Defining Ideals of Complete Intersection Monoid Rings

Kazufumi ETO

Waseda University

In this note, we will extend Delorme's result about monomial curves [1] to Z^{n}-graded rings. To do this, we will define an ideal $I(V)$ associated with a submodule V of \boldsymbol{Z}^{N}. It is generated by polynomials associated with vectors of V (see §1). And we have various examples of such ideals, e.g., defining ideals of monomial curves, that of Z^{n}-graded ring, and an ideal generated by 2×2 minors of a matrix. In general, ht $I(V)=\operatorname{rank} V, I(V)$ is not necessarily prime, and we will give a condition that $I(V)$ is prime (Proposition 1.3).

In section 2, we will give the condition that $I(V)$ is a complete intersection ideal when V is contained in the kernel of a map $Z^{p} \rightarrow Z^{q}$ consisting of positive integers (Theorem 2.4). And we give a proof of the Delorme's result that any complete intersection monomial curve in A^{r} is induced by a complete intersection monomial curve in A^{r-1} (Corollary 2.5). We also show that if rank $V<N-1$ and if $I(V)$ is a complete intersection, it is generated by a part of a minimal generating system of a complete intersection homogeneous ideal of height $N-1$ of the form $I\left(V^{\prime}\right)$ (Theorem 2.10).

1. Definitions and preliminaries.

Let $A=k\left[X_{1}, \cdots, X_{N}\right]$ be a polynominal ring over a field k. For $v \in Z^{N}$, we denote the i-th entry of v by $\sigma_{i}(v)$, and put

$$
\begin{aligned}
& F_{+}(v)=\prod_{\sigma_{i}(v)>0} X_{i}^{\sigma_{i}(v)} \\
& F_{-}(v)=\prod_{\sigma_{i}(v)<0} X_{i}^{-\sigma_{i}(v)} \\
& F(v)=F_{-}(v)-F_{+}(v) .
\end{aligned}
$$

(If $\sigma_{i}(v)<0$ for all i, we put $F_{+}(v)=1$. And if $\sigma_{i}(v)>0$ for all i, we put $F_{-}(v)=1$.) For a submodule V of rank r of Z^{N} with $0<r<N$, we define an ideal $I(V)$ of A generated

[^0]Revised November 18, 1994
by $F(v)$ for all $v \in V$. Note that V is torsion-free of rank r hence isomorphic to Z^{r}.
Let $B=k\left[X_{1}^{ \pm 1}, \cdots, X_{N}^{ \pm 1}\right]$ and $V=\left\langle v_{1}, \cdots, v_{r}\right\rangle$ (this means that V is generated by v_{1}, \cdots, v_{r}. We claim that an ideal $I(V) B \cong I(V) \otimes B$ in B is generated by $F\left(v_{j}\right)$ for $1 \leq j \leq r$. For, since any vector in V is a linear combination of v_{j}, it is sufficient to prove

$$
F(d w) \in(F(w)), \quad F\left(w_{1}+w_{2}\right) \in\left(F\left(w_{1}\right), F\left(w_{2}\right)\right)
$$

The first assertion is clear. And

$$
\begin{aligned}
& 1-F_{-}\left(w_{1}+w_{2}\right)^{-1} F_{+}\left(w_{1}+w_{2}\right) \\
&=1-F_{-}\left(w_{1}\right)^{-1} F_{+}\left(w_{1}\right) F_{-}\left(w_{2}\right)^{-1} F_{+}\left(w_{2}\right) \\
&=\left(1-F_{-}\left(w_{1}\right)^{-1} F_{+}\left(w_{1}\right)\right)+F_{-}\left(w_{1}\right)^{-1} F_{+}\left(w_{1}\right)\left(1-F_{-}\left(w_{2}\right)^{-1} F_{+}\left(w_{2}\right)\right) \\
& \in\left(F\left(w_{1}\right), F\left(w_{2}\right)\right) .
\end{aligned}
$$

Hence the second assertion is proved. And we notice that, if $F\left(v_{1}\right), \cdots, F\left(v_{s}\right)$ generate $I(V), v_{1}, \cdots, v_{s}$ generate V.

Next, we have rank $\operatorname{Coker}\left(V \hookrightarrow Z^{N}\right)=r^{\prime}=N-r$. Hence it is of the form $Z^{r^{\prime}} \oplus T$ where T is a torsion module. Then we have the following commutative diagram;

where $V^{\prime}=\operatorname{Ker} \phi$.
Let $\phi=\left(n_{p q}\right)$ and ρ a homomorphism from B to $k\left[t_{1}^{ \pm 1}, \cdots, t_{r^{\prime}}^{ \pm 1}\right]$ which sends X_{i} to $\prod t_{p}^{n_{p i}}$ for each i. Then $F(v)$ is contained in $\operatorname{Ker} \rho$ for any $v \in V$. For,

$$
\begin{aligned}
\rho(F(v)) & =\rho\left(F_{-}(v)\left(1-F_{-}(v)^{-1} F_{+}(v)\right)\right) \\
& \left.=\rho\left(F_{-}(v)\right) \rho\left(1-\prod X_{i}^{G i(v)}\right)\right)=0 .
\end{aligned}
$$

We can regard B as a group algebra $k\left[Z^{N}\right]$. Then $I(V) B$ is the kernel of the group algebra homomorphism $B \rightarrow k\left[Z^{N} / V\right]$, which is induced from the group homomorphism $Z^{N} \rightarrow Z^{N} / V$. Since $\operatorname{dim} k\left[Z^{N} / V\right]=\operatorname{rank} Z^{N} / V=N-r$, we have $h t I(V) B=r$. Hence

Proposition 1.1. Let $V \subset Z^{N}$ be a submodule of rank $r, 0<r<N$. Then $h t I(V)=r$.
For later use, we prove a lemma;
Lemma 1.2. Let $V \subset Z^{N}$ a submodule of rank r where $0<r<N$. If $I(V)+\left(X_{1}\right)$ is a proper ideal in A, it is of height $r+1$.

Proof. Since $I(V) B \cap A=I(V)$ and since X_{1} is a unit in B, X_{1} is not a zero divisor on $A / I(V)$. Hence the assertion is clear.
Q.E.D.

By the definition of $I(V)$, we have

Proposition 1.3. Let V be a submodule of Z^{N} of rank r. Then $I(V)$ is prime if and only if there is a surjective homomorphism $\phi: \boldsymbol{Z}^{N} \rightarrow \boldsymbol{Z}^{N-r}$ with $V=\operatorname{Ker} \phi$.

2. Complete intersection ideals.

For $\phi=\left(m_{i j}\right) \in \operatorname{Hom}\left(\boldsymbol{Z}^{N}, \boldsymbol{Z}^{N^{\prime}}\right)$, we say that ϕ is positive if $m_{i j} \geq 0$ for any i, j and $\sum_{i} m_{i j}>0$ for each j. For $v \in Z^{N}$, we say that v is usual if there are i, i^{\prime} with $\sigma_{i}(v)>0$ and $\sigma_{i^{\prime}}(v)<0$.

In this section, we assume that V is contained in $\operatorname{Ker} \phi$ where $\phi: \boldsymbol{Z}^{N} \rightarrow \boldsymbol{Z}^{\boldsymbol{r}^{\prime}}$ is a positive homomorphism. Then $I(V)$ is a homogeneous ideal in a positively multigraded ring $A=k\left[X_{1}, \cdots, X_{N}\right]$. And there is a minimal generating system of $I(V)$ consisting of polynomials of the form $F(v)$ where v is a usual vector.

We say that the signatures of z and $z^{\prime}\left(z, z^{\prime} \in Z\right)$ are the same if $z z^{\prime} \geq 0$. For $v_{1}, \cdots, v_{l} \in V$, we consider the condition
(*) for any $s(2 \leq s \leq l)$, for any numbers i_{1}, \cdots, i_{s} and j_{1}, \cdots, j_{s}, there exists m such that the signatures of $\sigma_{i_{l}}\left(v_{j_{m}}\right)$ are the same for $l=1, \cdots, s$.
Proposition 2.1. Let V be a submodule of Z^{N} of rank r and assume that there are $v_{1}, \cdots, v_{r} \in V$ such that $I(V)$ is generated by $F\left(v_{1}\right), \cdots, F\left(v_{r}\right)$. Then v_{1}, \cdots, v_{r} satisfy $(*)$.

Proof. We fix s. By renumbering, if necessary, we may assume $i_{l}=j_{l}=l$ for $l=1, \cdots, s$. Assume that for any $m(1 \leq m \leq s)$, there exist i_{m}, i_{m}^{\prime} such that $\sigma_{i_{m}}\left(v_{m}\right)>0$, $\sigma_{i_{m}^{\prime}}\left(v_{m}\right)<0$. Then $F\left(v_{m}\right)$ is contained in the ideal ($X_{i_{m}}, X_{i_{m}^{\prime}}$). Consider the ideal $J=I(V)+\left(X_{1}, \cdots, X_{s}\right)$. By Lemma 1.2, we have ht $\left(I(V)+\left(X_{1}\right)\right)=r+1$. Since J contains it, we have ht $J \geq r+1$.

On the other hand, $F\left(v_{m}\right)$ is contained in the ideal $\left(X_{1}, \cdots, X_{s}\right)$ for any m. Hence $\mu(J) \leq r+s-s=r$. This contradicts $\mathrm{ht} J \geq r+1 . \quad$ Q.E.D.

In section 1, we proved that in a Laurent polynomial ring, $F\left(v_{1}+v_{2}\right)$ is contained in the ideal generated by $F\left(v_{1}\right)$ and $F\left(v_{2}\right)$. But in a polynomial ring, it is not always contained in ($F\left(v_{1}\right), F\left(v_{2}\right)$). In [2], the following lemma is proved.

Lemma 2.2 ([2, Lemma 1.2]). Let $v, v_{1}, v_{2} \in V$.
(1) For any $d \in Z, F(d v)$ is contained in the ideal $(F(v))$.
(2) $F\left(v_{1}+v_{2}\right) \in\left(F\left(v_{1}\right), F\left(v_{2}\right)\right)$, if there is no pair $\left(i, i^{\prime}\right)$ such that

$$
\sigma_{i}\left(v_{1}\right)<0, \sigma_{i}\left(v_{2}\right)>0, \text { and that } \sigma_{i^{\prime}}\left(v_{1}\right)>0, \sigma_{i^{\prime}}\left(v_{2}\right)<0
$$

Proposition 2.3. Assume $v_{1}, \cdots, v_{l} \in V$ satisfy (*) and let $V^{\prime}=\left\langle v_{1}, \cdots, v_{l}\right\rangle$. Then $I\left(V^{\prime}\right)$ is generated by $\left(F\left(v_{j}\right)\right)_{1 \leq j \leq l}$.

Proof. We prove the assertion by induction on l. It is obvious if $l=1$. Assume $l>1$. Let $J=\left(F\left(v_{j}\right)\right)_{1 \leq j \leq l}$. For $w=\sum d_{j} v_{j} \in V$, we claim that $F(w)$ is contained in J. By induction hypothesis, if some $d_{j}=0, F(w)$ is contained in J. So, assume $d_{j} \neq 0$ for all j.

If necessary, replace v_{j} by $-v_{j}$, then we may assume $d_{j}>0$ for all j.
If $F(w)$ is contained in the ideal $\left(F\left(v_{j}\right), F\left(w-d_{j} v_{j}\right)\right)$ for some j, it is contained in J by induction hypothesis. Hence we also assume $F(w)$ is not contained in ($F\left(v_{j}\right)$, $\left.F\left(w-d_{j} v_{j}\right)\right)$ for any j.

Since $F(w) \notin\left(F\left(v_{1}\right), F\left(w-d_{1} v_{1}\right)\right)$, there are i_{1}, i_{2} such that

$$
\begin{aligned}
\sigma_{i_{1}}\left(v_{1}\right)>0, & \sigma_{i_{2}}\left(v_{1}\right)<0, \\
\sigma_{i_{1}}\left(w-d_{1} v_{1}\right)<0, & \sigma_{i_{2}}\left(w-d_{1} v_{1}\right)>0 .
\end{aligned}
$$

Say $i_{1}=1, i_{2}=2$. Since $\sigma_{2}\left(w-d_{1} v_{1}\right)>0$, there is j such that $\sigma_{2}\left(v_{j}\right)>0$. For, $w-d_{1} v_{1}=$ $d_{2} v_{2}+\cdots+d_{l} v_{l}$ and $d_{j}>0$. Say $j=2$.

Since $F(w) \notin\left(F\left(v_{2}\right), F\left(w-d_{2} v_{2}\right)\right)$, there is i such that

$$
\sigma_{i}\left(v_{2}\right)<0, \quad \sigma_{i}\left(w-d_{2} v_{2}\right)>0 .
$$

If $i=1, v_{1}, v_{2}$ do not satisfy (*), a contradiction. Hence $i>2$. Say $i=3$. As the same argument as before, there is $j \neq 2$ such that $\sigma_{3}\left(v_{j}\right)>0$. If $j=1, v_{2}, v_{3}$ do not satisfy (*), a contradiction. Hence $j>2$. Say $j=3$.

Repeating this process l times, we have

$$
\sigma_{i}\left(v_{i}\right)>0, \quad \sigma_{i+1}\left(v_{i}\right)<0, \quad \text { for } \quad i=1, \cdots, l-1
$$

Then, since $F(w) \notin\left(F\left(v_{l}\right), F\left(w-d_{l} v_{l}\right)\right)$, there is $j \neq l$ such that $\sigma_{l}\left(v_{j}\right)>0$. Then v_{1}, \cdots, v_{l} do not satisfy (*), a contradiction.
Q.E.D.

From Proposition 2.1 and Proposition 2.3, we have
Theorem 2.4. $I(V)$ is a complete intersection if and only if there exist v_{1}, \cdots, v_{r} satisfying (*) which generate V.

In the case of rank $V=N-1$, we have
Corollary 2.5 (Delorme [1, Lemma 6]). A complete intersection monomial curve is obtained from unimodular vectors of less length than N, which define complete intersection monomial curves, respectively.

We will give a proof: Assume $V=\operatorname{Ker} u$ where $u=\left(n_{1}, \cdots, n_{N}\right)$ is a unimodular vector of length N whose entries are positive integers. Then $I(V)$ is the defining ideal of a monomial curve. Since rank $V=N-1$, for each i, there is v with $\sigma_{i}(v)<0$ and $\sigma_{i^{\prime}}(v) \geq 0$ if $i \neq i^{\prime}$. Hence $I(V)$ contains polynomials of the form $X_{i}^{-\sigma_{t}(v)}-\prod_{i^{\prime} \neq i} X_{i^{\prime \prime}}^{\boldsymbol{j}^{\prime}(v)}$. Then, if $I(V)$ is a complete intersection, its generating system must contain a polynomial of the form $X_{i}^{\alpha_{i}}-X_{i}^{\alpha_{i}{ }^{\prime}}$. Hence we may assume $\sigma_{1}\left(v_{1}\right)=-\alpha_{1}, \sigma_{2}\left(v_{1}\right)=\alpha_{2}$ and $\sigma_{i^{\prime \prime}}\left(v_{1}\right)=0$ otherwise.

Now let d be the g.c.d. of n_{1}, n_{2}. Then $\alpha_{1}=d^{-1} n_{2}$ and $\alpha_{2}=d^{-1} n_{1}$. Put $u^{\prime}=$ (d, n_{3}, \cdots, n_{N}) be a positive unimodular vector of length $N-1$ and $V^{\prime}=\operatorname{Ker} u^{\prime}$. And consider a map $\phi: Z^{N} \rightarrow Z^{N-1}$ which sends e_{1} to $\alpha_{2} e_{1}, e_{2}$ to $\alpha_{1} e_{1}$ and e_{i} to e_{i-1} for
$i \geq 3$. Then $\phi(V)=V^{\prime}$ and $\phi\left(v_{2}\right), \cdots, \phi\left(v_{N-1}\right)$ satisfy (*). Hence $I\left(V^{\prime}\right)$ is a complete intersection by Theorem 2.4. Therefore an ideal $I(V)$ is obtained from unimodular vectors u^{\prime} and ($d^{-1} n_{1}, d^{-1} n_{2}$), which define complete intersection monomial curves, respectively.
Q.E.D.

Now we investigate the case $r<N-1$.
Lemma 2.6. Let $v_{1}, \cdots, v_{l} \in Z^{N}$ be usual vectors satisfying (*) and assume $N \geq 3$. If $l<N-1$, there are i, i^{\prime} with $\sigma_{i}\left(v_{j}\right) \sigma_{i^{\prime}}\left(v_{j}\right) \geq 0$ for any j.

Proof. We prove the lemma by induction on N. If $N=3$, we have $l=1$ and the assertion is clear. In general, we assume that $\sigma_{1}\left(v_{1}\right)>0$ and $\sigma_{N}\left(v_{1}\right)<0$. For each j, let v_{j}^{\prime} be the image of v_{j} by the map $Z^{N} \rightarrow Z^{N-1}$ which sends e_{i} to $e_{i}(i=1, \cdots, N-1)$ and e_{N} to e_{1}. Then $v_{2}^{\prime}, \cdots, v_{l}^{\prime}$ satisfy (*). Hence, by the induction hypothesis, there are i, i^{\prime} with $\sigma_{i}\left(v_{j}^{\prime}\right) \sigma_{i^{\prime}}\left(v_{j}^{\prime}\right) \geq 0$ for $j \geq 2$. And $\sigma_{i}\left(v_{j}\right) \sigma_{i^{\prime}}\left(v_{j}\right) \geq 0$ for $j \geq 2$.

If $i=1$ and $\sigma_{i^{\prime}}\left(v_{1}\right) \geq 0$, then $\sigma_{1}\left(v_{1}\right) \sigma_{i^{\prime}}\left(v_{1}\right) \geq 0$ and the assertion is proved. If $i=1$ and $\sigma_{i^{\prime}}\left(v_{1}\right)<0$, then $\sigma_{N}\left(v_{1}\right) \sigma_{i^{\prime}}\left(v_{1}\right)>0$. And $\sigma_{1}\left(v_{j}\right) \sigma_{N}\left(v_{j}\right) \geq 0$ for $j \geq 2$, since v_{1}, \cdots, v_{l} satisfy (*). Thus $\sigma_{N}\left(v_{j}\right) \sigma_{i^{\prime}}\left(v_{j}\right) \geq 0$ for $j \geq 2$, and we obtain the result.

If $i, i^{\prime}>1$ and $\sigma_{i}\left(v_{1}\right) \sigma_{i^{\prime}}\left(v_{1}\right) \geq 0$, the assertion is clear. Assume $\sigma_{i}\left(v_{1}\right)>0$ and $\sigma_{i^{\prime}}\left(v_{1}\right)<0$. Then $\sigma_{1}\left(v_{j}\right) \sigma_{i^{\prime}}\left(v_{j}\right) \geq 0$ for $j \geq 2$ since v_{1}, v_{l} satisfy (*) and $\sigma_{1}\left(v_{1}\right)>0, \sigma_{i^{\prime}}\left(v_{1}\right)<0$. Thus $\sigma_{1}\left(v_{j}\right) \sigma_{i^{\prime}}\left(v_{j}\right) \geq 0$ for any j, since $\sigma_{i}\left(v_{j}\right) \sigma_{i^{\prime}}\left(v_{j}\right) \geq 0$ for $j \geq 2$. This completes the proof.
Q.E.D.

Proposition 2.7. Let $v_{1}, \cdots, v_{r} \in \boldsymbol{Z}^{N}$ be usual vectors satisfying (*). If $r<N-1$, there are usual vectors $v_{r+1}, \cdots, v_{N-1} \in Z^{N}$ such that v_{1}, \cdots, v_{N-1} satisfy (*).

Proof. By Lemma 2.6, there are i, i^{\prime} with $\sigma_{i}\left(v_{j}\right) \sigma_{i^{\prime}}\left(v_{j}\right) \geq 0$ for any j. We choose a vector v_{r+1} with $\sigma_{i}\left(v_{r+1}\right) \sigma_{i^{\prime}}\left(v_{r+1}\right)<0$ and $\sigma_{i^{\prime}}\left(v_{r+1}\right)=0$ if $i^{\prime \prime} \neq i, i^{\prime}$. Then v_{1}, \cdots, v_{r+1} satisfy (*). We can repeat this process $N-r-1$ times.
Q.E.D.

Lemma 2.8. Let $v \in Z^{N}$ be a usual vector with $\sigma_{i}(v)=0$ if $i>s$. Then there are a positive surjective homomorphism $\psi: Z^{N} \rightarrow Z^{N-1}$ with $\psi(v)=0$ and $\psi\left(e_{i}\right)=e_{i-1}$ if $i>s$.

Proof. Let d be the g.c.d. of $\sigma_{1}(v), \cdots, \sigma_{s}(v)$. Since v is usual, there is a positive matrix $M \in \mathrm{GL}_{s}(Z)$ with $M\left(d^{-1} v\right)=e_{1}$. Then M induces a positive surjective homomorphism $\beta: Z^{s} \rightarrow Z^{s-1}$ with $\beta(v)=0$:

Now $\psi=\left(\begin{array}{cc}\beta & 0 \\ 0 & E_{N-\Omega}\end{array}\right)$ satisfies the condition of the lemma.
Q.E.D.

Proposition 2,9. Let $v_{1}, \cdots, v_{r} \in Z^{N}$ be usual vectors satisfying (*) and $V=$ $\left\langle v_{1}, \cdots, v_{r}\right\rangle$. Then rank $V=r$ and V is contained in the kernel of a positive surjective homomorphism.

Proof. We will prove the assertion by induction on r. It is clear, if $r=1$. Assume $r>1$. Since v_{1}, \cdots, v_{r} satisfy (*), there is some j such that for each $j^{\prime} \neq j$, we have $\sigma_{i}\left(v_{j^{\prime}}\right) \sigma_{i^{\prime}}\left(v_{j^{\prime}}\right) \geq 0$, for i, i^{\prime} with $\sigma_{i}\left(v_{j}\right) \sigma_{i^{\prime}}\left(v_{j}\right) \neq 0$. Say $j=1$ and assume $\sigma_{i}\left(v_{1}\right) \neq 0$ if $i \leq s$ and $\sigma_{i}\left(v_{1}\right)=0$ if $i>s$. Note $s<N$. Applying Lemma 2.8 to v_{1}, there is $\psi: Z^{N} \rightarrow Z^{N-1}$ a positive surjective homomorphism with $\psi\left(v_{1}\right)=0$ and $\psi\left(e_{i}\right)=e_{i-1}$ if $i>s$. Then $\psi\left(v_{2}\right), \cdots, \psi\left(v_{r}\right)$ satisfy (*), hence by induction hypothesis, they form a space of rank $r-1$ and contained in the kernel of a positive surjective homomorphism $\gamma: \boldsymbol{Z}^{\boldsymbol{N - 1}} \rightarrow \boldsymbol{Z}^{\boldsymbol{r}^{\prime}}$. If $d_{1} v_{1}+\cdots+d_{r} v_{r}=0$, then $d_{2} \psi\left(v_{2}\right)+\cdots+d_{r} \psi\left(v_{r}\right)=0$ and $d_{2}=\cdots=d_{r}=0$, hence $d_{1}=0$. Thus rank $V=r$. And V is contained in the kernel of a positive surjective homomorphism $\gamma \psi$.
Q.E.D.

From Proposition 2.7 and Proposition 2.9, we obtain
Theorem 2.10. Let V be a submodule of Z^{N} of rank r with $r<N-1$. Assume that V is contained in the kernel of a positive surjective homomorphism. If $I(V)$ is a complete intersection and generated by $F\left(v_{1}\right), \cdots, F\left(v_{r}\right)$, there are $F\left(v_{r+1}\right), \cdots, F\left(v_{N-1}\right)$ such that $F\left(v_{j}\right)$'s generate a complete intersection ideal of the form $I\left(V^{\prime}\right)$ of height $N-1$, which is homogeneous in the positive graded ring A.

Hence if $I(V)$ is a complete intersection, it is generated by a part of a minimal generating system of a complete intersection homogeneous ideal of height $N-1$.

Finally, we remark that we cannot take V^{\prime} so that $I\left(V^{\prime}\right)$ is prime even if $I(V)$ is prime.

For example, let $V=\operatorname{Ker}\left(\begin{array}{llll}0 & 2 & 1 & 1 \\ 8 & 0 & 2 & 3\end{array}\right)$. Then V is generated by ${ }^{t}(-1,-2,4,0)$ and ${ }^{t}(-1,-1,-2,4)$, hence $I(V)$ is prime and is a complete intersection.

To extend $I(V)$ to a complete intersection of height 3 , we must choose a vector of the form ${ }^{t}(-a, b, 0,0)$ with $a>0, b>0$ by Theorem 2.4. But it is never prime for any a, b, since the cokernel of the injection $V+\langle w\rangle$ to Z^{4} has a torsion.

References

[1] C. Delorme, Sous-monoïdes d'intersection complète de N, Ann. Sci. Ecole Norm. Sup. 9 (1976), 145-154.
[2] K. Ero, Almost complete intersection monomial curves in A^{4}, Comm. Algebra 22 (13), 5325-5342 (1994).
[3] E. KUNZ, Introduction to Commutative Algebra and Algebraic Geometry, Birkhäuser (1985).

Present Address:

Department of Mathematics, School of Education, Waseda University, Nishi-Waseda, Shinjuku-ku, Tokyo, 169-50 Japan.

[^0]: Received December 3, 1993

