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Introduction.

C. S. Davis [1] proved the following theorem: Let k be a positive integer and
c=1/(2k). Then, for any £¢>0, the inequality

kP

logloggqg
q*logg

has an infinity of solutions in integers p and q. Further, there exists a number q', depending
only on ¢ and k, such that

e <(c+e)

loglog g
q*logq

e”"—f—'>(c——8)
q

for all integers p and q with q>q'.

In the previous paper [2], we showed that ¢’ is an effectively computable number
depending only on ¢ for k= 1. The aim of this note is to give, for any k> 2, explicit lower
bound for ¢'.

Let k and N be positive integers with k>2 and N>5, and let p,/g, be the n-th
convergent of e'’*. Let yy, 6,,, and y¥ be defined by

2k+1 4 1
yN=2(k+ k+ )(1+loglog( k(N + )/e)>,
2N—1 log(N+1)
5 — k(2m+ 1)+ 1loglogg,,,
" 10gq3m ’

and

y¥=max {5, |1<m<N},
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respectively.

THEOREM. Let k >2 be positive integers. Then

o P

q

logloggq
vq*logg

for all integers p and q with g=>2, where
y=max {yn, Y}
Sfor any positive integer N> 5.

In [2], we showed that

p|_ loglogg
e——|>— >~
q| 3q*logg

for all integers p and g with g>2. As corollaries of Theorem, we have

COROLLARY 1. For all integers p and q with ¢>2,

2 P - loglogg
q| 64*logg '

COROLLARY 2. For all integers p and q with q=>2,

s P - logloggqg
q| 94°logq

§1. Lemma.
LEMMA. Under the same assumptions as in Theorem,

en_L |5

q

logloggq
ynq”logq

for all integers p and q with q>q;y.

1/k

PROOF. We may assume that p/q is a convergent of e'/*, since otherwise

The continued fraction of e'/* is

e”":[ao, a;,a, - ]=[19 (zn_l)k_l’ 1]'(:0=1 .

In other words, a;,=a;,,+,=1 and a;, ., =k(2m+1)—1 for m=0.

Case 1. Let n=3m (m>=N). Since Gin+1=9m+193m+93m-1=kCm+1)—
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Dq3m~+ G3m—1 <k(2m+1)q3,,, we have

1k_ P3m 1 > 1
qd3m q3m(q3m+1 +q3m) (k(2m+ 1)+ l)qgm

Now we must estimate g5,. Since ¢3,,=>2k(2m—1)q3,-3=>"-=2k)"Cm—1)2m—
3)---5-3-1, we have

e >

log g5, =mlog(2k)+ 'Zn: log2Qv—1)>mlog(2k)+(m—1/2)log(2m—1)—(m—1)

v=1

>(m—1/2)log(2m—1).

Conversely, since qs,, <4kmqs,,_ 3 <(4k)"qo || v=(4k)"m!, we have

v=1

log g3, <mlog(4k)+ > logv<mlog(4k)+(m+1)log(m+1)—m
v=1

<(m+1)log(4k(m+1)/e),
loglog ¢3,,<log(m+1)+loglog(4k(m+1)/e) .
Since
1) = loglog(4k(x+1)/e) (x>5)
log(x+1)

is a strictly decreasing function, we have
loglogqs,,<(1+I(N))logm+1)<(1+I(N))log(2m—1).

From these inequalities, we find

loglogq3m< 1+I(N)
logqs, m—1/2

1 loglog(4k(N+1 1
s(2k+ 2k + )(H_og og(4k(N + )/e))_
N—1/2 log(N+1) kCm+1)+1
-
kQm+1)+1
Therefore,
el/k_Pam loglog g3, .
qd3m qugm IOg d3m

Case 2. Let n=3m+1 (m=N). Since Gapm+2=a3m+293m+1+93m=q3m+1+q3m>
we have
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1 1

1/k___p3m+1 > .
d3m+ 1(q3m+2+q3m+ 1) 3q§m+ 1

e >

9d3m+1

Therefore, the lemma is proved in this case. The same inequality also holds for n=3m+ 2
(m=> N). This completes the proof.

§2. Proof of the theorem.

It suffices only to consider that p/q is a (3m)-th convergent of e'’*. From the
definition of y¥, we have the following inequalities

ok _ Pam 1 _ logloggs, _ logloggsm (1<m<N).

Gsm| (kQCm+1)+1)q3, 06,95:10893, VXq3mlogqsn

And from Lemma, we have

1/k __ P3m log log d3m
d3m qugmlog d3m

This completes the proof of the theorem.

e (m=N).

§3. Proof of corollaries.

PROOF OF COROLLARY 1. For N=30, we have y;,=5.9993--- and y¥,=6,=
4.4817- - -. Hence we can choose y so that y=6.

PROOF OF COROLLARY 2. For N=36, we have y;5=8.9919--- and y%,=05;5=
6.2699- - -. Hence we can choose y so that y=9.
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