h_{i}(r)(i=1,2)0\iota$

$[0, \infty)$ :

(1.5) $\left\{\begin{array}{ll}0<h_{i}(r)\leq\sinh br on (0, \infty) for some & onstant b>0 and\\\{h_{i}h_{i}^{\prime}\}^{\prime}(r)\geq 0 on [0, \infty); & \\there exist positive constants b_{i}>0 s & ch that\\h_{i}(r)=b_{i}r+O(r^{3}) & (asr\rightarrow 0);\end{array}\right.$

and

(1.6) $\{$
$h_{i}^{\prime\prime}(r)\geq 0on[0,\infty);thereexistpositiveconstantsd_{i}>0andl>1forsufficient1y1arger>0h_{1}(r)\geq d_{1}r^{l}orh_{2}(r)\geq d_{2}r^{l}$

such that

For example, if we consider equivariant harmonic maps from $(RH^{m}, g_{can})$ inte
$(RH^{n}, h_{can})$, then (1.1) becomes

(1.1) $\eta t$ ) $+(m-1)\frac{\cosh t}{\sinh t}\dot{r}(t)-\mu^{2}\frac{\sinh r(t)\cosh r(t)}{\sinh^{2}t}=0$ on $[0, \infty$),
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moreover conditions $(1.3)-(1.6)$ are fulfilled. In this case, for $\mu>0$ , we can find a solution
which yields equivariant harmonic map from $RH^{m}$ into $RH^{n}$ .

We shall consider the initial value problem (1.1) with (1.7) under the conditions
$(1.3)-(1.6)$ :

(1.7) $ r(t_{0})=\alpha$ , $\dot{r}(t_{0})=\beta$ ,

where $\alpha>0$ and $\beta>0$ . Then the main theorem of this paper is

THEOREM 1. Under the assumptions $(1.3)-(1.5)$ , for any fixed $t_{0}>0$ , there exist
positive numbers $\alpha$ and $\beta$ such that the initial value problem (1.1) with (1.7) has a positive
solution $r=r_{\alpha}(t)$ which satisfies

(i) $\lim_{t\rightarrow 0}r_{\alpha}(t)=0$ ,
(ii) $T_{\alpha}=\infty,$ $r_{\alpha}(t)\geq 0$ and $r_{\alpha}(t)$ is bounded on $[0, \infty$ ),

where $T_{\alpha}$ is the life span of the solution $r_{\alpha}(t)$ .

The proof of this theorem is divided into two parts. In \S 2, we shall show that for
any $\alpha>0$ there exists $\beta>0$ uniquely determined by $\alpha$ such that the solution $r=r(t)$ of
(1.1) with (1.7) tends to $0$ as $t$ tends to $0$ (see Theorem 2.1). We denote this solution
by $r_{\alpha}(t)$ . The proof of this part is basically due to Baird ([1]), Kasue and Washio ([4]).
In \S 3 we shall investigate the asymptotic behavior of $r_{\alpha}(t)$ as $t$ tends to $\infty$ and prove
the existence of a solution satisfying the condition in Theorem 1. Moreover, under the
assumptions $(1.3)-(1.6)$ , we can show the following theorem.

THEOREM 2. There exists a global solution $r$ to $(1.1)-(1.2)$ satisfying

$\lim_{t\rightarrow\infty}r(t)\nearrow\infty$ .

Note that the condition (1.4) is essential for the existenoe of $\alpha>0$ with $ T_{\alpha}=\infty$ .
For example, this condition is not satisfied if $f_{1}(t)=f_{2}(t)=t$ . (In this case, the domain
manifold is the real Euclidean space.) Tachikawa [7] proves that there exists no
rotationally symmetric harmonic map from $R^{m}$ into $RH^{m}$ in some case. Thus we cannot
omit the condition (1.4).

Also in the last section, we study the case $p+q=1$ . In this case we can solve the
equation (1.1) explicitly, and determine $\alpha$ so that $r=r_{\alpha}(t)$ satisfies Theorems 1 and 2.

As an application of Theorem 1 we can construct equivariant harmonic maps
between some non-compact Riemannian manifolds, for example, from $(RH^{m}, g_{can})$ into
$(RH^{n}, h_{can})$ , from $(CH^{m}, g_{can})$ into $(CH^{n}, h_{can})$ for some $m\geq 2$ and $n$ determined by $m$ (see
[9] for details).

The author wishes to express his gratitude to Professor H. Urakawa, who suggests
him this problem and helpful comments. He also expresses his thanks to Professors I.
Takagi and T. Nagasawa, who give him valuable discussions.
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2. Asymptotic behavior as $t\rightarrow 0$ .
In this section, we consider the equation (1.1), and discuss the behavior of a solutioI

when $t$ tends to $0$ . From now on we fix $t_{0}>0$ to the end of this paper. First, let $u_{\iota}^{1}$

reparametrize the equation (1.1) with parameter $u=\log t$ to remove singularity at $t=0$

Then (1.1), (1.7) and (1.3) become respectively

$\frac{d^{2}r}{du^{2}}(u)+\{\frac{p}{f_{1}(u)}\frac{df_{1}}{du}(u)+\frac{q}{f_{2}(u)}\frac{df_{2}}{du}(u)-1I\frac{dr}{du}(u)$

(2.1)

$-e^{2u}\{\mu^{2}\frac{h_{1}(r(u))h_{1}^{\prime}(r(u))}{f_{1}(u)^{2}}+v^{2}\frac{h_{2}(r(u))h_{2}^{\prime}(r(u))}{f_{2}(u)^{2}}\}=0;$ ,

(2.2) $ r(u_{0})=\alpha$ , $r^{\prime}(u_{0})=\alpha^{\prime}$ ;

and

(2.3) $\left\{\begin{array}{ll}. f_{i}\in C^{\infty}(-\infty, \infty), f_{i}(u)>0, (df_{j}/duXu)\geq 0(u\in( & -\infty, \infty));\\. f_{i}(u)=a_{i}e^{u}+O(e^{3u}) (as u\rightarrow-\infty); & \\. for any u_{0}>-\infty there exists constant C=C( & u_{0}) such that\\0\leq\frac{p}{f_{1}(u)}\frac{df_{1}}{du}(u)+\frac{q}{f_{2}(u)}\frac{df_{2}}{du}(u)-1\leq C & on (-\infty, u_{0}].\end{array}\right.$

For any fixed $\alpha>0$ , define a set $\mathscr{A}(\alpha)$ by

$\mathscr{A}(\alpha):=\{\alpha^{\prime}\in R|$ asolution of (2.1) with (2.2) decreases monotonically
to zero within finite time as $u$ decreases from $u_{O}$ }.

Then, for any fixed $\alpha>0,$ $\mathscr{A}(\alpha)$ is an open, non-empty set and $\inf \mathscr{A}(\alpha)>0$ (cf. $[1_{-}^{-}$

Chapter 6 pp. 99-100). We put $\alpha^{\prime}:=\inf \mathscr{A}(\alpha)$ . Since $\alpha^{\prime}$ is uniquely determined by $\alpha$ ,
solution $r=r(u)$ of the initial value problem (2.1) with (2.2) depends only on $\alpha$ . $W$

denote this solution by $r_{\alpha}(u)$ . Then we obtain

THEOREM 2.1. Under the conditions (1.5) and (2.3), for any $\alpha>0$ , put $\alpha^{\prime}:=\inf \mathscr{A}(\alpha$

Then the solution $r=r_{\alpha}(u)$ of (2.1) with (2.2) exists on (-co, $u_{O}$] and satisfies thefollowing

(i) $r_{\alpha}(u)>0,$ $\frac{dr_{\alpha}}{du}(u)>0$ on $(-\infty, u_{O})$, and

(ii) $\lim_{u\rightarrow-\infty}r_{\alpha}(u)=0,\lim_{u\rightarrow-\infty}\frac{dr_{\alpha}}{du}(u)=0$ and $\lim_{u\rightarrow-\infty}\frac{d^{2}r_{\alpha}}{du^{2}}(u)=0$ .

We first show the following lemma concerning the life span of $r_{\alpha}$ .

LEMMA 2.2. For the positive solution $r=r_{\alpha}(u),$ $(dr_{\alpha}/duXu)$ remains bounded if $ r_{\alpha}(\iota$

is bounded. Moreover, if $r_{\alpha}(u)$ blows up at some $\overline{u}<u_{O}$ , then $\lim_{u\rightarrow\overline{u}}r_{\alpha}(u)=+\infty$ .
$PR\infty F$ . Equation (2.1) is equivalent to
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$\frac{d}{du}\{f_{1}(u)^{p}f_{2}(u)^{q}e^{-u}\frac{dr}{du}(u)\}=\mu^{2}f_{1}(u)^{p-2}f_{2}(u)^{q}e^{u}h_{1}(r(u))h_{1}^{\prime}(r(u))$

$+v^{2}f_{1}(u)^{p}f_{2}(u)^{q-2}e^{u}h_{2}(r(u))h_{2}^{\prime}(r(u))$ .
Integrating both sides from $u(<u_{0})$ to $u_{0}$ , we obtain

$-f_{1}(u)^{p}f_{2}(u)^{q}e^{-u}\frac{dr}{du}(u)+f_{1}(u_{0})^{p}f_{2}(u_{0})^{q}e^{-u_{O}}\frac{dr}{du}(u_{0})$

$=\int_{u}^{u_{O}}\{\mu^{2}f_{1}(v)^{p-2}f_{2}(v)^{q}e^{v}h_{1}(r(v))h_{1}^{\prime}(r(v))+v^{2}f_{1}(v)^{p}f_{2}(v)^{q-2}e^{v}h_{2}(r(v))h_{2}^{\prime}(r(v))\}dv$ .

Hence

$f_{1}(u)^{p}f_{2}(u)^{q}e^{-u}|\frac{dr}{du}(u)|\leq C_{0}(u_{0})+C_{1}(u_{0})\max_{v\in[u,u_{O}]}|h_{1}(r(v))h_{1}^{\prime}(r(v))|$

$+C_{2}(u_{0})\max_{v\in[u,u_{O}]}|.h_{2}(r(v))h_{2}^{\prime}(’\langle v))|$ ,

where $C_{O}(u_{O}),$ $C_{1}(u_{O})$ and $C_{2}(u_{O})$ are constants given by

$\left\{\begin{array}{l}C_{O}(u_{O})=f_{1}(u_{O})^{p}f_{2}(u_{O})^{q}e^{-u_{O}}\frac{dr}{du}(u_{O})\\C_{1}(u_{O})=\mu^{2}\int_{-\infty}^{u_{O}}f_{1}(v)^{p-2}f_{2}(v)^{q}e^{v}dv\\C_{2}(u_{O})=v^{2}\int_{-\infty}^{u_{0}}f_{1}(v)^{p}f_{2}(v)^{q-2}e^{v}dv\end{array}\right.$

The assertion follows from this inequality. $\square $

$PR\infty F$ OF THEOREM 2.1. First, for simplicity, set

$Q(u, s):=e^{2u}\{\mu^{2}\frac{h_{1}(s)h_{1}^{\prime}(s)}{f_{1}(u)^{2}}+v^{2}\frac{h_{2}(s)h_{2}^{\prime}(s)}{f_{2}(u)^{2}}\}$ .

Then $Q(u, s)$ satisfies the following properties

$\left\{\begin{array}{l}Q(u, 0)=0,Q(u, s)>00<s\\Q(u, s_{1})<Q(u, s_{2})0<s_{1}<s_{2}\end{array}\right.$

(i) Suppose $(u_{\alpha}, u^{\alpha}$] is a maximal existence interval of $r_{\alpha}$ . Then the assertions

$r_{\alpha}(u)>0$ and $\frac{dr_{\alpha}}{du}(u)>0$ on $(u_{\alpha}, u_{0}$]
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follow from the same arguments as in [1]. It remains to prove that $ u_{\alpha}=-\infty$ . If $ u_{\alpha}>-\infty$

then $r_{a}(u)$ blows up at $u_{\alpha}$ . By virtue of Lemma 2.2, we have

$ r_{\alpha}(u)\rightarrow+\infty$ (as $u\rightarrow u_{a}$).

In this case, however, there exists $u_{*}\in(u_{\alpha}, u_{O})$ such that $(dr_{\alpha}/duXu_{*})<0$ . This contradict $\backslash $

$(dr_{\alpha}/duKu)>0$ on $(u_{\alpha}, u_{O}$]. Thus $ u_{\alpha}=-\infty$ .
(ii) It holds that $\lim_{u\rightarrow-\infty}(dr_{\alpha}/duXu)=0$ . This is proved in the same way as in [4]

We shall show that $\lim_{u\rightarrow-\infty}r_{\alpha}(u)=0$ . In view of (i), there exists $\eta\geq 0$ such that

$ r_{\alpha}(u)\searrow\eta$ (as $u\rightarrow-\infty$).

On the other hand, it follows from (2.1), (2.3) and (i) that for sufficiently small $\overline{u}<u_{0}$

there exists a positive constant $C(\overline{u})$ such that

(2.4) $\frac{d^{2}r_{\alpha}}{du^{2}}(u)\geq-C(\overline{u})\frac{dr_{\alpha}}{du}(u)+Q(u, r_{\alpha}(u))$ on (-co, $\overline{u}$).

Suppose that $\eta>0$ . Then

$Q(u, r_{a}(u))>Q(u, \eta)>0$ on $(-\infty,\overline{u})$ .
Since $\lim_{u\rightarrow-\infty}(dr_{\alpha}/duXu)=0$ , we obtain from (2.4)

$\frac{d^{2}r_{\alpha}}{du^{2}}(u)\geq\tilde{C}(\overline{u})>0$ on (-co, u)

for sufficiently small $\overline{u}$ . This inequality implies $(dr_{\alpha}/duXu)<0$ for sufficiently small $u$

This is a contradiction. Thus

$\lim_{u\rightarrow-\infty}r_{\alpha}(u)=0$ .

Finally the equation (2.1) implies

$\frac{d^{2}r_{\alpha}}{du^{2}}(u)=-\{\frac{p}{f_{1}(u)}\frac{df_{1}}{du}(u)+\frac{q}{f_{2}(u)}\frac{df_{2}}{du}(u)-1\}\frac{dr_{a}}{du}(u)+Q(u, r_{\alpha}(u))$ .

We see from the conditions (2.3) that

$1^{\lim_{-\infty}}u\rightarrow-\infty\lim_{u\rightarrow}\{\frac{p}{f_{1}(u)}\frac{df_{1}}{du}(u)+\frac{q}{f_{2}(u)}\frac{df_{2}}{du}Q(u,r_{a}(u))=0(u)-1\}=p+q-1$

and

which implies

$\lim_{u\rightarrow-\infty}\frac{d^{2}r_{\alpha}}{du^{2}}(u)=0$ .
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Thus the proof is completed. $\square $

As a consequence of Theorem 2.1, we have

COROLLARY 2.3. Under the conditions (1.3) and (1.5), for anyfixed $t_{O}>0$ and $\alpha>0$

there exists $\beta>0$ such that the solution $r=r_{\alpha}(t)$ of the initial value problem (1.1) with (1.7)
exists on $[0, t_{0}]$ and satisfies the following:

(i) $r_{\alpha}(t)>0,\dot{r}_{\alpha}(t)>0$ on $(0, t_{0}$].
(ii) $\lim_{t\rightarrow 0}r_{\alpha}(t)=0$ and $\dot{r}_{\alpha}(t)=o(1/t)$ (as $t\rightarrow 0$).

Now we can prove the Prst assertion of Theorem 1 as follows. For any fixed $t_{0}>0$

and $\alpha$ , if we set $\beta:=t_{0}^{1}\inf \mathscr{A}(\alpha)$ ( $=\beta(\alpha)$ for simplicity), then the solution $r=r_{\alpha}(t)$ with
the initial values $ r_{\alpha}(t_{0})=\alpha,\dot{r}_{\alpha}(t_{0})=\beta$ satisfies the first assertion of Theorem 3.1.

Note that we can take $\alpha>0$ arbitrary. In the next section, we shall show the existence
of $\alpha>0$ which satisfies the second assertion of Theorem 1.

Next we want to show the following proposition, which concerns the regularity of
the solution $r=r_{\alpha}(t)$ at $t=0$ .

PROPOSITION 2.4. Let $r=r_{a}(t)$ be a solution of (1.1) with (1.2). Then the following
assertions hold.

(i) There exista $>0andt_{1}\in(0, t_{0})suchthat$

$0<r_{\alpha}(t)\leq r_{\alpha}(t_{1})\frac{t^{a}}{t_{1}^{a}}$ on $(0, t_{1})$ .

(ii) Set $\lambda_{1}=p+q-1,$ $\lambda_{2}=\mu^{2}b_{1}^{2}/a_{1}^{2}+v^{2}b_{2}^{2}/a_{2}^{2}(a_{i}$ and $b_{i}$ are defined in (1.3) and
(1.5)). If $\lambda_{2}>k\lambda_{1}+k^{2}$ , then

$\lim_{t\rightarrow 0}r^{\langle l)}(t)=0$ $(0\leq l\leq k)$ ,

where $r^{\langle l)}(t)$ stands for the l-th derivative of $r(t)$ .
Hence if $\lambda_{2}>\lambda_{1}+1,$ $r_{\alpha}(t)$ is ofclass $C^{1}$ on $[0, T_{\alpha}$). We first show the following lemma.
LEMMA 2.5. Let $A_{i}(t),$ $B_{i}(t)\in C^{0}((0, t_{0}$]) such that $0<B_{i}(t)\leq A_{i}(t)$ on $(0, t_{O}$] $.$ Sup-

pose $r(t)$ and $\rho(t)$ satisfy

(2.5) $\frac{d}{dt}[f_{1}(t)^{p}f_{2}(t)^{q}\dot{r}(t)]=\{f_{1}(t)^{p-2}f_{2}(f)^{q}A_{1}(t)+f_{1}(t)^{p}f_{2}(t)^{q-2}A_{2}(t)\}r(t)$ ,

(2.6) $\frac{d}{dt}[f_{1}(t)^{p}f_{2}(t)^{q}\dot{\rho}(t)]\leq\{f_{1}(t)^{p-2}f_{2}(t)^{q}B_{1}(t)+f_{1}(t)^{p}f_{2}(t)^{q-2}B_{2}(t)\}\rho(t)$

on $(0, t_{O})$ and
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$\{\lim_{t\rightarrow 0}r(t)=0,$ $\lim_{t\rightarrow 0}\rho(t)=\delta forr(t)>0,\rho(t)>0some\delta\geq 0on(0, t_{0}$

] and

Then we have
$r(t)\leq\rho(t)$ on $[0, t_{0}]$ .

$PR\infty F$ . Set $w(t):=r(t)-\rho(t)$ . Then from (2.5) and (2.6)

$\frac{d}{dt}\{f_{1}(t)^{p}f_{2}(t)^{q}\dot{w}(t)\}\geq f_{1}(t)^{p-2}f_{2}(t)^{q}\{A_{1}(t)r(t)-B_{1}(t)\rho(t)\}$

$+f_{1}(t)^{p}f_{2}(t)^{q-2}\{A_{2}(t)r(t)-B_{2}(t)\rho(t)\}$

$\geq f_{1}(t)^{p-2}f_{2}(t)^{q-2}\{f_{2}(t)^{2}B_{1}(t)+f_{1}(t)^{2}B_{2}(t)\}u\langle t)$ .

Hence $w=w(t)$ satisfies

(2.7) $\left\{\begin{array}{ll}\frac{d}{dt}\{f_{1}(t)^{p} & (t)^{q}\dot{u}\langle t)\}\geq f_{1}(t)^{p-2}f_{2}(t)^{q-2}\{f_{2}(t)^{2}B_{1}(t)+f_{1}(t)^{2}B_{2}(t)\}w(t),\\n\langle t_{0}) =0 & and \lim_{t\rightarrow 0}w(t)=-\delta(\leq 0),\end{array}\right.$

which implies that $w(t)\leq 0$ . In fact, we assume that there exists $\overline{t}\in(0, t_{0})$ such tha
$w\langle t$ )$>0\neg$ . Then we can find $t_{1}\in(0, t_{O})$ such that $Mt_{1}$ ) $>0,\dot{w}(t_{1})=0$ and $\ddot{w}(t_{1})\leq 0$ . On th
other hand, the inequality in (2.7) implies

$f_{1}(t_{1})^{p}f_{2}(t_{1})^{q}\ddot{w}(t_{1})$

$\geq f_{1}(t_{1})^{p-2}f_{2}(t_{1})^{q-2}\{f_{2}(t_{1})^{2}B_{1}(t_{1})+f_{1}(t_{1})^{2}B_{2}(t_{1})w(t_{1})\}>0$ .

Since $f_{1}(t_{1})^{p}f_{2}(t_{1})^{q}>0$ , this contradicts $\ddot{w}(t_{1})\leq 0$ . $[$

$PR\infty F$ OF PROPOSmON 2.4. (i) The equation (1.1) is equivalent to

(2.8) $\frac{d}{dt}\{f_{1}(t)^{p}f_{2}(t)^{q}\dot{r}_{\alpha}(t)\}=f_{1}(t)^{p-2}f_{2}(t)^{q-2}\{\mu^{2}f_{2}(t)^{2}h_{1}(r_{\alpha}(t))h_{1}^{\prime}(r_{\alpha}(t))$

We want to apply Lemma 2.5 with

$A_{1}(t)=\mu^{2}\frac{h_{1}(r_{\alpha}(t))h_{1}^{\prime}(r_{\alpha}(t))}{r_{\alpha}(t)}$ ,

Since

$+v^{2}f_{1}(t)^{2}h_{2}(r_{a}(t))h_{2}^{\prime}(r_{\alpha}(t))\}$ .

$A_{2}(t)=v^{2}\frac{h_{2}(r_{\alpha}(t))h_{2}^{\prime}(r_{a}(t))}{r_{\alpha}(t)}$ .

$\lim_{t\rightarrow 0}A_{1}(t)=\mu^{2}b_{1}^{2}$ and $\lim_{t\rightarrow 0}A_{2}(t)=v^{2}b_{2}^{2}$ ,
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there exist constants $B_{1}$ and $B_{2}$ which satisfy $0<B_{i}\leq A_{i}(t)$ on $[0, t_{O}]$ . Put $\rho(t):=C_{0}t^{a}$ ,
where constants $a>0$ and $C_{0}$ will be determined later. Then

$\frac{d}{dt}\{f_{1}(t)^{p}f_{2}(t)^{q}\dot{\rho}(t)\}-f_{1}(t)^{p-2}f_{2}(t)^{q-2}\{f_{2}(t)^{2}B_{1}+f_{1}(t)^{2}B_{2}\}\rho(t)$

$=C_{0}t^{a-2}f_{1}(t)^{p}f_{2}(t)^{q}\{a(a-1)+apt\frac{\dot{f}_{1}(t)}{f_{1}(t)}+aqt\frac{f_{2}(t)}{f_{2}(t)}-B_{1}\frac{t^{2}}{f_{1}(t)^{2}}B_{2}\frac{t^{2}}{f_{2}(t)^{2}}\}$ .

On the other hand, since

$\lim_{t\rightarrow 0}t\frac{\dot{f}_{i}(t)}{f_{i}(t)}=1$ and $\lim_{t\rightarrow 0}\frac{a_{i}^{2}t^{2}}{f_{i}(t)^{2}}=1$

for any sufficiently small $\epsilon>0$ satisfying
$4\mu^{2}b_{1}^{2}-a_{1}^{2}\epsilon>0$ and $4v^{2}b_{2}^{2}-a_{2}^{2}\epsilon>0$ ,

there exists $t_{1}\in(0, t_{0})$ such that the following hold on $[0, t_{1}]$ :

$p|t\frac{\dot{f}_{1}(t)}{f_{1}(t)}-1|<\frac{\epsilon}{2}$ ,

$\frac{\mu^{2}b_{1}^{2}}{a_{1}^{2}}|\frac{a_{1}^{2}t^{2}}{f_{1}(t)^{2}}1|<\frac{\epsilon}{4}$ ,

$q|t\frac{\dot{f}_{2}(t)}{f_{2}(t)}-1|<\frac{\epsilon}{2}$ ,

$\frac{v^{2}b_{2}^{2}}{a_{2}^{2}}|\frac{a_{2}^{2}t^{2}}{f_{2}(t)^{2}}1|<\frac{\epsilon}{4}$ ,

$\mu^{2}b_{1}^{2}-\frac{a_{1}^{2}}{4}\epsilon\leq A_{1}(t)$ and $v^{2}b_{2}^{2}-\frac{a_{2}^{2}}{4}\epsilon\leq A_{2}(t)$ .

$HenceifwesetB_{1}=\mu^{2}b_{1}^{2}-(a_{1}^{2}/4)\epsilon andB_{2}=v^{2}b_{2}^{2}-(a_{2}^{2}/4)\epsilon,$ $thenforallt\in(O, t_{1})$

$\frac{d}{dt}\{f_{1}(t)^{p}f_{2}(t)^{q}\dot{\rho}(t)\}-f_{1}(t)^{p-2}f_{2}(t)^{q-2}\{f_{2}(t)^{2}B_{1}+f_{1}(t)^{2}B_{2}\}\rho(t)$

$\leq C_{0}t^{a-2}f_{1}(t)^{p}f_{2}(t)^{q}\{a^{2}+(\lambda_{1}+\epsilon)a-(\lambda_{2}-\epsilon)\}$ ,

where we put $\lambda_{1}$ $:=p+q-1$ and $\lambda_{2}:=\mu^{2}b_{1}^{2}/a_{1}^{2}+v^{2}b_{2}^{2}/a_{2}^{2}$ . Choose

$a=\neq\{-(\lambda_{1}+\epsilon)+\sqrt{(\lambda_{1}+\epsilon)^{2}+4(\lambda_{2}-\epsilon)}\}>0$ .

Then

$\frac{d}{dt}\{f_{1}(t)^{p}f_{2}(t)^{q}\dot{\rho}(t)\}\leq f_{1}(t)^{p-2}f_{2}(t)^{q-2}\{f_{2}(t)^{2}B_{1}+f_{1}(t)^{2}B_{2}\}\rho(t)$ .

Thus if we take $C_{0}$ so that $\rho(t_{1})=r(t_{1})$ , Lemma 2.5 yields the following

$0<r(t)\leq\rho(t)=r(t_{1})t_{1}^{-a}t^{a}$ on $(0, t_{1})$ .
(ii) In the case $\lambda_{2}>k\lambda_{1}+k^{2}$ , take $\epsilon$ so as0 $<\epsilon<(1/(k+1))\{\lambda_{2}-k\lambda_{1}-k^{2}\}$ . Then
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$a=+\{-(\lambda_{1}+\epsilon)+\sqrt{(\lambda_{1}+\epsilon)^{2}+4(\lambda_{2}-\epsilon)}\}$

$>*\{-(\lambda_{1}+\epsilon)+(\lambda_{1}+\epsilon+2k)\}=k$ .

Combining this with the estimate in (i), we have the conclusion. $[$

In the rest of this section, we shall show that $\beta(\alpha)$ is a $\infty ntinuous$ function in $\alpha$

This fact plays an important role in the next section. For simplicity we set

$G(t, s):=\mu^{2}\frac{h_{1}(s)h_{1}^{\prime}(s)}{f_{1}(t)^{2}}+v^{2}\frac{h_{2}(s)h_{2}^{\prime}(s)}{f_{2}(t)^{2}}$ .

Then it holds for any $t>0$ that

$G(t, s_{1})\leq G(t, s_{2})$ for $s_{1}\leq s_{2}$ .
LEMMA 2.6. Let $r_{i}=r_{i}(t)(i=1,2)$ be solutions of (1.1) with

$r_{1}(t_{0})=r_{2}(t_{0})$ and $\lim_{t\rightarrow 0}r_{1}(t)=\lim_{t\rightarrow 0}r_{2}(t)=0$ .

Then

$r_{1}(t)=r_{2}(t)$ on $[0, t_{0}]$ .
$PR\infty F$ . Since $r_{1}(t)$ and $r_{2}(t)$ are solutions of (1.1), we have

(2.9) $\frac{d}{dt}\{f_{1}(t)^{p}f_{2}(t)^{q}j_{i}(t)\}=f_{1}(t)^{p}f_{2}(t)^{q}G(t, r_{i}(t))$ $(i=1,2)$ .

Then

(2.10) $\frac{d}{dt}\{f_{1}(t)^{p}f_{2}(t)^{q}(j_{1}(t)-i_{2}(t))\}=f_{1}(t)^{p}f_{2}(t)^{q}\{G(t, r_{1}(t))-G(t, r_{2}(t))\}$ .

Multiplying the both sides by $r_{1}(t)-r_{2}(t)$ and integrating from $0$ to $t_{0}$ , we obtain
$[f_{1}(t)^{p}f_{2}(t)^{q}(\dot{r}_{1}(t)-\dot{r}_{2}(t)Xr_{1}(t)-r_{2}(t))]|^{=t_{\circ}}=0$

(2.11) $-\int_{0}^{t_{O}}f_{1}(t)^{p}f_{2}(t)^{q}(\dot{r}_{1}(t)-\dot{r}_{2}(t))^{2}dt$

$=\int_{0}^{t_{O}}f_{1}(t)^{p}f_{2}(t)^{q}\{G(t, r_{1}(t))-G(t, r_{2}(t))\}\{r_{1}(t)-r_{2}(t)\}dt$ .

Now, it tums out from the assumption on $r_{i}(t)(i=1,2)$ and the monotonicity of $G(t,$ $\cdot$

that

$\int_{0}^{t_{0}}f_{1}(t)^{p}f_{2}(t)^{q}(\dot{r}_{1}(t)-\dot{r}_{2}(t))^{2}dt\leq 0$ .
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Since $f_{1}(t)^{p}f_{2}(t)^{q}>0$ on $(0, t_{0})$ , we obtain

$\dot{r}_{1}(t)=\dot{r}_{2}(t)$ on $(0, t_{0})$ .

Thus

$r_{1}(t)=r_{2}(t)$ on $[0, t_{0}]$ . $\square $

As a corollary of Lemma 2.6, we have

COROLLARY 2.7. Let $r=r(t)$ and $\rho=\rho(t)$ be solutions of $(1.1)-(1.2)$ . If $r(t_{0})=\rho(t_{0})$

holds for some $t_{O}\in(0, T)$ , then we have

$r(t)=\rho(t)$ on $[0, T$),

where $[0, T$) is the common life span of $r(t)$ and $\rho(t)$ .

LEMMA 2.8. Let $r_{i}=r_{i}(t)$ be solutions of (1.1) with initial values

$r_{i}(t_{0})=\alpha_{i}$ , $\dot{r}_{i}(t_{0})=\beta_{i}=\beta(\alpha)$ $(i=1,2)$ .
Then

(2.12) $|r_{1}(t)-r_{2}(t)|\leq|r_{1}(t_{0})-r_{2}(t_{0})|$ on $[0, t_{0}]$ .
$PR\infty F$ . Note that if $\alpha_{1}=\alpha_{2}$ then the assertion holds from Lemma 2.6. We first

claim the following:

CLAIM 1. If $\alpha_{1}<\alpha_{2}$ then $\beta_{1}<\beta_{2}$ .
In fact, from (2.11) and $\lim_{t\rightarrow 0}r_{1}(t)=\lim_{t\rightarrow 0}r_{2}(t)=0$

$f_{1}(t_{0})^{p}f_{2}(t_{0})^{q}\{\dot{r}_{1}(t_{0})-\dot{r}_{2}(t_{0})\}\{r_{1}(t_{0})-r_{2}(t_{0})\}>0$ .

This is equivalent to

$(\beta_{1}-\beta_{2}X\alpha_{1}-\alpha_{2})>0$ .

Sinoe $\alpha_{1}<\alpha_{2}$ we have $\beta_{1}<\beta_{2}$ .
Now we set $\psi(t):=r_{2}(t)-r_{1}(t)$ for $t\in(O, t_{0})$ , then from the equation (1.1)

(2.13) $\ddot{\psi}(t)=-\{p\frac{\dot{f}_{1}(t)}{f_{1}(t)}+q\frac{\dot{f}_{2}(t)}{f_{2}(t)}\}\dot{\psi}(t)+G(t, r_{2}(t))-G(t, r_{1}(t))$ .

CLAIM 2. If $\psi(t_{O})>0$ then $\dot{\psi}(t)\geq 0$ on $[0, t_{0}]$ .
Sinoe $\psi(t_{0})>0,$ $\psi(t_{0})>0$ by Claim 1. We assume that there exists $t_{1}\in(0, t_{0})$ such that

$\dot{\psi}(t_{1})=0$ and $\dot{\psi}(\iota)>0$ on $(t_{1}, t_{O})$ .

Then either of the following two cases occurs:
(1) The case $\psi(t_{1})>0$ . In this case, $becauseofr_{2}(t_{1})>r_{1}(t_{1})$ and from (2.13)

$\ddot{\psi}(t_{1})=G(t_{1}, r_{2}(t_{1}))-G(t_{1}, r_{1}(t_{1}))>0$ .
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Henoe $\dot{\psi}(t)<0$ on $(t_{1}-\epsilon, t_{1})$ for some $\epsilon>0$ . On the other hand, sinoe $\lim_{t\rightarrow 0}\psi(t)=0$

there exists $t_{2}\in(0, t_{1})$ such that

$\psi(t_{2})>0$ , $\dot{\psi}(t_{2})=0$ and $\ddot{\psi}(t_{2})\leq 0$ .
However, we can show that $\ddot{\psi}(t_{2})>0$ by using the equation (2.13) again. This yields a
contradiction. Thus, if $\psi(t_{1})=0$, then $\psi(t_{1})\leq 0$ .
(2) The case $\psi(t_{1})\leq 0$ . In this case, we can find $t_{3}\in[t_{1}, t_{0}$) such that $\psi(t_{3})=0$ . Hence
$r_{1}(t_{3})=r_{2}(t_{3})$ and $\lim_{t\rightarrow 0}r_{1}(t)=\lim_{t}r(t)=0$ . It follows from Lemma 2.6 that

$r_{1}(t)=r_{2}(t)$ on $(0, t_{3})$ .
By virtue of the uniqueness theorem, we can conclude

$r_{1}(t)=r_{2}(t)$ on $(0, t_{0})$ ,

which implies $\psi(t)=0$ on $(0, t_{0})$ . This contradicts $\psi(t_{0})>0$ . Thus Claim 2 follows.

Let us complete the proofofLemma 2.8. From the second argument, if $r_{2}(t_{0})>r_{1}(t_{0})$,
$weobtainr_{2}(t)>r_{1}(t)$ on $(0, t_{O})$ . Thus, if $\psi(t_{0})>0then0<\psi(t)<\psi(t_{0})$ on $(0, t_{0})$ . That is,
if $r_{2}(t_{O})>r_{1}(t_{0})$ , then

$0\leq r_{2}(t)-r_{1}(t)\leq r_{2}(t_{0})-r_{1}(t_{0})$ on $[0, t_{0}]$ .
In a similar way, it follows that

$0\leq r_{1}(t)-r_{2}(t)\leq r_{1}(t_{0})-r_{2}(t_{O})$ on $[0, t_{O}]$ ,

if $r_{1}(t_{0})>r_{2}(t_{0})$ . Both these inequalities imply

$|r_{1}(t)-r_{2}(t)|\leq|r_{1}(t_{0})-r_{2}(t_{0})|$ on $[0, t_{0}]$ . $\square $

Making use of these lemmas we show the following proposition.

PROPOSITION 2.9. $\beta=\beta(\alpha)$ is a continuous function in $\alpha$ . That is, for $\alpha_{i}>0(i=1,2)$,
there exists a constant $C_{0}=C_{0}(t_{0})$ such that

$|\beta_{1}-\beta_{2}|\leq C_{o}|\alpha_{1}-\alpha_{2}|$ .
$PR\infty F$ . Integrating the both sides of (2.10) $from0tot_{O}$ , we have

$f_{1}(t_{O})^{p}f_{2}(t_{O})^{q}(j_{1}(t_{O})-\dot{r}_{2}(t_{O}))=\int_{0}^{t_{O}}f_{1}(t)^{p}f_{2}(t)^{q}\{G(t, r_{1}(t))-G(t, r_{2}(t))\}dt$ .

Applying mean value theorem to a function $(h_{i}h_{i}^{\prime})^{\prime}(r)$, we obtain
$G(t, r_{1}(t))-G(t, r_{2}(t))\leq\{\mu^{2}c_{1}f_{1}(t)^{-2}+v^{2}c_{2}f_{2}(t)^{-2}\}\{r_{1}(t)-r_{2}(t)\}$ ,

where $c_{i}(i=1,2)$ are constants given by

$c_{i}=\max_{0\leq s\leq\max\{\alpha_{1},\alpha_{2}\}}(h_{i}h_{i}^{\prime})^{\prime}(s)$ .
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Therefore
$f_{1}(t_{0})^{p}f_{2}(t_{0})^{q}|\dot{r}_{1}(t_{0})-\dot{r}_{2}(t_{0})|$

$\leq\int_{0}^{t_{O}}f_{1}(t)^{p}f_{2}(t)^{q}\{\mu^{2}c_{1}f_{1}(t)^{-2}+v^{2}c_{2}f_{2}(t)^{-2}\}|r_{1}(t)-r_{2}(t)|dt$

$\leq|r_{1}(t_{0})-r_{2}(t_{0})|\int_{0}^{t_{O}}f_{1}(t)^{p}f_{2}(t)^{q}\{\mu^{2}c_{1}f_{1}(t)^{-2}+v^{2}c_{2}f_{2}(t)^{-2}\}dt$ (by (2.12)).

Since $p+q\geq 2$ , the integral $\int_{0}^{t_{O}}f_{1}(t)^{p}f_{2}(t)^{q}\{\mu^{2}c_{1}f_{1}(t)^{-2}+v^{2}c_{2}f_{2}(t)^{-2}\}dt$ converges. Let us
denote this value by $C^{\prime}$ . Then we have

$f_{1}(t_{0})^{p}f_{2}(t_{0})^{q}|\dot{r}_{1}(t_{0})-\dot{r}_{2}(t_{0})|\leq C^{\prime}|r_{1}(t_{0})-r_{2}(t_{0})|$ .

Putting $C_{0}:=C^{\prime}f_{1}(t_{0})^{-p}f_{2}(t_{0})^{-q}$ , the assertion is obtained. $\square $

3. Asymptotic behavior as $ t\rightarrow\infty$ .
In the former half of this section, we investigate the properties of a solution of the

equation (1.1), and show the existenoe of a global solution.
For any $\alpha>0,$ $\beta$ is given by $\beta(\alpha)$ as in \S 2. Therefore $r_{\alpha}$ exists on $[0, T_{a}$) and satisfies

(1.2). We often omit the subscript $\alpha$ of $r_{\alpha}$ .

LEMMA 3.1. For the solution $r=r(t)$ of (1.1) with (1.7), the following hold:
(i) $\dot{r}(t)>0$ for $t\in(O, T_{\alpha})$ , and
(ii) $Ifr(t)isbounded,\dot{r}(t)isalsoboundedon(0, T_{\alpha})$ .
$PR\infty F$ . (i) Sinoe $\dot{r}(t)>0on(0, t_{O}$] $weshallshowthatj(t)>0on(t_{O}, T_{\alpha})$ . Assume

that there exists $t_{1}\in(t_{0}, T_{\alpha})$ such that $\dot{r}(t_{1})=0$ . Since $\dot{r}(t_{0})>0$ , we can choose $t_{1}$ such that

$r(t_{1})>0$ , $\dot{r}(t_{1})=0$ and $\ddot{r}(t_{1})\leq 0$ .

On the other hand, the equation (1.1) implies

$\ddot{r}(t_{1})=\mu^{2}\frac{h_{1}(r(t_{1}))h_{1}^{\prime}(r(t_{1}))}{f_{1}(t)^{2}}+v^{2}\frac{h_{2}(r(t_{1}))h_{2}^{\prime}(r(t_{1}))}{f_{2}(t)^{2}}>0$ .

This yields a contradiction. Thus $\dot{r}(t)>0$ on $[t_{0}, T_{\alpha}$).

(ii) Integrating the both sides of the equation (2.8) from $t_{0}$ to $t$, we get in a similar

manner as Lemma 2.2

$f_{1}(t)^{p}f_{2}(t)^{q}\dot{r}(t)\leq C_{0}(t_{0})+C_{1}(t_{0})\max_{\tau\in[t_{O},t]}|h_{1}((\tau))h_{1}^{\prime}(’\langle\tau))|$

$+C_{2}(t_{O})\max_{\tau\in[t_{O},t]}|h_{2}(r(\tau))h_{2}^{\prime}(r(\tau))|$
,
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where $C_{0},$ $C_{1}$ and $C_{2}$ are constants depending on $t_{O}$ and $t$ . The assertion follows frorr
this inequality.

$\subset$

LEMMA 3.2. For a solution $r=r(t)$ of (1.1), it holds that
$\{f_{1}(t)^{p}f_{2}(t)^{q}(t)\}^{2}=\{f_{1}(s)^{p}f_{2}(s)^{q}j(s)\}^{2}$

$+\mu^{2}\{f_{1}(t)^{2p-2}f_{2}(t)^{2q}h_{1}(r(t))^{2}-f_{1}(s)^{2p-2}f_{2}(s)^{2q}h_{1}(’\langle s))^{2}\}$

(3.1)
$+v^{2}\{f_{1}(t)^{2p}f_{2}(t)^{2q-2}h_{2}(r(t))^{2}-f_{1}(s)^{2p}f_{2}(s)^{2q-2}h_{2}(r(s))^{2}\}$

$-\int_{s}^{t}\mu^{2}h_{1}(r(\tau))^{2}\frac{d}{d\tau}\{f_{1}(\tau)^{2p-2}f_{2}(\tau)^{2q}\}d\tau$

$-\int_{s}^{t}v^{2}h_{2}(’\langle\tau))^{2}\frac{d}{d\tau}\{f_{1}(\tau)^{2p}f_{2}(\tau)^{2q-2}\}d\tau$

for any $s,$ $t\in(O, T_{\alpha})$ .
$PR\infty F$ . Multiplying the both sides of (2.8) by $f_{1}(t)^{p}f_{2}(t)^{q}\dot{r}(t)$, we obtain

$\frac{d}{dt}\{f_{1}(t)^{p}f_{2}(t)^{q}\dot{r}(t)\}^{2}=\mu^{2}f_{1}(t)^{2p-2}f_{2}(t)^{2q}\frac{d}{dt}h_{1}(r(t))^{2}$

$+v^{2}f_{1}(t)^{2p}f_{2}(t)^{2q-2}\frac{d}{dt}h_{2}(r(t))^{2}$

Integrating the both sides of this equation from $s$ to $t$, we have the conclusion. $\square $

LEMMA 3.3. Let $r=r_{a}(t)$ be a solution of$(1.1)$ with (1.7). Then thefollowing holds:

(3.2) $\dot{r}_{\alpha}(t)^{2}\leq\frac{\mu^{2}}{f_{1}(t)^{2}}h_{1}(r_{a}(t))^{2}+\frac{v^{2}}{f_{2}(t)^{2}}h_{2}(r_{\alpha}(t))^{2}$ on $[t_{0}, T_{\alpha}$).

$PR\infty F$ . Lets tend to0in (3.1), we have
$\{f_{1}(t)^{p}f_{2}(t)^{q}j\langle t)\}^{2}\leq\mu^{2}f_{1}(t)^{2p-2}f_{2}(t)^{2q}h_{1}(’\langle t))^{2}+v^{2}f_{1}(t)^{2p}f_{2}(t)^{2q-2}h_{2}(r(t))^{2}$

Dividing the both sides by $f_{1}(t)^{2p}f_{2}(t)^{2q}$, we reach the conclusion. $\square $

Define subsets $g_{1}$ and $g_{2}$ of $R$ by
$\mathscr{B}_{1}$ $:=$ {$\alpha>0|T_{\alpha}=\infty$ and $r_{\alpha}(t)$ is bounded on $[0,$ $\infty)$},
$\mathscr{B}_{2}:=\{\alpha>0|T_{\alpha}<\infty\}$ .

PROPOSITION 3.4. Under the assumption $(1.4)-(1.5)$ the set $g_{1}$ is open and
non-empty.

$p_{R\infty F}$ . We first prove that $g_{1}$ is non-empty. From the condition (1.5) and the
equation (3.2), we have
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$\dot{r}(t)^{2}\leq\sinh^{2}\{br(t)\}\{\frac{\mu^{2}}{f_{1}(t)^{2}}+\frac{v^{2}}{f_{2}(t)^{2}}\}$ .

Hehce

$\dot{r}(t)\leq\sinh\{br(t)\}\sqrt{\frac{\mu^{2}}{f_{1}(t)^{2}}+\frac{v^{2}}{f_{2}(t)^{2}}}$

$\leq\gamma\sinh\{br(t)\}\{\frac{1}{f_{1}(t)}+\frac{1}{f_{2}(t)}\}$ ,

where $\gamma=\max\{\mu, v\}$ . This is equivalent to

$\frac{\dot{r}(t)}{\sinh\{br(t)\}}\leq\gamma\{\frac{1}{f_{1}(t)}+\frac{1}{f_{2}(t)}\}$ .

Integrating the both sides and making use of the formula $\int(\sinh x)^{-1}dx=\log$ tanh $x/2$ ,

we obtain

(3.3) $\tanh\frac{br(t)}{2}\leq\tanh\frac{b\alpha}{2}\exp\{b\gamma B\}$ ,

where $B;=\int_{t_{0}}^{\infty}\{f_{1}(\tau)^{-1}d\tau+f_{2}(\tau)^{-1}d\tau\}$ , which converges by virtue of the condition (1.5).

If we take an $\alpha$ such that
$ b\alpha$

(3.4) tanh $\overline{2}\exp\{b\gamma B\}<1$ ,

then (3.3) implies that $r_{\alpha}$ is bounded and $ T_{\alpha}=\infty$ from Lemma 3.1. Therefore,

$\{\alpha>0|\tanh\frac{b\alpha}{2}\exp(b\gamma B)<1\}\subset \mathscr{B}_{1}$ ,

which implies that $\mathscr{B}_{1}$ is non-empty.
Next we shall show $\mathscr{B}_{1}$ is an open set. For any fixed $\alpha_{*}\in \mathscr{B}_{1}$ , we set

$K_{*}:$ $=\lim_{t\rightarrow\infty}r_{\alpha_{*}}(t)$ . Sinoe the assumption (1.5) holds,

$F(t):=\exp[b\gamma\int_{t}^{\infty}\{\frac{1}{f_{1}(\tau)}+\frac{1}{f_{2}(\tau)}\}d\tau]$

is a well-defined and monotonically decreasing function. We take $T>0$ in such a way that

(3.5) $\tanh\frac{bK_{*}}{2}\exp[b\gamma\int_{T}^{\infty}\{\frac{1}{f_{1}(\tau)}+\frac{1}{f_{2}(\tau)}\}d\tau]<1$

and fix the above $T>0$ to the end of this proof. Because solutions of (1.1) depend on
its initial values continuously, we can assert that for any $\epsilon>0$ there exists $\delta>0$ such
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that if $|\alpha-\alpha_{*}|<\delta$ then $|r_{\alpha}(T)-r_{\alpha_{s}}(T)|<\epsilon$ . Here we note that $\tau_{\alpha}>\tau$. Henoe if $\alpha i^{1}$

sufficiently close to $\alpha_{*},$ $(3.5)$ yields

tanh $\frac{br_{a}(T)}{2}\exp[b\gamma\int_{T}^{\infty}\{\frac{1}{f_{1}(\tau)}+\frac{1}{f_{2}(\tau)}\}d\tau]<1$ ,

which coincides with the inequality (3.4), if we set $t_{0}=T$ and $\alpha=r_{\alpha}(T)$ . On the othe]

hand, from Lemma 3.3,

$(0<)[\frac{dr_{\alpha}}{dt}(T)]^{2}\leq\frac{\mu^{2}}{f_{1}(T)^{2}}h_{1}(r_{a}(T))^{2}+\frac{v^{2}}{f_{2}(T)^{2}}h_{2}(r_{\alpha}(T))^{2}$

Therefore we can show that $ T_{\alpha}=\infty$ and $r_{\alpha}=r_{\alpha}(t)$ is bounded by the same argument $a^{t}$.
in the proof for non-emptiness of $\mathscr{B}_{1}$ . This means $\alpha\in \mathscr{B}_{1}$ if $\alpha$ is sufficiently close to

$\alpha_{*,\subset}$Thus $g_{1}$ is open.

REMARK 1. In particular, from (3.2) we have

$r_{\alpha}(t)\leq\frac{2}{b}\tanh^{-1}(\tanh\frac{b\alpha}{2}\exp(b\gamma B))$ .

$PR\infty F$ OF THEOREM 1. Proposition 3.4 and Lemma 3.1 show that there exists $\alpha>t$

such that $r_{\alpha}$ satisfies the conditions in Theorem 1. $\subset$

In the rest of this section, we assume the condition (1.6). We set

$A:=f_{1}(t_{O})^{p}f_{2}(t_{O})^{q}\int_{t_{O}}^{\infty}\frac{dt}{f_{1}(t)^{p}f_{2}(t)^{q}}$ ,

$\phi(\alpha):=\int_{a}^{\infty_{dr}}\sqrt{\gamma_{1}^{2}\{h_{1}(r)^{2}-h_{1}(\alpha)^{2}\}+\gamma_{2}^{2}(h_{2}(r)^{2}-h_{2}(\alpha)^{2}\}+\beta^{2}}\ovalbox{\tt\small REJECT}$

where $\gamma_{1}=\mu/f_{1}(t_{0})$ and $\gamma_{2}=v/f_{2}(t_{0})$ . The assumption (1.4) and $\dot{f}_{i}(t)\geq 0$ imply that the
integral of $A$ converges and Lemma 3.6 below guarantees that $\phi(\alpha)$ is well-defined.

LEMMA 3.5.

$\phi(\alpha)\geq f_{1}(t_{0})^{p}f_{2}(t_{0})^{q}\int_{t_{O}}^{T_{\alpha}}\frac{dt}{f_{1}(t)^{p}f_{2}(t)^{q}}$ .

$PR\infty F$ . Sinoe $\dot{f}_{i}(t)\geq 0$ and $h_{i}(s)^{2}\leq h_{i}(t)^{2}$ for all $s\leq t$, we have

$\int_{t_{O}}^{t}h_{1}(’\langle\tau))^{2}\frac{d}{d\tau}\{f_{1}(\tau)^{2p-2}f_{2}(\tau)^{2q}\}d\tau\leq h_{1}(r(t))^{2}\{f_{1}(t)^{2p-2}f_{2}(t)^{2q}-f_{1}(t_{O})^{2p-2}f_{2}(t_{O})^{2q}\}$ ,

$\int_{o}^{t}h_{2}(r(\tau))^{2}\frac{d}{d\tau}\{f_{1}(\tau)^{2p}f_{2}(\tau)^{2q-2}\}d\tau\leq h_{2}(r(t))^{2}\{f_{1}(t)^{2p}f_{2}(t)^{2q-2}-f_{1}(t_{0})^{2p}f_{2}(t_{O})^{2q-2}\}$ .
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Making use of the equation (3.1) and these inequalities, we obtain

$\{f_{1}(t)^{p}f_{2}(t)^{q}\dot{r}(t)\}^{2}\geq\{f_{1}(t_{0})^{p}f_{2}(t_{0})^{q}\dot{r}(t_{0})\}^{2}$

$+\mu^{2}f_{1}(t_{O})^{2p-2}f_{2}(t_{0})^{2q}\{h_{1}(r(t))^{2}-h_{1}(r(t_{O}))^{2}\}$

$+v^{2}f_{1}(t_{0})^{2p}f_{2}(t_{0})^{2q-2}\{h_{2}(r(t))^{2}-h_{2}(r(t_{0}))^{2}\}$ .

This is equivalent to

Integrating the both sides from $t_{0}$ to $T_{\alpha}$ , we obtain

$\geq f_{1}(t_{0})^{p}f_{2}(t_{0})^{q}\int_{t_{0}}^{T_{\alpha}}\frac{dt}{f_{1}(t)^{p}f_{2}(t)^{q}}$ .

This implies

$\phi(\alpha)\geq f_{1}(t_{0})^{p}f_{2}(t_{0})^{q}\int_{t_{O}}^{T_{\alpha}}\frac{dt}{f_{1}(t)^{p}f_{2}(t)^{q}}$ . $\square $

By a similar argument as in the proofofLemma 3.5, for any $t\in(O, T_{\alpha})$ , we can prove

(3.6) $\phi(r(t))\geq f_{1}(t)^{p}f_{2}(t)^{q}\int_{t}^{T_{\alpha}}\frac{d\tau}{f_{1}(\tau)^{p}f_{2}(\tau)^{q}}$

We shall use this inequality (3.6) to prove Proposition 3.7 below.

LEMMA 3.6. Under the hypothesis of $(1.3)-(1.6)$ , there exists $\delta>0$ such that

$\phi(\alpha)=O(\alpha^{-\delta})$ (as $\alpha\rightarrow\infty$).

$PR\infty F$ . We assume that $h_{1}(r)\geq d_{1}r^{l}$ for sufficiently large $r$ . Because of convexity
of $h_{i}(r)^{2}$ , we get for $ r\geq\alpha$

$h_{i}(r)^{2}-h_{i}(\alpha)^{2}\geq 2b_{i}h_{i}(\alpha)(r-\alpha)$ .

Thus, for sufficiently large $\alpha$ , it holds that

$\leq\frac{1}{\sqrt{2b_{1}\gamma_{1}^{2}h_{1}(\alpha)+2b_{2}\gamma_{2}^{2}h_{2}(\alpha)}}\int_{\alpha}^{2\alpha}\frac{dr}{\sqrt{r-\alpha}}$
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$\leq\frac{\alpha^{-l/2}}{\sqrt{2b_{1}\gamma_{1}^{2}d_{1}}}[2\sqrt{r-\alpha}]_{a}^{2a}$

$=O(\alpha^{(1-l)/2})$ (as $\alpha\rightarrow\infty$).

On the other hand, because of $h_{i}^{\prime\prime}(r)\geq 0$, we have

$\frac{h_{i}(\alpha)}{h_{i}(2\alpha)}\leq\frac{1}{2}$

and henoe, when $ r\geq 2\alpha$ and $\alpha$ is sufficiently large,

$h_{i}(r)^{2}-h_{i}(\alpha)^{2}\geq h_{i}(r)^{2}(1-\frac{h_{i}(\alpha)^{2}}{h_{i}(2\alpha)^{2}})\geq\frac{3}{4}h_{i}(r)^{2}$

Therefore

$\int_{2a}^{\infty_{dr}}\ovalbox{\tt\small REJECT}\sqrt{\gamma_{1}^{2}\{h_{1}(r)^{2}-h_{1}(\alpha)^{2}\}+\gamma_{2}^{2}\{h_{2}(r)^{2}-h_{2}(\alpha)^{2}\}+\beta^{2}}$

$\leq 2\int_{2\alpha}^{\infty}\frac{dr}{\sqrt{\gamma_{1}^{2}h_{1}(r)^{2}+\gamma_{2}^{2}h_{2}(r)^{2}}}$

$\leq\frac{2}{\gamma_{1}d_{1}}\int_{2a}^{\infty}\frac{dr}{r^{l}}$

$=O(\alpha^{1-l})$ (as $\alpha\rightarrow\infty$).

As a consequenoe, we obtain

$\phi(\alpha)=O(\alpha^{-\delta})$ (as $\alpha\rightarrow\infty$). $\square $

PROPOSITION 3.7. Under the conditions $(1.3)-(1.6),$ $g_{2}$ is open and non-empty.
$PR\infty F$ . We prove $g_{2}$ is non-empty. Suppose that $ T_{\alpha}=\infty$ for all $\alpha>0$ , then by

Lemma 3.5

$\phi(\alpha)\geq A(>0)$

holds for all $\alpha>0$ . On the other hand, from Lemma 3.6,

$\phi(\alpha)\rightarrow 0$ (as $\alpha\rightarrow\infty$).

This is a contradiction. Thus $ T_{\alpha}<\infty$ for sufficiently large $\alpha$ . This means $\mathscr{B}_{2}$ is non-empty.
Next we show $9_{2}$ is an open set. Suppose $g_{2}$ is not open. Then there exist $\alpha_{*}$ and

a sequenoe $\{\alpha_{j}\}_{j=1}^{\infty}\subset R_{+}$ which satisfy the following properties:
$\alpha_{j}\rightarrow\alpha_{*}(j\rightarrow\infty)$ , $ T_{a}.<\infty$ and $ T_{\alpha_{j}}=\infty$ .

Let $r_{j}=r_{j}(t)$ be the solution of $(1,1)$ with the initial values $r_{j}(t_{0})=\alpha_{j},\dot{r}_{j}(t_{O})=\beta_{j}(=\beta(\alpha_{j}))$ .
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Applying (3.6) to $r_{j}$ , we have

$\phi(r_{j}(t))\geq f_{1}(t)^{p}f_{2}(t)^{q}\int_{t}^{\infty}\frac{d\tau}{f_{1}(\tau)^{p}f_{2}(\tau)^{q}}$

for any $t\geq t_{0}$ . Sinoe $t$ is arbitrary, we can set $ t=T_{a_{l}}-\epsilon$ for sufficiently small $\epsilon(0<\epsilon<1)$

in such a way that

(3.7) $\phi(r_{j}(T_{a_{*}}-\epsilon))\geq f_{1}(T_{a_{*}}-\epsilon)^{p}f_{2}(T_{a_{l}}-\epsilon)^{q}\int_{T_{\alpha}.-\epsilon}^{\infty}\frac{d\tau}{f_{1}(\tau)^{p}f_{2}(\tau)^{q}}$ .

The assumptions $f_{i}(t)\geq 0$ and $\dot{f}_{i}(t)\geq 0$ imply the right hand side of(3.7) is bigger than

$f_{1}(T_{\alpha}.-1)^{p}f_{2}(T_{\alpha_{l}}-1)^{q}\int_{T_{\alpha}}^{\infty}.\frac{d\tau}{f_{1}(\tau)^{p}f_{2}(\tau)^{q}}$

which is a positive constant, denoted by $\delta_{1}$ . Hence

(3.8) $\phi(r_{j}(T_{a_{l}}-\epsilon))\geq\delta_{1}>0$ .
On the other hand, by virtue of continuous dependenoe of the solution $r_{j}$ on its initial
values, we have the following:

for any $R>0$ there exist sufficiently small $\epsilon>0$ and sufficiently large
$j\in N$ such that $r_{j}(T_{\alpha_{l}}-\epsilon)>R$ .

Lemma 3.6 implies that the left hand side of (3.8) can be made arbitrarily small by
taking $\epsilon$ sufficiently small and $j$ sufficiently large. This contradicts (3.8). Thus $\mathscr{B}_{2}$ is an
open set. $\square $

REMARK 2. It follows from Lemmas 3.5, 3.6, inequality in (3.6) and continuous
dependenoe of the solutions on their initial values that

$\{T_{a}|\alpha\in \mathscr{B}_{2}\}=(t_{0}, \infty)$ .
$PR\infty F$ OF THEOREM 2. Propositions 3.4 and 3.7 assert that $\mathscr{B}_{2}$ and $9_{1}$ are non-

empty open sets and $\mathscr{B}_{2}\cap \mathscr{B}_{1}=\emptyset$ . Therefore, because $R_{+}$ is connected

$ R_{+}\backslash (\mathscr{B}_{2}\cup \mathscr{B}_{1})\neq\emptyset$ .

Hence ifwe take $\alpha\in R_{+}\backslash (\mathscr{B}_{2}\cup \mathscr{B}_{1})$ , then the solution $r_{a}$ to $(1.1)-(1.2)$ satisfies the property
in Theorem 2. $\square $

4. The case $p+q=1$ .
In the previous sections, we assume that $p+q\geq 2$ . However, we can solve the

equation (1.1) explicitly in the special case that $p+q=1$ .
We can assume that $p=1,$ $q=0$ and $v=0$ . Then (1.1) with (1.2) becomes
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(4.1) $\left\{\begin{array}{l}\ddot{r}(t)+\frac{\dot{f}(t)}{f(t)}j(t)-\mu^{2}\frac{h(r(t))h^{\prime}(r(t))}{f_{1}(t)^{2}}=0\\\lim_{t\rightarrow 0}r(t)=0\end{array}\right.$

In this case, we have

PROPOSmON 4.1. The problem (4.1) has a solution.
$PR\infty F$ . Multiplying the both sides of the equation in (4.1) by $f(t)^{2}\dot{r}(t)$ and

integrating from $t_{O}$ to $t$ , we obtain

(4.2) $\{f(t)\dot{r}(t)\}^{2}=\mu^{2}h(r(t))^{2}+C_{0}$ ,

where $C_{0}$ is given by $C_{0}=\{f(t_{0})\dot{r}(t_{0})\}^{2}-\mu^{2}h(r(t_{0}))^{2}$ . Because of $\lim_{t\rightarrow 0}r(t)=0,$ $C_{0}\geq 0$ .
The equation (4.2) yields

(4.3) $\int_{r\langle t_{O})}^{r\langle t)}\frac{dr}{\sqrt{\mu^{2}h(r)^{2}+C_{0}}}=\int_{t_{O}}^{t}\frac{d\tau}{f(\tau)}$ .

The right hand side of (4.3) goes to infinity as $t_{0}$ tends to $0$ , which implies that $C_{0}$

should vanish. As a consequence, we have

(4.4) $\int_{r\langle t_{0})}^{r\langle t)}\frac{dr}{h(r)}=\mu\int_{t_{O}}^{t}\frac{d\tau}{f(\tau)}$ .

Denoting the primitive functions of $1/h(r)$ (resp. $1/f(t)$) by $H$ (resp. $F$), we get by (4.4)

(4.5) $H(r(t))=\mu F(t)+C(t_{0})$ .
Sinoe $H$ is a monotonically increasing function, there exists a solution $r=r(t)$ of (4.1).
This completes the proof. $\square $

Now we apply this method to construct an equivariant harmonic map from the
hyperbolic spaoe $RH^{2}$ into itself. The spaoe $RH^{2}$ can be considered as the spaoe $R^{2}$

equipped with the metric $dt^{2}+\sinh^{2}td\theta^{2}$ in the polar coordinate $(t, \theta)$ . In this
representation, any equivariant map can be expressed as

$\psi:RH^{2}\ni(t, \theta)\mapsto(r(t), \phi(\theta))\in RH^{2}$

The sufficient and necessary conditions for $\psi$ to be a harmonic map of $RH^{2}$ into itselfare

(4.6) $\left\{\begin{array}{l}\tilde{r}(t)+\frac{\cosh t}{\sinh t}\dot{r}(t)-2e(\phi)\frac{\sinh r(t)\cosh r(t)}{\sinh^{2}t}=0\\\phi:S^{1}\rightarrow S^{1}e(\phi)\end{array}\right.$

where $e(\phi)$ denotes the energy density of $\phi$ . On the other hand, any harmonic map
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$\phi:S^{1}\rightarrow S^{1}$ with constant energy density (i.e., eigenmap) is given by
$\phi_{l}(e^{i\theta})=e^{il\theta}$ , $l\in Z$ ,

and 2$e(\phi_{l})=l^{2}$ . Thus the equivariant map $\psi_{l}$ defined by $(t, \theta)\mapsto(r(t), \phi_{l}(\theta))$ is harmonic
on $RH^{2}$ if and only if

$\left\{\begin{array}{ll}\dot{r}(t)+\frac{\cosh t}{\sinh t}\dot{r}(t)-l^{2}\frac{\sinh r(t)\cosh r(t)}{\sinh^{2}t}=0 , & and\\\lim_{t\rightarrow 0}r(t)=0. & \end{array}\right.$

Making use of the equation (4.4), we have

$\int_{r\langle t_{O})}^{r\langle t)}\frac{dr}{\sinh r}=|l|\int_{t_{O}}^{t}\frac{d\tau}{\sinh\tau}$ .

From this equation, all the solution $r=r_{\alpha_{O}}$ are classified into the following three cases:

$\left\{\begin{array}{l}\alpha_{0}<\alpha_{*}T_{\alpha_{O}}=\infty r_{\alpha 0}\\\alpha_{0}=\alpha_{*}T_{\alpha_{O}}=\infty r_{\alpha_{O}}\nearrow\infty\\\alpha_{O}>\alpha_{*}T_{\alpha_{O}}<\infty\end{array}\right.$

Here $\alpha_{0}=r(t_{0})$ and $\alpha_{*}$ satisfies the following equation

$\frac{\cosh\alpha_{*}-1}{\cosh\alpha_{*}+1}=\{\frac{\cosh t_{0}+1}{\cosh t_{0}-1}\}^{|l|}$

In particular, if $\alpha_{0}=\alpha_{*}$ , then

$r(t)=\log\{\cosh^{|l|}\frac{t}{2}+\sinh^{|l|}\frac{t}{2}\}$ -log $\{\cosh^{|l|}\frac{t}{2}-\sinh^{|l|}\frac{t}{2}\}$ .

Now, $RH^{2}$ can be identified with the Poincar\’e disc $D^{2}$ by the stereographic
projection. Using this identification, in the case $\alpha_{0}=\alpha_{*},$

$\psi_{l}$ : $D^{2}\rightarrow D^{2}$ coincides with
$D^{2}\ni z\mapsto z^{l}\in D^{2}$ . Therefore, $\psi_{l}$ is holomorphic.
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