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Introduction.

In this paper we shall give two series of rare examples of algebraic surfaces of
general type. One is a series of surfaces with positive topological indices and another
with the geometric genus p,=0.

In Part I, we construct surfaces with positive topological indices. In [V] (1966),
A. Van de Ven pointed out that there are not many known examples of algebraic
surfaces of general type with positive topological indices. By the index theorem of
Hirzebruch, the topological index ©(S) of a surface S is equal to (K3 —2e(S))/3 where
K is the canonical line bundle and e(S) the topological Euler number. Hence the
positivity of 7(S) is equivalent to K% >2e(S). At that time, the only known examples
were the ones due to F. Hirzebruch [H], which are the compact quotients of the
2-dimensional unit ball and which therefore satisfy K% =3e(S). Following Van de Ven’s
remark, K. Kodaira [K] (1967) was the first to construct a series of examples as branch-
ed coverings of the produet of two algebraic curves. Kodaira’s examples satisfy
3e(s)> K 2 >2¢(S) and have many interesting properties. Afterwards some new examples
were discovered, for instance, by Mostow-Siu (1979) and Y. Miyaoka (1980). But even
now the known examples are rare. In Part I, we construct new examples of such surfaces
as branched coverings of the so-called elliptic modular surfaces which are investigated
in detail in T. Shioda [S] (1972). Our construction depends heavily on some results
in [S], which we shall recall in §1. We remark that our examples are discovered
independently also by R. Livné. :

In Part II, we construct surfaces with p,=0. If S is a minimal surface of general
type with p,(S)=0, then we know generally that ¢(S)=0, K%=1,2,---,9. Till 1974,
the known and verified example was only the classical one due to L. Godeaux, on which
we refer to Y. Miyaoka [M] (1976). Afterwards some classically known examples were
verified and furthermore some new examples were discovered by, for instance, R. Barlow,
A. Beauville, Y. Miyaoka, D. Mumford, C. A. M. Peters, M. Reid and L. Shavel and
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soon. But even now the known examples are rare. In Part II, we construct new examples
of such surfaces as the quotients of the hypersurfaces of the product of three elliptic
curves. Our construction is very elementary and has a close relation with a classical
example due to P. Burniat, a geometer of the classical Italian school (see [I,]).

The main part of this work was done during the author’s stay at Bonn University
from September 1979 to August 1980. The author would like to express his sincere
thanks to Professor F. Hirzebruch, who provided him the opportunity to stay in Bonn,
as well as warm encouragement and many invaluable suggestions.

PART I Surfaces of General Type with Positive Topological Indices

§1. Elliptic modular surfaces (due to T. Shioda).

In this section, we shall recall some results in T. Shioda [S]. From now on, we
assume that N=3. Let I'(N) be the principal congruence subgroup of level N, namely,

rm:{(“ b)eSL(z,Z)
c d

a,d=1, b,c=0 moduloN} .

Let u(N)=4N 3]_[”& p:prime (1 —P ). Then H/I'(N) has t=u(N)/N cusps. Let
ANN)=(H[T(N)) U {t cusps} .

Then
1, (=)
g(4(N))=1 +T 8
204V 2=

Let @: B(N)—>A(N) be the elliptic modular surface attached to I' (N), which is called
the elliptic modular surface of level N. Then

Kpny=P*(I—¥)
where
I=the canonical line bundle of 4(N),
f=a line bundle on 4(N) with degf= —( PB(N))—q(B(N))+1).
We know the following:

4 (N —O)u(N)

4(B(N))=g(4(N))=1 N

b

2
KB(N) =0 ’
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e(B(N))=the Euler number of B(N)=Nt=u(N),
Kz +e(BIN)) _ p(N)

b

Py(BNY)—g(B(N))+ 1=

12 12
(N —3)u(N)
B(N)=—————,
P4(B(N)) N
H(N) (N—6)u(N)
degf=—-, degf=29g—2=—" """
g D gf=2g N
N—4
deg(t—f)= N).
g(f—1) AN M(N)
On the fibres of @, we know
a non-singular elliptic curve if vs#cusp,
-1 _JN-1
@ (v)-—[ Y 0,; if v=cusp
i=0
where @, ; is a non-singular rational curve with @f;,-= —2 and with the configuration

as in Fig. 1. B(N) has exactly N? sections
Iraj), i,j=0,---,N—1

where I'(0, 0)=the zero-section and as in Fig. 2

if i=k

', N—1)

ra,n
I'G, 0)

@m

i
s

FIGURE 1 FIGURE 2

I'(i,j)'s are mutually disjoint and
{I'(i, j) n F} ={N-division points on F}
where F is a general fibre of & : B(N)— 4(N). We know that
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N-—-4
KB(N)'F(i,j)=deg(f—f)= aN MWN),
o ., (N—6)-u(N)
g(r'G,j)=g(AN)=1+ 5N ,
. o2 o MW(N)
I'G,j)" =degi= TR

Let
r=»% raj).
tJ
Then I is a non-singular (reducible) curve on B(N),
I' n F={N-division points on F} ~ N*[0]
where ~ is the linear equivalence relation and
I' n O, ;={N-division points on C*=P'—{0, 1}}

where ©,,=P', 0,,n0,; 1=0,0,,n0,;,,=00.

LEmMMA OF T. SHIODA. Let F be a general fibre of ®: B(N)—A(N) and let D be a
divisor on B(N) such that D|F~0. Then

D-0,,
Dz(D-I"(0,0))'F+ Z (@v,l"“s@v,N—l).A51< >

v:cusp D- @le— )
where =~ is the algebraic equivalence relation and

1 -2 1 0 - - - 0

0 1 -210 - - 0

AN=[@v,i'@v,j]1si,jsN—1= ) : ’ N-1
: 0
0 : - - 01 =2 1
0 ° * ' * 0 l _2 / 4

D-0©,,

and the components of Ay 1( > are integers.

D- @v,N— 1

Proor. Take h general fibres Fy, F,, - - -, F, where F;#F; (i#J). Then
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h

—>H1(B(N) , (9(1)— Y Fi)>—+H1(B(N), o(D))

i=1
h
—H'Fy, OO H'(F,, O)® - - - ®H'(F), (9)—>H2<B(N), (O(D— > Fi))—’
i=1
where H(F,, )=~ C. Hence, if A is sufficiently large,
h
H2<B(N), (D(D— > F,.))aéo.
‘ i=1

Since H¥B(N), O(D—-Y"_, F,))~H%B(N), O(K+Y *_, F,— D)), there exists an effective
divisor D'e|K+Y ) F,—D|. Namely

h
K+ Y F,—~D~D'.
i=1

For any fibre F of @: B(N)— A(N),
h
D' F=K-F+ ) F,+F-D-F=0.
i=1
Hence D’'=)",m,D, where D,’s are irreducible curves contained in the fibres of @. Since

N—4 N-1
K~ WN)-F, F~F, Y O,,xF,
4N i=o

we obtain

N-1
szF—'- Z qv,i@u,i

i=1,v:cusp

for some p, q,;€ Z. Since I'(0,0)- @, ;=1if i=0and I'(0,0)- ©,,=0if i=1, -- -, N—1,
we obtain

N-1
D .F(Oa 0)=pF.F(Oa 0)+ Z qv,i@u,i.r(oa 0)=P .
i=1
Since F- 0, ;=0,
N—-1
D.@v.j= Z qv,i@v,i.@v,j
i=1

forj=1,2,---,N—1. Let Ay=[0,,* 0,1, <; j<n-1- Then Ay is non-singular and
qu,l D.@v,l
. Ay
du,N-1 D-6,N-1
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Thus
D.Ov.l
| D~(D-T'(0,0)F+ Y. (@u.u"',@o,n-l)AEl( : ) Q.E.D.
v:icusp
D'Ov.u—l
LEMMA 1-1. Let Ay'=[x;]. Then
—i(N—-k
_](__), i<k
. N
(1) Xjg= _KN—J)
AT sk,
N
it 1 .
. NGl —AN—J) 2 2 '
@ 2 == G-1)
k=1 —mj+] if N=2m+1.

LEMMA 1-2. w(N)/12 is divisible by N if N=5.

PrOOF. Let 6(N)=N>[], 5 ,:prime (1 =P ?). It is sufficient to prove that 24 | 6(N).

(i) Assumep=5andpisprime. Then (a) p=3h+1,hA=2m,m=1,0r (b) p=3h+2,
h=2m+1, m=0.

@) o(p)=p*(1—p )=(p+1)Xp—1)=123m+1)m. Since 3m+1 or m is even,
24| a(p). _

(b) a(p)=(p+ 1 p—1)=12(m+ 1) 3m+2).Sincem+ 1 or 3m+2iseven, 24 [ a(p).

(i) Assume N=ph'---pl, p,#p; (i#J), p;: prime, h;= 1 where some p;#2, 3. Then
pi2 5 and, hence by (i), 24 | o(p;). Since

o(N)=o(p"")- - -a(pt),
o(pt)=p(1 —p; H)=p?"~2-a(p;),

we get 24 | o(N).
(iii) Finally we assume N=2"-3k>5,
(@) Incase hy,h,21,

a(N)=0(2") - 6(3")=22"1(1 —272)32"(1 —372)
=22h1 -2, 32h2—2(22_ 1)(32_ 1)=24 . 22h,—2 . 32h2—2.

Hence 24 | o(N).
- (b) Incase h;=0and A, =2,

O'(N)=O-(3hz)-_—32hz—2(32_ 1)=32h2—2 -8=24- 32h2—-3 ,
where 2k, —3>0. Hence 24 | 6(N).
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(c) Incase h; =3 and h,=0,
o(N)=0(2")=2%11"222 —1)=22h1"2.3=24.22Mm"5
where 2h; —5>0. Hence 24 | o(N). Q.E.D.
ReMARK 1. This is not true if N<4.
N=4: ud)=24, w4)/12=2,
N=3: u(3)=12, u3)/12=1.
LemMma 1-3.

FzNZ-F(O,O)—(l—NZ)—”—(];—)F—— Y JN=J) N-©,;.

1 v:cusp,j=1,-,N—1

PrOOF. Let D=I'—N?2-T(0,0). Then D | F=0. By the Lemma of Shioda

' D'Qv.l
D~(D-TI(,0)F+ Z (OFPTRERR @u,N—1)A§1< )

v:cusp

D-O,n-,
where
D-T10,00=(1—-N?-r1(0,0)*=—(1—N?-uN)/12,
D-©,,=I-0,,=N for i=1,---,N—1.
Thus Lemma 1-1 implies Lemma 1-3. Q.E.D.

Lemmas 1-1, 1-2, 1-3 and the above Remark 1 imply

-PROPOSITION 1-1. Assume N=4. Then

N—-1 ) N .
I'= Y [I(,j)is divisible {”y N lf is odd
hI=0 ' by N/2 if N is even.

REMARK 2. In case N=3,
u3)=12,
I'G, j)*=—p3)/12= -1,
g(ri, j)=1+(3—6)- u3)/(12-3)=0.
Hence I' is not divisible by 3 and I'(i, j)’s are exceptional curves of the first kind.

REMARK 3. If Nis even, I is not divisible by N. We refer to our previous paper
[1,] for a proof.

REMARK 4. In§1 of [S], Shioda remarked that the Néron-Severi group NS(B(N))
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is torsion-free. This fact can be proved as follows:

PrOOF OF REMARK 4. Let D be a divisor on B(N) such that D#0 and nD =0 for
some positive integer n. Then

Zz: (— 1) dimH*(B(N), O(D))=p,—q+1 =—“§%)gl
v=0

where H°(B(N), O(D))=0 and H*(B(N), O(D))= H°(B(N), O(Kgn,—D)). Hence there
exists an effective divisor D’ €| Kpy,—D]|. Since D’ is effective and D'+ F=Kpy, * F—
D - F=0, we obtain that D’| F~0. By the Lemma of Shioda and by the fact that
D'-0,;=0, we get

D' ~(D’ - I'(0, 0)F .

Since Kpy,=P*(—f), we obtain that DxhF for some integer h. Since nD=0,
0=D-I0,0)=h -F-I'(0,0)=h. Thus A/=0 and D=0 F=0. Q.E.D.

§2. The example A(N, n).

From now on, we assume N=4. By Proposition 1-1, I“=Z£’j_=10 I'(i, j) is divisible

by N if N is odd, and by N/2 if N is even. Let n be an integer such that n=2 and
n|N if Nis odd,
n|(N/2) if N is even.

Then [} =nL for some line bundle Le H'(B(N), 0*). Hence we can construct, in the
bundle space of L, an n-fold branched covering

@: AN, n)—B(N)

along a non-singular branch locus I'(< B(N)).
Let

K =the canonical line bundle of a compact complex surface S (the canonical
divisor of S is also denoted by K)),

e(X)=the topological Euler number of a space X,
7(S) =the topological index of S=(K2—2e(S))/3,
P,(S)=the geometric genus of S, ¢(S)=the irregularity of S.

We have the following classically known

LEMMA 2-1. Let ¢: A—B be an n-fold branched covering along a non-singular
branch locus I'(= B). Then
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(1) Ky,=¢*Kg+(n—1)I'*
where nI'*=@*I" and I'*= ¢~ (I'). Hence
(n—1)°

Ki=nKi+2n—1)Kg- T+ r.
n
(i1) e(A)=ne(B)—(n—e(I') .
()  pS)—q(S)+1= @ (Noether’s formula) .

In the following, we shall calculate some numerical invariants of A(N, n).
ProPOSITION 2-1.

N(n—1){(5n+1)N—24n} _

KZnm= N,
AN.m 12n .u'( )
6n+(n—1)N(N—6
(AN, ) =2 6) V=9 ).
PrOOF. By Lemma 2-1,
—1)?
Kj(N,n)=nK§(N)+2(n—1)KB(N)'F+(n ) 2
n
where
K)%(zv)=0,
- N-4 N(N—4)
Kpay* T'=Y Kpmy* T(i, j)=N? + ———— u(N) =———— u(N),
i 4N
_— N) N2
F2= F','2=N2 /‘l'( —_ N).
ZJ J) 12 12 MV
Hence
N(N—-4) (n—1)*> N2
Kinm=2n—1) ——— uN)— w(N)
4 12
Nn—1){(5n+1)N—24n
_ Nn—1){(5n+1) b,
12n
By Lemma 2-1,

e(A(N, n))=ne(B(N))—(n—1)e(I')

where
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e(B(N))=u(N),
el)=2 e(I'G, j))= N - e(A(N))= N*(2—2g(A(N)))

2. _ N—6 N(N—6)
=N 2( N P )) T M)

Hence

N(N—6)

e(A(N, n)=n- u(N)+(n—1) * i(N)

_ 6n+(n—1)N(N—6)
6
PROPOSITION 2-2. Assume N2=5. Then
(i) 3e(AWNV, )2 Ky 2 26(AN, ),
(ii) 3e(AN, n))=Kjn.n If andonly if (N,n)=(7,7), 8, 4), O, 3), (12, 2),
(iii) KZnm=2e(A(N,n)) if and only if (N,n)=(5,5).
Proor. By Proposition 2-1

u(N) . Q.E.D.

#(N )

3e(A(N, n)— Kin.m= {n—1)N—6n}>=0.

The equality holds if and only if N=6n/(n—1). Since n=2, this is equivalent to
(N,n)=(7,7), (8, 4), (9, 3), (12, 2). By Proposition 2-1

Kiv.m—2e(A(N, n) )———— {n*—1)N>—24n7} .
If N=5 (and hence n=>5), then
K3 n.m—2e(A(N, n))= {(52 1)-52-24-52}=0.
If N=6, then, since n=2,

u()

K vm—26(AN, n)) 2L {(n*—1)36 — 24n?}

HN)

=" (12n%2-36)=
12n (12n )

L(N ) (2= 3)>0. QED.
n

ProPOSITION 2-3. (i) If N=6, then A(N,n) is a minimal surface of general type
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with positive topological index.
(i) A5, 5) is a surface of general type with K %5.5,=200 and e(A(5, 5))=100. Let

r*G,j)=¢~'(I'G,j)  (hence ST*(i, j)=@*I(,})) .

Then I'*(i, j)’s are exceptional curves of the first kind. Let A, be the surface obtained by
blowing down I'*(i, j)’s. Then A, is a minimal surface of general type with K 2.=225and
e(Ao)=175 (and hence K =3e(A,)).

PrROOF. By Lemma 2-1
Kaiwm=0*Kgpny+(n—1DI'*=p*¢*F—)+(n— I)ZF*(i,j) ,
ij

3—N

dim|f|—dim|f—f|=degf+1—g(4(N))= H(N) .

Since degf= — u(N)/12<0, dim|f|= — 1. Hence

N-3

dim|f—f|= u(N)—1>0 if N=5S.

In particular, p,(A(N, n))>0. If there exists an exceptional curve of the first kind on
A(N, n), then it is contained in the divisor K v,y and, hence, is one of I'*(i, j)’s, while

_6
o(T*(G, /)= g(I'G, j)) =1 +—(]-V—15§5(—N) ,
v s TGIP _ uN)
r (131)2_ - 12n .

If N=6, then g(I'*(i,j))=1 and hence A(N,r) is minimal. If N= 5, then u(5)=
$5%+(1-572)=60. Hence g(I'*(i,j))=0 and I'*(i,j)>= —1, namely, I'*(i, j)’s are ex-
ceptional curves of the first kind. Since w(5)=60, g(4(5))=1+(5—6)u(5)/(12 - 5)=0
and deg(f—f)=((5—4)/(4 - 5))u(5)=(1/20)60=3,

4
Kys,5=3¢0*F+4 ' 'Zo I'*@, j)
i,j=

where F is a general fibre of @: B(5)—A4(5) and F-I'*(i,j)=1. Hence K 40 =3F, where
F, is a non-singular curve with g(F,)=11. In particular 4, is minimal. Since K 25,5 =200
and e(A(S, 5))=100 by Proposition 2-1, 4, is a minimal surface of general type with
K%, =225 and e(A4,)=75. By Proposition 2-1,
N(n—1){(5n+1)N —24n}

‘U

12n

2
KA(N,n) -

(N)
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> N(n—1){(5n+1)5—24n} "

N
12n )
-1
_ N@n—1)n+5) UN)>0
12n
for N=5. Thus A(N,n) is of general type. The topological index t(A(N, n))=
(K% ~.m—2e(A(N, n)))/3 is positive if N=6 by Proposition 2-2. Q.E.D.

REMARK 1. On the geometric genus p,(4,) and the irregularity g(4,) of 4,, we
know

pg(A0)=34 s q(A0)= 10 .
As for the detailed calculations, we refer to [1,].
REMARK 2. In case N=4 and n=2, B(4) is a K3 surface and I'(j,j)*=—2,
9(I'G,j))=0. Let I'*(i,j)=¢~ '([(i, j))- Then
KA(4,2)=ZF*(i,j) s
l’.’

r*G,jY*=-1,  g(I'*Gj)=0,
KZen=—16,  e(4(4,2)=16

by Lemma 2-1 and Proposition 2-1. Let 4(4, 2) be the surface obtained by blowing
down I'*(i, j)’s. Then

Kpy4,2=0, e(A(4, 2))=0.
This implies that 4,(4, 2) is an abelian surface and B(4) is a Kummer surface.

REMARK 3. Fix n=2 and consider N’s which are multiples of n. Then, by
Proposition 2-1,

lim Kinm _ 5n+1
N-wo e{(A(N, n)) 2n

Moreover K3y »/e(A(N,n))>5/2 if and only if (N, n)#(S, 5).

ReEMARK 4. (i) The canonical line bundle of A(N, n), N=6, and of 4, are ample.
(ii) A(6, 3) contains elliptic curves I'*(i, j). Hence its universal covering space is
not a bounded domain, while
Ki(6,3) __ 8
e(A(6,3)) 3

REMARK 5. There exist some other congruence relations between I'(i,j)’s and
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©,.’s. For instance, in the case N=2m (even), Fe=zi, jieven L5 J) 18 divisible by m if m
is odd and divisible by m/2 if m is even. Hence we can construct other branched coverings
of B(N) corresponding to them. We refer to [1,] for details.

RemMARK 6. E. Horikawa also gave another series of surfaces of general type with
positive indices as branched coverings of the product of two algebraic curves. His
construction is very simple but has a close relation with the moduli of algebraic curves.
We refer also to [I,] for details.

PART II Surfaces of General Type with p, =0

§3. Hypersurfaces of the product of three elliptic curves.

We denote by 0, and 6, the usual theta functions, namely,

Bl(z)=2( Y (=1 1@ -2 gin(2n — l)nz) ,
n=1

0,(2)= 2( Y q@nm V2 cos(2n — 1)nz)
n=1

where 7€ C, Im7>0 and g=exp(n,/—1z). Then as is classically known we have
LemMA 3-1.
0,z+1)=—0,(2), 0,(z+1)=—0,(2),
01(Z+T)= —591(2) N 92(Z+T)=502(Z) s
01(z+3)=0,(2), 0x(z+3)=—04(2),
0:(—2z)=—04(2), 0,(—2)=0,(2) ,
where 6 =exp(n/— 1(2z + 1)).
In particular, (6,)? and (6,)? are sections of a line bundle 2[0] on the elliptic curve
E=C/{1, t) with periods 1, t where o is the origin of E.
Let g(z) be the g-function, namely,
0x(2)* — 0,(2)?
0,(2)*+0,(2)*

Then we have the following also well-known

p(2)=p(z, )=

LEMMA 3-2.
(i) P@)=piz+1)=p(z+1), Piz+3)=—p(2),

p(—2)=p(2), p(z+1/2)=a/p(2),

where a= (t/2) can take any value € C—{0, +1}. In particular, g(z) is a meromorphic
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Jfunction on the elliptic curve E.

| (i) pF)=—-1, p0)=1, p/2)=a, p(1+1)2)=—a.
(iif) %‘3 @=0  ifandonly if z=0, 3, t/2, (1+1)/2.
Z

In particular, g : E— P! is a double covering ramified over +1, +ae P!.
@iv) Let b= g(t/4). Then b*=a.

Now we take three elliptic curves E;=C/{1, 1;), i=1, 2, 3. Let (z,, z,, z3) be the
\ coordinates on the product E; x E, x E; and

o0;=the origin of E;, P{z)=p(;, ),
a=p(af2), b=plald) (bi=a)
for i=1, 2, 3. For any ce C*, we define the subvariety X, by
X, ={(z1, 22, 23)€ E; X E; X E3 | 04(21)* 94(25)* 93(z3)=¢} .
| Let y;: E, x E, x E;— E; be the projection to the i-th factor. Then
[X 1=y 12[0,1® ¥ 32[0,]1® ¥ 3$2[05]

and [X.] is ample on E, x E, x E;. By the theorem of Bertini, X, is irreducible. By
‘ Lemma 3-2, the singular points of X, areisolated and at most ordinary double points,

{singular points of X} =X, N {2-division points on E, x E, x E,} ,
and moreover, if (zy, z,, z3) is a singular point on X,, then
(z1+%, 2243, 23), (21, 2,+3,23+8), (21+3, 25,23+ 4)
are also singular points on X,. Let
& = {the values of p,(z,)* 9(z;) - 3(z3) on the 2-division points} .
Then ‘
E={t1, ta;, ta;-aj, ta,-a,-a,, (i#j,i,j=1,2,3)}.

Let n, be the number of the singular points on X_. Then by elementary calculations we
obtain the following:

(0) The possible values of n_ are 0, 4, 8, 12 and 16. n, really takes these values.
For instance

(1) If c¢é&, then n.=0, namely, X, is non-singular.

(2) If ceé& and E;’s are general, then n,=4.

(3) Ifceé& and

c=+a;, a;=zta;-a,, ((i,j,k)is a permutation of (1, 2, 3))
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or
c==1, a;*a;j=+1 forsome i,j (i#j),

then n,=8.

4) If ce& and

c=a; forsome i, a;=+a; (#*+./—1) (foranyj#i),

then n,=12.

(5) If ce& and

c=+1 or +./-1, a=+-1 (i=1,23),

then n,=16.

Thus we obtain

PROPOSITION 3-1. The subvariety X, is irreducible and non-singular outside exactly
n, ordinary double points where

n=0, 4, 8, 12 or 16.

Let 1: X, > X.cE, x E, x E, be the minimal resolution of X,. We shall calculate
some numerical invariants of X, in the following

ProposITION 3-2. (i) X, is a minimal surface of general type with the numerical
invariants:

pX)=10, q(X)=3, Kt =eX)=48.
(i) 1 induces an isomorphism between the spaces of holomorphic 1-forms
1*: HYE, x E, x E5, Q)->H(X,, Q1).

PROOF. (i) Minimality is clear from the construction. Since X.’s are homeo-
morphic to each other and the numerical invariants p,, ¢, K and e are homological-
ly invariant, we may assume that X,=X,, namely, X, is non-singular. By the adjunc-
tion formula,

Ky =(Kg, xgyx g, + [ XD Xc=[X ]| X, .
Since A
(X 1=y ¥2[0,1® ¥ $2[0,]1 @ Y 32[05]
=2[0, X E; x E3+ E, x0, X E3+ E, x E; X 03]
and

»_{[Xc2 on X,
" UX]® on E; xE,xEj,
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we obtain
K; =8x6=48.
From the short exact sequence
0—0%, xg,x£s > OE, x £, x £,([ X)) = Ox (Kx )0,
‘ it follows
0> HE; x E; X E3, Og, x5, xg,) > HE; X E; X E3, Op, x £ x E([Xc]))
- HX,, Ox(Kx))»>H'(E, x E, X Es, O, <, xE5)
—>HY(E, x Ey X Es, Op, x g, x g,([X. 1) H'(X,, Ox (Ky))
\ ~H(E; x E; X Es, Og, x5, 5)—> HY(E; X Ey X B3, Op, g, e, [XD)~ .
Since [X_] is ample on E, x E, X E;,
‘ dimHY(E, x E; X E3, Og, g, x5,([X.])=0  for ix=1.
From the formula of Kiinneth, it follows

dimHv(El X E2 X E3’ @El xEj XE3)

= Z dimHl(El, (DEI) * dimHj(Ez, @Ez) ° dimHk(E3, @ES)

itj+k=v

‘ 1 for v=0,3
=13 for v=1,2
0 for v>3,

dim H(E, x E, x E3, Og, g, x 5,([X.]))
=dim H%(E, x E, x Ej, O, < £, x Es(W $2[0,] @ ¥ 32[0,] ® ¥ $2[03])
3
=[] dimH*(E,, Oz (W *2[0;]))=2-2-2=8.
i=1

Thus we obtain
p(X)=dimH(X,, O[Ky])
=dimHY(E; X E; x E3, Og, , g, x5,)
+dimH%E; x E, x E3, Og, x g, x£,([X.])
—dimH%(E, x E; X E3, Og, «g, x5,)

=3+8—1=10,
g(X)=dim H(X,, Ox)=dim H'(X,, O[Ky ])
=dimH2(E1 X E2 X E3, @El szxEs)=3 .
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By Noether’s formula (Lemma 2-1)
48 +e(X)=K2 +e(X)=12(p(X)—q(X)+1)=12(10—3+1)=96 .

Hence e(X,)=48. Since p,(X,)>0 and K3 >0, X, is a surface of general type.
(i) Since X, is not linear, 1*dz,, 1*dz, and 1*dz; are linearly independent.
Since dz,, dz, and dz, form a system of basis of H*(E; x E, x Ej, Q1), 1* isinjective, while

dimHO(E1 X E2 X E35 Ql)=3 ’
dimH°(X,, @Y)=dimH'(X, 05)=q(X)=3.

Hence 1* is an isomorphism. Q.E.D.

§4. The example Y..
We consider the following automorphisms of E; x E; X Ej3:
g1 (21, 23, 23) (=21 +3, 22+ 3, 23),
ga: (24, 23, 23) (21, — 22+ %, 23+3),
gs: (21, 22, 23) > (21 +%, 22, —23+ D).
Let G be the group generated by g, g, and g3:
G={91, 92, 93) (2(Z|22)D(Z|22)®(Z]22)) -

Then, by Lemma 3-2, X, is invariant under the action of G. Thus G operates on X,
and, hence, naturally on the minimal resolution X, of X,. Let Y, be the quotient surface
of X. by G: Y,=X,/G.

PROPOSITION 4-1. Y, is u non-singular minimal surface of general type with
PY)=q(Y)=0, Ki=6—n/4, e(Y)=6+n/4
where n, = the number of singular points of X,=0, 4, 8, 12 or 16. Hence
K% =6,5,4,30r2, eY)=6,7,8,9 or 10
according as n,=0, 4, 8, 12 or 16.
OUTLINE OF THE PROOF. (For details on the proof, we refer to our forthcoming
paper [1,].) Let
go=9g1°92°03: (21, 23, 23)>(—21, —22, —Z3)
G=G/{go>, Y.=X/{g0>.

Then, as is clear, g, is the only one element of G which has fixed points on the ambient
space E; x E, x E;. Hence
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G~(Z22)®(2]22), Y.=Y/G
where G has no fixed points on Y,. Let
¢0,: X-Y and ¢,: V.oV,
be the projections. Since

{fixed points of g, on E, x E, x Ey} = {2-division points on E, x E, x E;},

we obtain
{fixed points of g, on X_}
= {2-division points on E; x E, x E;} N X,
= {singular points on X_} .
Let sy, 55, - - -, 5, be all of the singular points on X, and

Ci=1"s,) i=1,2,--,n

(]

where 1: X,— X, is the minimal resolution of all singular points on X,. Then C;’s are
non-singular rational curves with

(Cl)2=—2, Cl'CJ=O (i#j).
By considering g, in local coordinates, we obtain

{fixed points of g, on X} =) C;.
i=1

Therefore Y, is non-singular, the projection
P2 I_,c—" Yc
is an unbranched 4-fold covering surface and the projection
Py fc—) I7«:
is a branched double covering surface along a non-singular branch locus I'= Uk, G
(cY) where C;=¢,(C;)’s are non-singular rational curves with (C;)*=—4 and
K Yc * Ci = 2.
By Lemma 2-1,

-1y

K% =2K% +22—1)Kyg -T'+ rz,

AX)=2e(Y)—(2—1)e(I)

where K??c=e(fc)=48, KYc-[‘=Z:f“=1KYC. €i=2nc, I"2=Z:lc=1 Ci2= _4nc and e(['):
Y7o, e&C;)=2n,. Therefore
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48=Kj3 =2Ky +2-1-2n,44(—4n)=2K% +2n,,
48 =e(X,)=2e(Y)—2n, .
Hence
K% =24—n_, eY)=24+n,.
Since @,: Y,— Y, is an unbranched and 4-fold covering, we arrive at

KZ="""Te=6——° Y)= .
=7y 4 dA¥)=—7 4

From (ii) of Proposition 3-2, it follows that
HOYY,, QY=HX, Q)= HOE, x E; x E;, Q1)¢

where HO(, )¢ is the subspace of the elements invariant under the action of G. Since
dz,, dz, and dz, form a system of basis of holomorphic 1-forms on E; x E, x E; and
the group G contains
go: (21, 22, 23) (=21, — 23, —23),
we obtain
HYY,, QY)~HYE, x E, x E5, 1)=0.

Hence

q(Y)=dimHY(Y,, Oy)=dimH°(Y,_, 2')=0.
By the aboves and Noether’s formula (Lemma 2-1), we obtain

PUY)—0+1=p ¥y —q¥y+1= it AT

_6—n/4+6+n/4
- 12
P(Y)=0.

By considering more precisely the zeros of the 2-canonical forms (1*dz; A 1*dz;)?
(i#j) on Y,, we can express explicitly the 2-canonical divisor 2Ky :

2KYC=2(E1 +E2+F1 +F2)

1,

where E; and E, are non-singular elliptic curves with E?= —1 and F, and F, are as
follows according as the values of n_:
(Case 0) In case n,=0

F, and F, are non-singular curves with g(F;)=2 and F?=0.
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(Case 1) In case n.=4
F, is a non-singular curve with g(F,)=2 and F?=0,

F, is a non-singular elliptic curve with F3= —1.
(Case 2) In case n,=8

(2-1) F, and F, are non-singular elliptic curves with F?= —1, or

(2-2) F, is a non-singular curve with g(F;)=2 and F?=0,

F, is a non-singular rational curve with F2= —2.

(Case 3) Incasen,=12

F, is a non-singular elliptic curve with F3= —1,

F, is a non-singular rational curve with F3= —2.
(Case 4) In case n,=16

F, and F, are non-singular rational curves with F? = —2.
Hence 2Ky _is effective and contains no exceptional curves of the first kind. In particular
Y, is a minimal surface of general type. END OF THE OUTLINE OF THE PROOF.

In the following, we shall give some remarks on our examples. For details on these
remarks, we refer to [1,].

REMARK 1. The configuration of 2Ky_is as follows:

WA

F, F, Fy F,

(Case 2-1) (Case 2-2)
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O O O O
O O )

F, F, Fy F,

(Case 3) - (Case 4)

O’s are non-singular rational curves with (- )= —4.

REMARK 2. The fundamental group =,(Y,) and the homology group H(Y,, Z) of
Y, are as follows. Let (Z/22Z)™ be the direct sum of m copies of Z/2Z and let

H=((Z]22)*(Z]2Z))K(y1721 "v2 ">

where * denotes the free product of two groups Z/2Z=(y,) and Z/2Z=y,). Then
we have the following table:

n, Kl%c nl(Yc) Hl( Yc, Z)
0 6 0-Z2%>n,(Y)—»G-0 (Z/22)8
4 5 Hx(Z]2Z)} (Z)22zy
8 4 Hx(Z]2Z)* (Z)22)*

12 3 Hx(Z|2Z) (Z22)®

16 2 H (Z)22)*

REMARK 3. In case 1,=1,=1; (namely E,=E,=E,), E, x E, x E; admits the
cyclic permutation of the components of the coordinates as an automorphism:

0: (24, 22, 23) (23, 235 Z,) .

By the definition of X,, the subvariety X, is invariant under the action of ¢. Hence o
induces an automorphism

o: X.-X,.
Since 6~ 1Go =G, ¢ induces an automorphism
c: Y, =X/G-Y,=X/G

such that ¢3=1. ¢ has isolated fixed points on Y, which are described locally in the
following two types:
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type 1: o (Cla C2)_;’(wCIa w2C2) s
type 2:  0:({y, )= (@, of)

where w3=1 and w # 1. The number of the fixed points is as follows:

n, number of type 1 | number of type 2 | total
0 3 0 3
4 2 2 4
8 1 4 5
12 3 0 3
16 2 2 4

Let p: Z,—»Y_./{c) be the minimal resolution of Y,/{a). Then for each singular point
se Y, /{c), p~!(s) is as follows:

type 1: p~s)=C,uC,
where C, and C, are non-singular rational curves with C, - C,=1and (C,)*>=(C,)*= —2.
type 2:  pTH9)=C

where C is a non-singular rational curve with (C)?2= —3. From these we can derive
some results on Z.: Z_is a minimal surface with p,(Z)=¢(Z)=0 and

n, K2 | structure n,(Z)

0 2 general (Z2Z2)D(Z/22)
4 1 general Z2Z

8 0 elliptic 0

12 1 general Z]2Z

16 0 elliptic 0

REMARK 4. Incase c=b, * b, by where b;= p,(7;/4), the possible values of n, are
0 and 8 and, by Lemma 3-2, X, is invariant under the action of

h:(zy, 23, 23) (21 +74/2, 2, +715/2, 23+ 15/2) .
Since 2 and each element of G are commutative to each other, 2 induces an automorphism

h: Y.=X/G-Y.=X/G
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such that #*=1. h has four isolated fixed points on Y,. Let W be the minimal resolution
of Y,/<h). Then W is a minimal surface with p,(W)=q(W)=0 and

n, K% | structure | 7, (W)
0 3 general Hx(Z2Z)}
8 2 general Hx(Z]22)*

REMARK 5. In case c=b, * b, b; where b;= p;(1;/4) and, moreover, b, =b,=b,.
Then X, is invariant under the action of ¢ and A. Let ¥ be the minimal resolution of
X,/<o, h>. Then V is a minimal surface with p (V)=¢(V)=0 and

n, K2 structure (V)
0 1 general Z)2Z
8 0 elliptic 0

REMARK 6. In a similar way, we can construct examples of surfaces S of general
type with p(S)=0 and KZ=7 and 8.

[Surfaces with K2=7] We take four elliptic curves E;=C/{1,1,), i=1, 2, 3, 4.
Let (z,, z,, z3, z4) be the coordinates of the product E, x E, x E; x E, and

0:i(z)=pE, 1), a=pt/2), b=pt/4) b}=a)
for i=1, 2, 3, 4. We define the subvariety X of E, x E, x E; x E, by

£1(21)92(22)03(z3)=by - by * b3, 93(23)94(24)=b3 " bs} .

We consider several conditions on a;’s:

(CO) asa,#1 and a; #a,,

(C1-0) a,;*a, as=1,

(C1-4) a;=a;* a, where (i, j, k) is a permutation of (1, 2, 3),

(C2-0) a,*a-a,=1,

(C2-1) a;=a;* a, where (i, j, k) is a permutation of (1, 2, 4).
Then we know
(1) X s irreducible if and only if g;’s satisfy (CO).
(2) Under the condition (CO0):
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(2-0) X is non-singular if and only if a;’s satisfy neither (C1)’s nor (C2)’s.

(2-1) If a;’s satisfy one of (C1)’s but none of (C2)’s, or, satisfy one of (C2)’s but
none of (C1)’s, then X has 16 ordinary double points and is non-singular
elsewhere.

(2-2) If a;’s satisfy one of (C1)’s and one of (C2)’s both, then X has 32 ordinary

- double points and non-singular elsewhere.
(2-3) Any two of (C1)’s cannot hold simultaneously and any two of (C2)’s also.
Now we assume the condition (C0). Let n be the number of the singular points on
X. Then the subvariety X is irreducible and non-singular outside exactly n ordinary
double points where n=0, 16 or 32. Let 1: X— X be the minimal resolution of X. We
consider the following automorphisms of E; X E, x E; x E,:

g1 (21,22, 23, 28) > (— 21+ 3,2, +3, 23, 24)
92: (21, 23, 23, 24) (21, —22+3, 23 +3, —24+9),
93: (21,22, 23, 28) (21 + 3, 25, —23+3, —z4+3),
9a: (21, 22, 23, 24) (24, 23, — 23, —24),
gs: (21, 22, 23, 2a) (21 +71/2, 2, + T2/2, 23+ T3/2, 2, +74/2) .
Let G be the group generated by g,, g,, g3, g4 and gs:
G=<91, 92,93, 94 95> (=(Z/22)).

Then X is invariant under the action of G. G operates on X and, hence, naturally on
the minimal resolution X of X. Let S be the quotient surface of X by G. Then we have
the following results:

S is a non-singular minimal surface of general type with
P(S)=q(S)=0, Ki=7-n/16, e&(S)=5+n/16
where n=the number of the singular points on X=0, 16 or 32. Hence
K}=7,6o0r5, e(S)=5,60r7
according as n=0, 16 or 32.

[Surfaces with K2 =8] Under the same circumstances, we define the subvariety
X of E, x E, x E; x E, by

X= {(Zl, 22, 23, Z4)EE1 X E2 X E3 X E4|
01(21)02(22)=by * by, 93(23)04(24)=b3* by} .

We assume
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a;*a,#1, a,#a,,
azra,#1, az#ay .
Then X is a product of two irreducible and non-singular algebraic curves. We consider
the following automorphisms of E; x E;, X E3 X E,:
91: (21,23, 23, 28) > (—zy + 3, 2, +3, —23, —24) 5
92: (21, 22, 23, 28) (=21 +71/2, —2,+75/2, 23+ 73/2, 24+ 74/2) ,
g3: (21, 22, 23, 28) =21 +71/2, 2, +72/2, —2z3+3, —z4+3),
9a: (21522, 23, 2) (=21 +4, —zo+3, —23+73/2, 24+ 74/2) .
Let G be the group generated by g,, g,, g5 and g,:

G={91, 92 93 9a> (=(Z/22)*).

Then X is invariant under the action of G. G has no fixed points on X. Let S be the
quotient surface of X by G. Then we have the following results:

S is a non-singular minimal surface of general type with

p,(S)=q(S)=0, KZ=8, e(S)=4.
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