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1. Introduction.

Let G be a connected, simply connected nilpotent Lie group and g be its Lie algebra.
Irreducible unitary representations can be described by the orbit method due to A. A.
Kirillov ([Ki]). Let f be an element of the dual space g’ of g. Let |) be a real polarization
at f. Then f defines a one-dimensional representation 7, of a subgroup D=exp(g N h)
of G. We can get an irreducible unitary representation U’ 5 of G, which is the induced
representation from the representation t, of D. The unitary equivalence class of U/*Y
is independent of §) and depends only on the coadjoint orbit containing f. And any
irreducible unitary representation of G is equivalent to one of U S+Y, Since § is isotropic
with respect to the alternative bilinear form ¢ (X, Y)= f([X, Y]), X, Yegc, f defines 7.

In the present paper we study the non-unitary representations of the Heisenberg
group of (2n+ 1)-dimension. Irreducible unitary representations of the Heisenberg group
are essentially parametrized by unitary characters of the center. V. S. Petrosyan ([P])
studied the irreducibility of non-unitary representations of the Heisenberg group of 3-
dimension induced from non-unitary characters of the center. To prove the operator ir-
reducibility he used the method of the invariant bilinear forms which was used in [GGV].

First we fix a real standard polarization b at feg’ (see §2 for the definition of
standard) and take a complex linear form Ae(g’)c on g such that b is isotropic with
respect to ¢ ,. We define a representation 7, of D by 1 4(exp X) = exp(\/——_f A(X)), Xegnh.
'And we define a non-unitary representation U#*% of G induced from t,. We realize it
on the space 2(G/D) of C*-functions on G/D with compact support. In our case if
f#0 on the center of g, then § is abelian and G/D=R". So we denote Z(R") by 29 as
the representation space of U4%. Thus our object of study is a family of non-unitary
representations {(U*9, 2}) | b is standard, 4 e(g')c}-

We get a necessary and sufficient condition for the existence of an invariant bilinear
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form on 2}, x 2}, (Theorem 1). And we also get a necessary and sufficient condition
for the existence of an intertwining operator from 2}, to 2}, (Theorem 2). This theorem
shows that even if 4, and A, are equal on the center, there does not necessarily exist
an intertwining operator from 92}, to 9)..

We call the representation U4*Y is operator irreducible if any intertwining operator
from 99 to itself is a scalar multiple of the identity operator. We prove that U4 is
operator irreducible if 4 is not zero on the center of g (Theorem 3). V. S. Petrosyan
([P]) proved that. the non-unitary representation induced from a non-unitary and
non-trivial character of the center is operator irreducible for the Heisenberg group of
3-dimension. In §5 we determine when the representation U4-Yis unitary (Theorem 4).

In Theorem 5 we prove that two representations U4*® and U429 are equivalent if
and only if they are on the same orbit in (g")¢ of a subgroup B of G¢ containing G. In
§7 we study an invariant bilinear form for representations corresponding to different
types of polarizations. Generally, the intertwining operators are not operators of 2. In
§8 we get an intertwining operator for unitary representations corresponding to different
types of polarizations b%, and b%, on the Schwartz space & (see §2 for the notation of
polarization). This is an integral operator whose kernel is exponential of a polynomial
of degree 2 (Theorem 10). By changing the basis any polarization turns out to be a
canonical polarization which means that 7= 0O for our notation. G. Lion (CL1], [L2])
has given an intertwining operator between unitary representations corresponding to
b% and % in another way. In the first version of this paper ([Ku]), we considered only
the case where k=n, T=1tI (te R) and k=0, T= 0. Extending our observation to any
k and any Te M(R)@® M,_,(R), we can understand the subgroup B (Theorem 5).

2. Representations of Heisenberg group.

Let G be the Heisenberg group of (2n+ 1)-dimension. We realize G as a real Lie
group whose underlying manifold is R?"*! and multiplication is

@b, c):(a’,b',c)=(a+a’,b+b’,c+c’+a-b"),

where a,a’,b,b’eR", c,c’'eR and a-b'=) a;b;. ;

Let g be the Lie algebra of G. Then g={X=(x,y,z)|x,yeR", ze R} with
[, v, 2), (x', ¥, 2')]1=(0,0, x - y'—x’ - y). We denote by g'= {A=(@, u,v) | A, uER", ve
R} the real dual space of g defined by

A, X>=A*x+pu-y+vz.
The group G acts on g’ by coadjoint action:
(g4, X>={4,Adlg")X> .
Then
2.1) (@, b,c)- (A, u, vV)=(A+vb, u—va,v).
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For any Aeg’ we denote by G, the isotropy subgroup of A in G. If v#0, then
G,={(0,0, c)e G}, which is the center of G. The Lie algebra of G, is g,={(0,0, z)eg}.
The polarization at A is, by definition ([AK]), a complex subalgebra | of gc such that

(1) g4<bh and b is stable under Ad(G ),

(2) 2 dimcgc/b=dimgg/g,,

(3) 4|[h,bl=0,

(4) b+bis a Lie subalgebra of g.
A polarization § is called real if h=Bh.

We consider the standard polarizations for Heisenberg group at A=¢4, u, v) for
v#0. We denote by M,(K) and Sym,(K) the set of all matrices and symmetric matrices
on a field K, respectively. We fix an integer k (0 <k <n). For x=(x,, - - -, x,) € C" we put

x'=(x1, ”"xk)s x”=(xk+19 '”axn)

if k>1 and put x=x" if k=0. And we write (x, y, z)=(x", x”, ¥, y”, z) in gc. In the
same way, we write (a, b, c)=(a’,a”,b’,b",c)eG. Let T'e M(C) and T"e M, _,(C) and
put T=7"® T" € M,(C). We define polarizations h% by

be={(T"y',x",y', T"'x",2)| x, ye C",ze C} .

By the condition (3) of the definition of the polarization, T is symmetric. It is easy
to see that b% is real if and only if TeSym(R)® Sym,_,(R). We assume that
Te Sym(R)® Sym, _(R). We call % a standard polarization of rank k and b¥ a canoni-
cal polarization of rank k.

Let Dhi=exp(gnb%). Then Di={p=(T"b’,a",b’,T"a",c)eG}. EBach A=

(4, u, v)e(g')c defines a one-dimensional representation of D%. We denote it by 7,,:
TAh)=1,((T'b", a", b’, T"a", c))
=exp\/_-j{1’ “TO +2a"+u b +p - Ta"
+vc—(T'b'-b'+T"a" - a")/2)}
for h=(T'b’,a",b’, T"a",c). Let A,={(a’,0,0,b",0)eG}. Then we can get a de-
composition G = 4, D% by
(a,b,c)=(@"—T'b',0,0,b" —T"a”,0T'b',a",b’, T"a",c—a’ - b'+T'b" - b").

Let U4*T be a continuous representation of G induced by the representation 7, of D%.
Let 2(R") be the space of infinitely differentiable functions with compact support on

R" with usual topology. We realize U4"*T on C®(4,)= 2 (R* x R""*)=2(R"), which we
denote by 257

22)  (UMTFYx)

=e¢1“f(;_'_ T'b +A" a” +u'b +pu" - T a" +vc—b'x +a’-x""—a"’ b’ —(T'b -b'—T"a"’ -a’")/2)}

X F(xl _al + lel’ x// _bII + T’Iall)
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for g=(a,b,c)eG and Fe 2} .

3. Invariant bilinear forms on 25.7 x 257.

Let B be a non-zero continuous bilinear form on 25T x 24T (Te Sym(R)®
Sym, _,(R)) which is invariant under G, that is

Ak, T A2k, T —
B((]gl Fl’ ng FZ)—B(FDFZ)
for all ge G, F, e 25T and F,e 2. _
Let A;=(4;, p;, v;)=(4} 7, uj 17, v;). Then
B(Flzv F2) )
=B(e‘/__1(;"l'T'b’+1,1,'a”+“’lb‘ +u',’-T"a"+v1(c—b’-x'+a”~x”-a"-b”—(T’b'-b’—T"a”-a")/Z))
Fl(x’ —a' + lel, x"—b" + T"a"), e\/—_l{l'z'T'b’+1'z"a"+p'1b’+n'2"T"a”+v;(c—b"x'
+a”-x"—a"-b"—(T’b"b'—T"a”-a”)/Z)]Fz(xl__al + ler, xu_bu + Tnan)) .
If we put a=b=0, then
B(F,, F2)=9J- NI B(Fy, Fy)

for all ce R. Hence we have v, = —v,. We put v=v,.
If we put a” =0, b'=0, c=0, we have

B(F,, F,)=B(F,(x'—a’, x" —b"), Fy(x’ —a’, x" —b"))

for all a’e R* and b” € R"*. Thus B is a translation invariant bilinear form on 2(R").
Then ([GV, GGV])) there exists a distribution B, 2'(R") such that

B(F,, F;)= <Bo’ j

R"

Fl(y)Fz(x+y)d}’> =<{By, F1*F;)
for any F; and F,.
If we put @’ =0, b”" =0,
{By, Fy*F,>={B,, eJ-_u(T';.'l +pi+ T A+ uy) b+ A+ T uy + 45 +T"uy) @'’}
e«/—_lv(b’ .x'—a’ -x")};'1 * F2> .

Since the functions of the form F, *x F, (F,, F, € 2) make a dense subset in 9,
(3.1 (B, F> =By, €/~ LUT 3+ i+ Ayt i) b + ] + 7w 435 + T u)-a")
eJ—_lv(b' -x'—a" -x")F>

for all Fe 2(R").
First we assume that v=0. Then

(3.2) TAy+uy+TA+us=0,  A{+T"p{+A5+T"u3=0.
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Conversely, if A; and A4, satisfy the relation (3.2), for any B,e 2’ the bilinear form
B(F,, F})=<By, F1*F,)

is continuous and invariant.

Next we assume that v#0. We set |¢'|=¢,+ " +qi, | ¢ |=qxs 1+ +¢,, |q|=
l¢’|+1q"”| and

o7l , ol

=7 . D%
ab’IQI . .ab;‘qk

a" = dayPst- - - daln
for g=(q1, ' **, g,)€ Z".. We let operate D{.DZ. (| q|+0) to the both side of (3.1) and
we put b'=0 and a” =0. Then

Dg

k
- (33) 0=,/—1 I‘“<Bo, _l:[1 (T"AD;+ (') + (T A%);+ (uh); + vx )%

ﬁ ((A7);+(T"u7);+( ’2’),-+(T”#'z'),--VX3’)‘”F>-

ji=k+1
‘We put
_ (T4 () +(T7A5);+ (), (1<j<k)
v
oL.=
! (A7) +(T"u1);+(A5);+(T"uy); (k<j<n)
v

Then, in particular, we have
3.4 {By, (xj_ ocj)F> =0
for any Fe 2. If «;¢ R, for any Fe 9,

J J

<B0a F>=<B0, (xj—aj) F >=0

This contradicts the non-triviality of B. Hence « ;ER for all j=1, ---, n.
From (3.3) we have

<Bo, ; (¢, — ,.)ZF>=0.

Let U(x) be any open neighborhood of a =(a,, - - -, «,) in R" and xy,,, be its characteristic
function. If Fe 2 is zero on U(x), then

By, F)={B,, Xvaf) + <Bo; ( i (xj—“j)2> Z(l —Xva)F >=0 .

Hence the support of B, is a single point a. So there exist pe Z, and a,eCfor ge 2",
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such that

Bo= Z an?ca(x_a)»

lgl<p

where § is the Dirac’s delta function. Then we have

(3.5 Y. (= 1)'a,DY(x;— ) F)x)|c=a=0
1<|ql<p
for j=1, ---,n by (3.4). If |g| =1, then ¢g;>1 for some j. We choose Fe 2 so that
F(x)=(x; —os)" - (xj—o))¥ 71 - - (xp— )
on a neighbourhood of x=a. Then by (3.5), (—1)'9'ag,!- - -¢,!=0. Hence
B(F, Fy)=aq j Fi0F(x+a)dx  (ap#0).

Thus we have the following theorem.

THEOREM 1. Let Al =(A'1’ K1, Vi), A2=(12, Ha, V2)€ C*™*! and T= T'eT'e
Sym(R)®D Sym, _,(R). There exists a continuous non-trivial invariant bilinear form
B=B,, 4, on 25T x DT if and only if

TI A‘I ll ’ !’
(1) V1=—'V2¢0, ( 1+ 2)+/“1+”2 eRk
Vi
and
. vl

or
2) vi=v,=0, T'A[4+A)+ui+pu5=0 and A{+A5+T"(u]+u%)=0.
When (1) holds,

TI AI A’ ’ ’
B(Fl, F2)=CJ‘ Fl(x', x”)Fz(x’-— ( 1+ 2)+#1+I“’2,
RkxRn-k V1
ot M+ A5+ T"(u]+pul )dxdx
Vi
Sor non zero Ce C. In the case of (2)
B(F,, F,)= <Bo’ J Fl()’)Fz(x+J’)dJ’>
R'l

for any non zero distribution B, on R".

COROLLARY. There always exists a continuous invariant bilinear form
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By, _u(Fy, Fy)= CJ Fi(x)Fy(x)dx (C#0)

R"n

on D} x Pk ,.

4. Intertwining operators between 2 and Zj,.

Let A= A(A,, 4,) be a non-trivial intertwining operator between 257 and 257,
i.e. it is a non-trivial continuous linear mapping of 2% to 2% such that

Av,k,T __ yrA2,k,T
AUART Z yAakT 4

for all geG.
We assume that v, #0. Then there exists a non-trivial invariant bilinear form on
25T x 9k

B, _4,(F3, F3)= C’j Fy(x)F5(x)dx , C'#0.

Rn
We put

B(Fy, F3)= By, - 4,(A(Ay, A)Fy, Fj).
This is a non-trivial invariant bilinear form on 2, x 2* , . From Theorem 1 we have

T'(3y =2 +my — A= A5+ Ty — 3

Vi=V,, ERk, 5 ER”—k,
and
T’ ll — 'y
B(Fl, F3)=C'IJ‘ FI(X)F3(.XJ— ( 1 2)-’—#1 ”2 ,
R" vy
R N T — "
xll+ 1 2+ (:ul Ha )dx’
Vi

(C” #0). We have, therefore,

T’ AI b_ ! ! —_ ’ N_ 14 77, II_ "
AF(X)=CF(X’+ ( 1 2)+#1 ”Z,xn_ A’l AZ+T (l'l'l Ha )’ C#O.
vy Vi
Next we assume that v, =0. Then we put g=(0, 0, c)e G in
@.1) (AUF*T FYx) = (U7 AF)).

Then

eV~ T4 F)(x)=(AF)x)
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for all ce R. Thus we have that v, =0. Now we put g=(a’, b”, 0)e G in (4.1). Since the
operator U,+*T is a translation on 2, the operator 4 is a continuous operator which
commutes with translations. Finally, we put g=(a, b, 0)e G. Then

eV 1T A +u) b+ QY + U Y AFYx'—a' + T'b, x" —b" + T"a")
=e\/—1{(T Aytuy)-b'+(A; +T uy) a }(AF)(x’—a'+ T’b’, x/r_blr+ Tnan) .
We put a’'=T'b" and b"=T"a"”. Then
VT TUT A+ 6D~ (T Ay + Wb+ (GY + T W)= T + T WYY 4 F ) = (AF)x)
for all ¥’ e R* and a” € R"~*. We have, therefore,
T'Ay+puy=TA+p5 and A+ T'u{=25+T"pu3.
Thus we have the following theorem.

THEOREM 2. There exists a non-trivial intertwining operator A(A,, A,) between 25T
and 2% if and only if

(TR + )= (TR 1) _

(1) V1=V, #0 ’
vy
and
ll’ TI/ ” —_ ” TII ”
A1+ T"u)—(A2+T" ) Rk,
Vi

or
2) vi=v,=0, TA\+u\=TA%+u, and A{+T'u{=213+T"u’.

In the case of (1)

(A(4,, Az)F)(x)=CF(x'+ (Tl1+ﬂ1)_(T12+#z)’x"— ().1+T uN—@A5+T u >’

vy Vi
C+#0. And in the case of (2) A(A,, A,) is a continuous operator on 2 which commutes
with translations.
In the case (1) of Theorem 2 we put A, =A4,, then we have
A(Aq, A)=CI.
Thus we have the following theorem.

THEOREM 3. The representation U4A*T (A=A, u,v)) on 25T (T=T'®T'e
Sym,(R) ® Sym,,_,(R)) is operator irreducible if v+0.
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5. Invariant hermitian form on 247,
A hermitian form H(F,, F,) on 2%7 is said invariant if
H(U;'k’TFn U;’k’TFz)= H(F,, F5)

for all F, F,e 2%7. Let H(F,, F,) be a non-trivial continuous hermitian form on 2%7.
We put

B(Fl’ F2)=H(F1’ FZ) ’

where the upper bar denotes the complex conjugate. For A=(4, u, v)=(4,, - -,
Aus Uys " s Uy V) We put A=A, i, V)=(y, -, A, i1 ", fin» V). Then we have

(UARTF)x)=(U; **TF)x).
Hence
B(UACTF,, Uy A%TF)= HUATF,, UA*TF,)= H(F,, F,)=B(Fy, F,) .

Thus B is a non-trivial continuous invariant bilinear form on 257 x 2%%. By The-
orem 1 we have v=v and so veR. If v#0, then (T'A'+pu'—(TA' +pu'))/veR*
and A"+ T"p"—@A"+ T u"))/veR"™*. Hence T'A'+pu'=(TA +u’) and A"+ T"u" =
A"+ T"u"). If v=0, then the same result holds. Thus we proved the following theorem.

THEOREM 4. There exists a non-trivial continuous invariant hermitian form H on
2%T if and only if A is of the form (l'+\/_—_T€', A"—\/_—_IT”é”, u—J=1T¢, u" +
J—1&",v), where 1, p and ¢ are in R" and v is in R. If v#0, then

Rn

H(F,, F2)=Cj F,(x)Fy(x)dx , CeR—-{0}.

6. G- and B%-orbits in ().

Let A,, A,e(g')c. Two elements A, =(A,, y,, v;) and A,=(4,, i,, v,) are on the
same G-orbit if and only if A,=g-+ A, for some g=(a, b, c)e G. Then by (2.1)
112=2-1+v1b, ﬂ2=/£1——vla and v1=V2 .

Hence if v, =0, then

If vi #0, then

T’ ’ 4 —_ T/AI 4
v, =v,, (T"A%+p3)—( 1+”1)=T’b’—a'eR",
V1
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A5+ T"u)— G+ T"wy

vy

=b"— TuaneRn—k .

Then U4+*T is equivalent to U4>*T from Theorems 2, 3. However, even if two
representations U4t*T and U42*T are equivalent, A, and A, are not necessarily on
the same G-orbit.

Let G¢ be the complexification of G, i.e. the group of elements g=(a, B, y)e C*"*1
with the same multiplication as that of G. The Lie algebra of G¢ is g¢c. Then G acts
naturally on (g')¢:

(@ B, 7) (A, u, V)=(A+vB, u—va, v).
Let B% be a subgroup of G consisting of elements
(6.1) g=@+/—1Tu,a"+ /1" b+ /-1, 0"+ /—1T"u",y),

where a, b, ue R", ye C. Then B% =exp(g+./— 1(b% N g)), where T=T" @ T"'. We assume
that A, and A, satisfy the condition (1) of Theorem 2. We put

ll _ll I_ !
__1___.2_=_b’_ /[—1u’, #I—‘uz_=a'+|/—]T'u’,
Vq

Vi

lll__lll 'I_ 143
s MYy U L. SR =

Vi Vi

where q, b, ue R". We put

g=(a’ +\/:_1T’u', —a"—/—1u", b+ /—1u, —b”—\/——lT"u”, 0).
Then g ° Al =A2.
Conversely, if g+ A, = A, for g e B% of the form (6.1), then it is easy to see that A,
and A, satisfy the condition (1) of Theorem 2.
Thus we have the following theorem.

THEOREM 5. Let T=T"®T"'e€Sym(R)D Sym,_,(R). We assume that A,=
(A1s 11> v1)s A3 =(A3, B3, v3)€(8")c and vy #0,v, #0. Let B =exp(g+/— 1(b% N g)). Then
two representations U4*T and U4**T are equivalent if and only if A, and A, are on
the same B%-orbit in (§')¢. Especially, if A, and A, are on the same G-oibit, then U4+*T
and U4**T gre equivalent.

7. Invariant bilinear forms on 2.7 x 2.2,

In this section we consider an invariant bilinear form on 2 %7t x 2% for the two
cases: (1) Ty —T, is regular or (2) T, — T, is diagonal.
Let B be a non-trivial continuous bilinear form on 25T x 2% T2, that is,
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B(F;, F) ,
— VEIUT A+ b+ (A +TYAY) @ +vi(c—b' %" +a"-x"" —a'’ b = (Tyb' b’ —TYa" -a’")[2)}
__B(e 141 T8y 1 ¥4 1 1
F,(x'—a' +Tyb, x" —b"+Ta"), e’ S1(TyAy+uy) b G+ TEkG)
+va(c—b'-x'+a’ x’—a’ b —(Tyb' b’ —Tya"” -a")/2)}F2(xl —a' + Trzb/, xu _ bu + rzrau))

for all @, beR™ ceR, F,e 2% and F,e 2% By the same arguments as in §2, we

have v, = —v, and there exists a distribution B, e 2'(R") such that

B(F,, F2)=<BO, J. Fl(Y)Fz(x+)’)dJ’> .
Then we have |
(B, F>
=(B,, oV T THTR A+ TyAg + sy b vax) b+ A7+ T+ 35 4 T ug —vax)-a”
—VATY ~ Ty b 24Ty =T a2 F(x' (T — Ty)b', x"" — (T — T3)a")> .

We differentiate the both sides by b; and a; at ' =0, a”=0. Then, for 1 <j<k,

Bo, /= T{(T',A4);+ (1) (T2A%);+ (2)j + V1%, 1 F

x 0
— Y (T, = Ty)y—F y=0
izl( 1 2)1; Ox >

i

and, for k+1<j<n,

<Bo, v -1 {('11)1'+(T'1'I1'1’)j+('12)j+(T'2'#’2’)j_V1xj}F

n

0
- Z (T’f— ,Z’)ji‘é‘_'F>=O
i=k+1 x,-

for any Fe Z(R"). Hence the distribution B satisfies the f ollowing differential equations

8)0x,
) (Ti- '2)< )Bo= — /= U{T A+ + Ty + iy + 91X} Bo
8/0%,
0/0xy 41
@ = T'zl)( >30= — /TR + TR+ A5+ Tug —v,x"} By -
8/ox,

(1) We assume that T, — T, is regular. Then
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0/0x,

( : )Bo=—\/—1(Ta— DT T A+ + Tody +uy+v,x'} By
6/5)6,‘

00X 44

( : )Bo=—f—_l(r';—T'z')”“{Aa'+T';u';+z';+ au5—vix"} By .
d/ox,

Therefore, B, is a function on R” such that
By(x)=Ce —V =TT, =Ty~ x %' = (T} — Ty~ 1x" - x"")/2 +(T) — Ty~ W(T} 4, +u)
TR U)X (T T AT+ TR+ 25+ THu) )
where C is a non-zero constant. Then we have the following theorem.

THEOREM 6. LetT,, T,e Sym(R)® Sym, _ (R). We assume that T, — T, is regular.
If v,=—v,, then there exists a non-trivial continuous invariant bilinear Jorm on
DI x DIk, It is of the form

B(F,, F;)=C f J e™V=1e0-DF, (x)F,(y)dxdy ,
R2n

where
PX)=vi(Ty—T3) " 'x' - X' —(T{— T~ 'x" * x")[2+(T, — T)~ \(T", A,
o+ Tyt ) X+ (T = TR+ Tiu{ + 45+ T5ug) - x”
and C is a non zero constant.

(2) Next we assume that T, — T, is a diagonal matrix and v,= —v, #0. For
simplicity we consider for diagonal matrix T, — T,=(T,—Ty)®(T|-T%),

T\ —T,=diag(t,, ---,¢,0,---,0), T{—T3;=diag(t;q, -, 1,0, - - -, 0),
where ¢, -4, - - -1,#0. Then, by (7.1) and (7.2), we have
0

ox;
0
0x;

Bo=—/ = 147 H{(T1 A9+ (@) + (T4, + (), +vix, 3By (1<j<r),

By=—/—1t; 1{(A’ll)j+(T'11#’1’)j+(A’Z’)j'*'(T’Z’I‘IZ,)j_lej}BO k+1<j<s).

For r<j<k and s<j<n we have
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k
0=<Bo, Hl((T' D+ )+ (TA%);+ (ua);+vx )
J

j=r+
) CHRECEPARY 0, (T~ )OF )
as (3.3). Hence, if
(TR )
Vi
W+ 35+ TG+,
Vi

&j

I

R (r<j<k)

®;

(s<j<n),

the distribution B, is a direct product of two distributions B; with respect to variables
X1, """y Xy X415 " " °» X and B, with respect to variables x, .y, **c, Xp Xgu g, 0 X!

<B1,f>=C1J e VTloN fdx  (feD(R™),
Rr+s—-k '
BZ=C25(xr+1—ar+1a Ty X Oy Xgp1 — %5415 T xn_—an) s

where

</’(J€)=_§,1 £ vy 2+ (T'1 A+ (1), + (T2A%);+ (U2)))x;

+ ;H 17 (= vyx; 24 (A1) + (TiuY);+ (A2 +(T2p2))x; -
J=
Thus we have the following theorem.

THEOREM 7. Let T,, T,e Sym(R)® Sym,_,(R). We assume that T)—T,=
diag(tl’ Y trs 05 Tt 0)3 Tll’_ ,21=diag(tk+1a T ts9 0, T 0), (tl. ) 'trtk+1. : .ts#O)' I.f
v, =—v,#0 and
_ T+ p ),

V1

&;

R (r<j<k)

WL+ 25+ TWy+u9);
vy

&

R  (s<j<n),

then there exists a non-trivial continuous invariant bilinear form on 25T x 2%T2. It is of
the form
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B(Fl’ F2)=Cf e—\/—_lw(y—x)Fl(x)FZ(yl’ s Ve Xy FO g, X 0y,

Rn+r+l°k
Yit1s " "5 Vo Xsp1FH0giq, =y Xyt )dx, - - ~dx,dy, - dy,dyy iy cdys,

where
(p(x)=z1 15 Y(vyx;/2+ (T A+ () +(THA%);+ (15))x;
Jj= )

+ X 17 (v 24+ (0 + (TR D)+ (A5);+ (Tau))x;

ji=k+1

and C is a non-zero constant.

8. Application to intertwining operators of the unitary representations U4,

We assume that A=(4, u,v), T’'A’+u’eR*, A"+ T"u" € R"* and ve R. Then the
representation U4**T can be realized on the Schwartz space #(R") of rapidly decreasing
functions by (2.2). We denote #(R") by 4T as the representation space of U4*T,
Then we can prove the following theorems in the same way as the proof of Theorem

1 and Theorem 6.

THEOREM 8. Let Ay=(dy, Uy, V1), Ay =(A3, Y3, v,)€C*"*' and T=T'@®T"e
Sym(R) ® Sym,_(R). We assume that v;eR, TA,+puieR* and 2} +T/u/cR"*
(i=1,2). There exists a continuous non-trivial invariant bilinear form B=B A4, ON

FET x 5T if and only if

€)) vi=—v,%0

or

2) vi=v;=0, T@A}+A)+pi+p>=0 and A[+A5+T"(u{+u3)=0.
When (1) holds,

TV, +A%) + '+ 0’

B(F19F2)=CJ‘ Fl(xl’xll)Fz(x;__ ( 1+ 2)+ﬂ1+[£2 ’

Rk x Rn—k vl

" "4 T )

x"+ 1+22+T"(u7+u3 )dx’dx':
Vi
JSor non zero CeC. In the case of (2)
B(F19 F2)= <B09 J‘ Fl(y)Fz(x +y)dy>
R™

Jor any non zero tempered distribution B, on R".
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THEOREM 9. Let Ty, T, € Sym(R) @ Sym,_(R). We assume that T, — T, is regular
andthatv,e R, TiA,+pie R and 2} + T/ p; e R**(i=1,2). If vo= — vy, then there exists a
non-trivial continuous invariant bilinear form on 5T x S5 1> It is of the form

B(F,, F;)= Cj\j. e_JTIq,(y_x)Fdx)Fz()’)dxdy ’
Rln

where
o()=v,(Ty =Ty~ *x" - x'—(T7 =Ty~ 'x"+ x")2+(T1—T2)" YTy
o+ ThHA,+ps) X' +(T{—T3) A+ Tipi + A5+ Tous) - x”
and C is a non-zero constant. ' '

Let T,, T,, A, and A, be as in Theorem 9. We assume that v, #0. Let A(A4, 4,)
be a non-trivial continuous intertwining operator of 4T to &%72. By Theorem 8 there
exists an essentially unique invariant bilinear form B_ , 4, on &% x £47*:

B—AZ,AZ(F3’ F,)= C1J F3(x)F2(x)dx ’

R"
for F,e #%T2, Fy;e #*%T2. Then the bilinear form B on & kT2 x #%T1 defined by

B(F5, F)=B_ 4, 4,(F3, A(4;, A)F)=C,4 J Fa(x)(A(Ay, A2)F)(x)dx
_ R"
is invariant. Hence by Theorems 8, 9 we have v, =v, and
B(F;, Fy)=C, jj e—\/jtp(y—x)Fs(x)Fl(J’)dXdy s
R2n

where
@) =v,(Ty—Ty) ™ x' - x' —(T5 =T~ 'x"+ x")2+ (T, =T~ (T141
Wy = Thdy— ) X +(T5—= T A + Ty — 25— T3u3) "
and C, is a non-zero constant. Since Fj is arbitrary, we have the following theorem.

THEOREM 10. Let T,, T, € Sym(R) ® Sym,_(R). We assume that T, — T, is regular
and that v,eR, T;A;+u,eR* and A} +Tip/eR"™* (i=1,2). If v;=v,#0, then any
non-trivial intertwining operator 5Tt to %12 is given by

(A(A4, A)F)x)=C J e~V 1P~ AF(y)dy
Rn
where
P(x)=v, (T, =Ty x' - x' —(T5 =T 'x"+ x")24+(T3— D7 HTAY
+ = ThAy —ph) - X + (T — T~ YA+ Tipy — A3 —Tau3) - x”
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and C is a non-zero constant.
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