Tokyo J. Math. Vol. 18, No. 1, 1995

Defining Ideals of Complete Intersection Monoid Rings

Kazufumi ETO

Waseda University

In this note, we will extend Delorme's result about monomial curves [1] to \mathbb{Z}^n -graded rings. To do this, we will define an ideal I(V) associated with a submodule V of \mathbb{Z}^N . It is generated by polynomials associated with vectors of V (see §1). And we have various examples of such ideals, e.g., defining ideals of monomial curves, that of \mathbb{Z}^n -graded ring, and an ideal generated by 2×2 minors of a matrix. In general, ht I(V) = rank V, I(V) is not necessarily prime, and we will give a condition that I(V) is prime (Proposition 1.3).

In section 2, we will give the condition that I(V) is a complete intersection ideal when V is contained in the kernel of a map $Z^{p} \rightarrow Z^{q}$ consisting of positive integers (Theorem 2.4). And we give a proof of the Delorme's result that any complete intersection monomial curve in A^{r} is induced by a complete intersection monomial curve in A^{r-1} (Corollary 2.5). We also show that if rank V < N-1 and if I(V) is a complete intersection, it is generated by a part of a minimal generating system of a complete intersection homogeneous ideal of height N-1 of the form I(V') (Theorem 2.10).

1. Definitions and preliminaries.

Let $A = k[X_1, \dots, X_N]$ be a polynomial ring over a field k. For $v \in \mathbb{Z}^N$, we denote the *i*-th entry of v by $\sigma_i(v)$, and put

$$F_{+}(v) = \prod_{\sigma_{i}(v) > 0} X_{i}^{\sigma_{i}(v)}$$
$$F_{-}(v) = \prod_{\sigma_{i}(v) < 0} X_{i}^{-\sigma_{i}(v)}$$
$$F(v) = F_{-}(v) - F_{+}(v) .$$

(If $\sigma_i(v) < 0$ for all *i*, we put $F_+(v) = 1$. And if $\sigma_i(v) > 0$ for all *i*, we put $F_-(v) = 1$.) For a submodule V of rank r of \mathbb{Z}^N with 0 < r < N, we define an ideal I(V) of A generated

Received December 3, 1993 Revised November 18, 1994

KAZUFUMI ETO

by F(v) for all $v \in V$. Note that V is torsion-free of rank r hence isomorphic to Z^r .

Let $B = k[X_1^{\pm 1}, \dots, X_N^{\pm 1}]$ and $V = \langle v_1, \dots, v_r \rangle$ (this means that V is generated by v_1, \dots, v_r). We claim that an ideal $I(V)B \cong I(V) \otimes B$ in B is generated by $F(v_j)$ for $1 \le j \le r$. For, since any vector in V is a linear combination of v_j , it is sufficient to prove

$$F(dw) \in (F(w))$$
, $F(w_1 + w_2) \in (F(w_1), F(w_2))$.

The first assertion is clear. And

$$\begin{split} &1 - F_{-}(w_{1} + w_{2})^{-1}F_{+}(w_{1} + w_{2}) \\ &= 1 - F_{-}(w_{1})^{-1}F_{+}(w_{1})F_{-}(w_{2})^{-1}F_{+}(w_{2}) \\ &= (1 - F_{-}(w_{1})^{-1}F_{+}(w_{1})) + F_{-}(w_{1})^{-1}F_{+}(w_{1})(1 - F_{-}(w_{2})^{-1}F_{+}(w_{2})) \\ &\in (F(w_{1}), F(w_{2})) . \end{split}$$

Hence the second assertion is proved. And we notice that, if $F(v_1), \dots, F(v_s)$ generate $I(V), v_1, \dots, v_s$ generate V.

Next, we have rank Coker $(V \subset Z^N) = r' = N - r$. Hence it is of the form $Z^{r'} \oplus T$ where T is a torsion module. Then we have the following commutative diagram;

where $V' = \operatorname{Ker} \phi$.

Let $\phi = (n_{pq})$ and ρ a homomorphism from B to $k[t_1^{\pm 1}, \dots, t_{r'}^{\pm 1}]$ which sends X_i to $\prod t_p^{n_{pi}}$ for each *i*. Then F(v) is contained in Ker ρ for any $v \in V$. For,

$$\rho(F(v)) = \rho(F_{-}(v)(1 - F_{-}(v)^{-1}F_{+}(v)))$$

= $\rho(F_{-}(v))\rho(1 - \prod X_{i}^{\sigma(v)}) = 0$.

We can regard B as a group algebra $k[\mathbb{Z}^N]$. Then I(V)B is the kernel of the group algebra homomorphism $B \rightarrow k[\mathbb{Z}^N/V]$, which is induced from the group homomorphism $\mathbb{Z}^N \rightarrow \mathbb{Z}^N/V$. Since dim $k[\mathbb{Z}^N/V] = \operatorname{rank} \mathbb{Z}^N/V = N - r$, we have ht I(V)B = r. Hence

PROPOSITION 1.1. Let $V \subset \mathbb{Z}^N$ be a submodule of rank r, 0 < r < N. Then $\operatorname{ht} I(V) = r$.

For later use, we prove a lemma;

LEMMA 1.2. Let $V \subset \mathbb{Z}^N$ a submodule of rank r where 0 < r < N. If $I(V) + (X_1)$ is a proper ideal in A, it is of height r+1.

PROOF. Since $I(V)B \cap A = I(V)$ and since X_1 is a unit in B, X_1 is not a zero divisor on A/I(V). Hence the assertion is clear. Q.E.D.

By the definition of I(V), we have

186

PROPOSITION 1.3. Let V be a submodule of \mathbb{Z}^N of rank r. Then I(V) is prime if and only if there is a surjective homomorphism $\phi: \mathbb{Z}^N \to \mathbb{Z}^{N-r}$ with $V = \text{Ker}\phi$.

2. Complete intersection ideals.

For $\phi = (m_{ij}) \in \text{Hom}(\mathbb{Z}^N, \mathbb{Z}^{N'})$, we say that ϕ is *positive* if $m_{ij} \ge 0$ for any *i*, *j* and $\sum_i m_{ij} > 0$ for each *j*. For $v \in \mathbb{Z}^N$, we say that *v* is *usual* if there are *i*, *i'* with $\sigma_i(v) > 0$ and $\sigma_{i'}(v) < 0$.

In this section, we assume that V is contained in Ker ϕ where $\phi: \mathbb{Z}^N \to \mathbb{Z}^{r'}$ is a positive homomorphism. Then I(V) is a homogeneous ideal in a positively multigraded ring $A = k[X_1, \dots, X_N]$. And there is a minimal generating system of I(V) consisting of polynomials of the form F(v) where v is a usual vector.

We say that the signatures of z and z' $(z, z' \in \mathbb{Z})$ are the same if $zz' \ge 0$. For $v_1, \dots, v_l \in V$, we consider the condition

(*) for any $s \ (2 \le s \le l)$, for any numbers i_1, \dots, i_s and j_1, \dots, j_s , there exists *m* such that the signatures of $\sigma_{i_1}(v_{i_m})$ are the same for $l=1, \dots, s$.

PROPOSITION 2.1. Let V be a submodule of \mathbb{Z}^N of rank r and assume that there are $v_1, \dots, v_r \in V$ such that I(V) is generated by $F(v_1), \dots, F(v_r)$. Then v_1, \dots, v_r satisfy (*).

PROOF. We fix s. By renumbering, if necessary, we may assume $i_l = j_l = l$ for $l=1, \dots, s$. Assume that for any m $(1 \le m \le s)$, there exist i_m , i'_m such that $\sigma_{i_m}(v_m) > 0$, $\sigma_{i'_m}(v_m) < 0$. Then $F(v_m)$ is contained in the ideal $(X_{i_m}, X_{i'_m})$. Consider the ideal $J = I(V) + (X_1, \dots, X_s)$. By Lemma 1.2, we have $ht(I(V) + (X_1)) = r + 1$. Since J contains it, we have $htJ \ge r + 1$.

On the other hand, $F(v_m)$ is contained in the ideal (X_1, \dots, X_s) for any *m*. Hence $\mu(J) \le r+s-s=r$. This contradicts ht $J \ge r+1$. Q.E.D.

In section 1, we proved that in a Laurent polynomial ring, $F(v_1 + v_2)$ is contained in the ideal generated by $F(v_1)$ and $F(v_2)$. But in a polynomial ring, it is not always contained in $(F(v_1), F(v_2))$. In [2], the following lemma is proved.

LEMMA 2.2 ([2, Lemma 1.2]). Let $v, v_1, v_2 \in V$.

- (1) For any $d \in \mathbb{Z}$, F(dv) is contained in the ideal (F(v)).
- (2) $F(v_1 + v_2) \in (F(v_1), F(v_2))$, if there is no pair (i, i') such that

 $\sigma_i(v_1) < 0$, $\sigma_i(v_2) > 0$, and that $\sigma_{i'}(v_1) > 0$, $\sigma_{i'}(v_2) < 0$.

PROPOSITION 2.3. Assume $v_1, \dots, v_l \in V$ satisfy (*) and let $V' = \langle v_1, \dots, v_l \rangle$. Then I(V') is generated by $(F(v_j))_{1 \leq j \leq l}$.

PROOF. We prove the assertion by induction on *l*. It is obvious if l=1. Assume l>1. Let $J=(F(v_j))_{1 \le j \le l}$. For $w=\sum d_j v_j \in V$, we claim that F(w) is contained in J. By induction hypothesis, if some $d_i=0$, F(w) is contained in J. So, assume $d_j \ne 0$ for all j.

KAZUFUMI ETO

If necessary, replace v_j by $-v_j$, then we may assume $d_j > 0$ for all j.

If F(w) is contained in the ideal $(F(v_j), F(w-d_jv_j))$ for some *j*, it is contained in *J* by induction hypothesis. Hence we also assume F(w) is not contained in $(F(v_j), F(w-d_jv_j))$ for any *j*.

Since $F(w) \notin (F(v_1), F(w-d_1v_1))$, there are i_1, i_2 such that

$$\sigma_{i_1}(v_1) > 0, \qquad \sigma_{i_2}(v_1) < 0,$$

$$\sigma_{i_1}(w - d_1v_1) < 0, \qquad \sigma_{i_2}(w - d_1v_1) > 0.$$

Say $i_1 = 1$, $i_2 = 2$. Since $\sigma_2(w - d_1v_1) > 0$, there is j such that $\sigma_2(v_j) > 0$. For, $w - d_1v_1 = d_2v_2 + \cdots + d_lv_l$ and $d_j > 0$. Say j = 2.

Since $F(w) \notin (F(v_2), F(w-d_2v_2))$, there is *i* such that

 $\sigma_i(v_2) < 0, \qquad \sigma_i(w-d_2v_2) > 0.$

If i=1, v_1 , v_2 do not satisfy (*), a contradiction. Hence i>2. Say i=3. As the same argument as before, there is $j \neq 2$ such that $\sigma_3(v_j) > 0$. If j=1, v_2 , v_3 do not satisfy (*), a contradiction. Hence j>2. Say j=3.

Repeating this process *l* times, we have

$$\sigma_i(v_i) > 0$$
, $\sigma_{i+1}(v_i) < 0$, for $i=1, \dots, l-1$.

Then, since $F(w) \notin (F(v_l), F(w-d_lv_l))$, there is $j \neq l$ such that $\sigma_l(v_j) > 0$. Then v_1, \dots, v_l do not satisfy (*), a contradiction. Q.E.D.

From Proposition 2.1 and Proposition 2.3, we have

THEOREM 2.4. I(V) is a complete intersection if and only if there exist v_1, \dots, v_r satisfying (*) which generate V.

In the case of rank V = N - 1, we have

COROLLARY 2.5 (Delorme [1, Lemma 6]). A complete intersection monomial curve is obtained from unimodular vectors of less length than N, which define complete intersection monomial curves, respectively.

We will give a proof: Assume V = Ker u where $u = (n_1, \dots, n_N)$ is a unimodular vector of length N whose entries are positive integers. Then I(V) is the defining ideal of a monomial curve. Since rank V = N - 1, for each *i*, there is v with $\sigma_i(v) < 0$ and $\sigma_{i'}(v) \ge 0$ if $i \ne i'$. Hence I(V) contains polynomials of the form $X_i^{-\sigma_i(v)} - \prod_{i' \ne i} X_i^{\sigma_{i'}(v)}$. Then, if I(V) is a complete intersection, its generating system must contain a polynomial of the form $X_i^{\alpha_i} - X_i^{\alpha_{i'}}$. Hence we may assume $\sigma_1(v_1) = -\alpha_1$, $\sigma_2(v_1) = \alpha_2$ and $\sigma_{i''}(v_1) = 0$ otherwise.

Now let d be the g.c.d. of n_1, n_2 . Then $\alpha_1 = d^{-1}n_2$ and $\alpha_2 = d^{-1}n_1$. Put $u' = (d, n_3, \dots, n_N)$ be a positive unimodular vector of length N-1 and V' = Ker u'. And consider a map $\phi: \mathbb{Z}^N \to \mathbb{Z}^{N-1}$ which sends e_1 to $\alpha_2 e_1$, e_2 to $\alpha_1 e_1$ and e_i to e_{i-1} for

188

 $i \ge 3$. Then $\phi(V) = V'$ and $\phi(v_2), \dots, \phi(v_{N-1})$ satisfy (*). Hence I(V') is a complete intersection by Theorem 2.4. Therefore an ideal I(V) is obtained from unimodular vectors u' and $(d^{-1}n_1, d^{-1}n_2)$, which define complete intersection monomial curves, respectively. Q.E.D.

Now we investigate the case r < N-1.

LEMMA 2.6. Let $v_1, \dots, v_l \in \mathbb{Z}^N$ be usual vectors satisfying (*) and assume $N \ge 3$. If l < N-1, there are *i*, *i'* with $\sigma_i(v_j)\sigma_{i'}(v_j) \ge 0$ for any *j*.

PROOF. We prove the lemma by induction on N. If N=3, we have l=1 and the assertion is clear. In general, we assume that $\sigma_1(v_1) > 0$ and $\sigma_N(v_1) < 0$. For each j, let v'_j be the image of v_j by the map $\mathbb{Z}^N \to \mathbb{Z}^{N-1}$ which sends e_i to e_i $(i=1, \dots, N-1)$ and e_N to e_1 . Then v'_2, \dots, v'_i satisfy (*). Hence, by the induction hypothesis, there are i, i' with $\sigma_i(v'_j)\sigma_{i'}(v'_j) \ge 0$ for $j \ge 2$. And $\sigma_i(v_j)\sigma_{i'}(v_j) \ge 0$ for $j \ge 2$.

If i=1 and $\sigma_{i'}(v_1) \ge 0$, then $\sigma_1(v_1)\sigma_{i'}(v_1) \ge 0$ and the assertion is proved. If i=1 and $\sigma_{i'}(v_1)<0$, then $\sigma_N(v_1)\sigma_{i'}(v_1)>0$. And $\sigma_1(v_j)\sigma_N(v_j)\ge 0$ for $j\ge 2$, since v_1, \dots, v_l satisfy (*). Thus $\sigma_N(v_j)\sigma_{i'}(v_j)\ge 0$ for $j\ge 2$, and we obtain the result.

If i, i' > 1 and $\sigma_i(v_1)\sigma_{i'}(v_1) \ge 0$, the assertion is clear. Assume $\sigma_i(v_1) > 0$ and $\sigma_{i'}(v_1) < 0$. Then $\sigma_1(v_j)\sigma_{i'}(v_j) \ge 0$ for $j \ge 2$ since v_1, v_i satisfy (*) and $\sigma_1(v_1) > 0, \sigma_{i'}(v_1) < 0$. Thus $\sigma_1(v_j)\sigma_{i'}(v_j) \ge 0$ for any j, since $\sigma_i(v_j)\sigma_{i'}(v_j) \ge 0$ for $j \ge 2$. This completes the proof. Q.E.D.

PROPOSITION 2.7. Let $v_1, \dots, v_r \in \mathbb{Z}^N$ be usual vectors satisfying (*). If r < N-1, there are usual vectors $v_{r+1}, \dots, v_{N-1} \in \mathbb{Z}^N$ such that v_1, \dots, v_{N-1} satisfy (*).

PROOF. By Lemma 2.6, there are i, i' with $\sigma_i(v_j)\sigma_{i'}(v_j) \ge 0$ for any j. We choose a vector v_{r+1} with $\sigma_i(v_{r+1})\sigma_{i'}(v_{r+1}) < 0$ and $\sigma_{i'}(v_{r+1}) = 0$ if $i'' \ne i, i'$. Then v_1, \dots, v_{r+1} satisfy (*). We can repeat this process N-r-1 times. Q.E.D.

LEMMA 2.8. Let $v \in \mathbb{Z}^N$ be a usual vector with $\sigma_i(v) = 0$ if i > s. Then there are a positive surjective homomorphism $\psi : \mathbb{Z}^N \to \mathbb{Z}^{N-1}$ with $\psi(v) = 0$ and $\psi(e_i) = e_{i-1}$ if i > s.

PROOF. Let d be the g.c.d. of $\sigma_1(v), \dots, \sigma_s(v)$. Since v is usual, there is a positive matrix $M \in GL_s(\mathbb{Z})$ with $M(d^{-1}v) = e_1$. Then M induces a positive surjective homomorphism $\beta: \mathbb{Z}^s \to \mathbb{Z}^{s-1}$ with $\beta(v) = 0$:

Now $\psi = \begin{pmatrix} \beta & 0 \\ 0 & E_{N-s} \end{pmatrix}$ satisfies the condition of the lemma.

Q.E.D.

KAZUFUMI ETO

PROPOSITION 2.9. Let $v_1, \dots, v_r \in \mathbb{Z}^N$ be usual vectors satisfying (*) and $V = \langle v_1, \dots, v_r \rangle$. Then rank V = r and V is contained in the kernel of a positive surjective homomorphism.

PROOF. We will prove the assertion by induction on r. It is clear, if r=1. Assume r>1. Since v_1, \dots, v_r satisfy (*), there is some j such that for each $j' \neq j$, we have $\sigma_i(v_{j'})\sigma_{i'}(v_{j'})\geq 0$, for i, i' with $\sigma_i(v_j)\sigma_{i'}(v_j)\neq 0$. Say j=1 and assume $\sigma_i(v_1)\neq 0$ if $i\leq s$ and $\sigma_i(v_1)=0$ if i>s. Note s<N. Applying Lemma 2.8 to v_1 , there is $\psi: \mathbb{Z}^N \to \mathbb{Z}^{N-1}$ a positive surjective homomorphism with $\psi(v_1)=0$ and $\psi(e_i)=e_{i-1}$ if i>s. Then $\psi(v_2), \dots, \psi(v_r)$ satisfy (*), hence by induction hypothesis, they form a space of rank r-1 and contained in the kernel of a positive surjective homomorphism $\gamma: \mathbb{Z}^{N-1} \to \mathbb{Z}^{r'}$. If $d_1v_1 + \dots + d_rv_r = 0$, then $d_2\psi(v_2) + \dots + d_r\psi(v_r) = 0$ and $d_2 = \dots = d_r = 0$, hence $d_1=0$. Thus rank V=r. And V is contained in the kernel of a positive surjective $v_1 = 0$ and $v_2 = \dots = d_r = 0$.

From Proposition 2.7 and Proposition 2.9, we obtain

THEOREM 2.10. Let V be a submodule of \mathbb{Z}^N of rank r with r < N-1. Assume that V is contained in the kernel of a positive surjective homomorphism. If I(V) is a complete intersection and generated by $F(v_1), \dots, F(v_r)$, there are $F(v_{r+1}), \dots, F(v_{N-1})$ such that $F(v_j)$'s generate a complete intersection ideal of the form I(V') of height N-1, which is homogeneous in the positive graded ring A.

Hence if I(V) is a complete intersection, it is generated by a part of a minimal generating system of a complete intersection homogeneous ideal of height N-1.

Finally, we remark that we cannot take V' so that I(V') is prime even if I(V) is prime.

For example, let $V = \text{Ker}\begin{pmatrix} 0 & 2 & 1 & 1 \\ 8 & 0 & 2 & 3 \end{pmatrix}$. Then V is generated by ${}^{t}(-1, -2, 4, 0)$

and (-1, -1, -2, 4), hence I(V) is prime and is a complete intersection.

To extend I(V) to a complete intersection of height 3, we must choose a vector of the form ${}^{t}(-a, b, 0, 0)$ with a>0, b>0 by Theorem 2.4. But it is never prime for any a, b, since the cokernel of the injection $V+\langle w \rangle$ to \mathbb{Z}^{4} has a torsion.

References

- C. DELORME, Sous-monoïdes d'intersection complète de N, Ann. Sci. École Norm. Sup. 9 (1976), 145-154.
- [2] K. ETO, Almost complete intersection monomial curves in A⁴, Comm. Algebra 22 (13), 5325-5342 (1994).
- [3] E. KUNZ, Introduction to Commutative Algebra and Algebraic Geometry, Birkhäuser (1985).

190

Present Address:

Department of Mathematics, School of Education, Waseda University, Nishi-Waseda, Shinjuku-ku, Tokyo, 169–50 Japan.