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In this note, we will extend Delorme’s result about monomial curves [1] to
$Z^{n}$-graded rings. To do this, we will define an ideal $I(V)$ associated with a submodule
$V$ of $Z^{N}$ . It is generated by polynomials associated with vectors of $V$ (see \S 1). And we
have various examples of such ideals, e.g., defining ideals of monomial curves, that
of $Z^{n}$-graded ring, and an ideal generated by 2 $x2$ minors of a matrix. In general,
ht$I(V)=rankV,$ $I(V)$ is not necessarily prime, and we will give a condition that $I(V)$

is prime (Proposition 1.3).
In section 2, we will give the condition that $I(V)$ is a complete intersection ideal when

$V$ is contained in the kemel of a map $Z^{p}\rightarrow Z^{q}$ consisting of positive integers (Theorem
2.4). And we giveaproofofthe Delorme’sresult that any complete intersection monomial
curve in $A$ ‘ is induced by a complete intersection monomial curve in $A^{r-1}$ (Corollary
2.5). We also show that if rank $V<N-1$ and if $I(V)$ is a complete intersection, it is
generated by a part of a minimal generating system of a complete intersection
homogeneous ideal of height $N-1$ of the form $I(V^{\prime})$ (Theorem 2.10).

1. Deflnitions and prelminaries.

Let $A=k[X_{1}, \cdots, X_{N}]$ be a polynominal ring over a field $k$ . For $v\in Z^{N}$ , we denote
the i-th entry ofv by $\sigma_{i}(v)$ , and put

$F_{+}(v)=\prod_{\sigma\iota(v)>0}X_{i}^{\sigma_{l}(v)}$

$F_{-}(v)=\prod_{\sigma_{i}\langle v)<0}X_{i}^{-\sigma_{i}(v)}$

$F(v)=F_{-}(v)-F_{+}(v)$ .
(If $\sigma_{i}(v)<0foral1i,$ $weputF_{+}(v)=1$ . And if $\sigma_{i}(v)>0fora11i,$ $weputF_{-}(v)=1.$) For
a submodule $V$ of rank $r$ of $Z^{N}$ with $0<r<N$, we define an ideal $I(V)$ of $A$ generated
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by $F(v)$ for all $v\in V$. Note that $V$ is torsion-free of rank $r$ hence isomorphic to $Z^{r}$ .
Let $B=k[X_{1}^{\pm 1}, \cdots, X_{N}^{f1}]$ and $ V=\langle v_{1}, \cdots, v_{r}\rangle$ (this means that $V$ is generated by

$v_{1},$ $\cdots,$ $v_{r}$). We claim that an ideal $I(V)B\cong I(V)\otimes B$ in $B$ is generated by $F(v_{j})$ for
$1\leq j\leq r$ . For, since any vector in $V$ is a linear combination of $v_{j}$, it is sufficient to prove

$F(dw)\in(F(w))$ , $F(w_{1}+w_{2})\in(F(w_{1}), F(w_{2}))$ .
The first assertion is clear. And

$1-F_{-}(w_{1}+w_{2})^{-1}F_{+}(w_{1}+w_{2})$

$=1-F_{-}(w_{1})^{-1}F_{+}(w_{1})F_{-}(w_{2})^{-1}F_{+}(w_{2})$

$=(1-F_{-}(w_{1})^{-1}F_{+}(w_{1}))+F_{-}(w_{1})^{-1}F_{+}(w_{1})(1-F_{-}(w_{2})^{-1}F_{+}(w_{2}))$

$\in(F(w_{1}), F(w_{2}))$ .
Hence the second assertion is proved. And we notice that, if $F(v_{1}),$ $\cdots,$ $F(v_{s})$ generate
$I(V),$ $v_{1},$ $\cdots,$ $v_{s}$ generate $V$.

Next, we have rankCoker(V $=_{\rightarrow}Z^{N}$) $=r^{\prime}=N-r$ . Hence it is of the form $Z^{r}’\oplus T$

where $T$ is a torsion module. Then we have the following commutative diagram;

$0\rightarrow V\downarrow\rightarrow Z^{N}\Vert\rightarrow z]_{pr}^{\oplus T}\rightarrow 0$

$0\rightarrow V^{\prime}\rightarrow Z^{N}\rightarrow^{\phi}$
$Z^{r^{\prime}}$ $\rightarrow 0$ ,

where $ V^{\prime}=Ker\phi$ .
Let $\phi=(n_{pq})$ and $\rho$ a homomorphism from $B$ to $k[t_{1}^{\pm 1}, \cdots, t_{r}^{\pm 1}]$ which sends $X_{i}$ to

$\prod t_{p^{pi}}^{n}$ for each $i$. Then $F(v)$ is contained in Ker $\rho$ for any $v\in V$. For,

$p(F(v))=\rho(F_{-}(v)(1-F_{-}(v)^{-1}F_{+}(v)))$

$=\rho(F_{-}(v))\rho(1-\prod X_{i}^{\sigma i(v)}))=0$ .
We can regard $B$ as a group algebra $k[Z^{N}]$ . Then $I(V)B$ is the kemel of the group

algebra homomorphism $B\rightarrow k[Z^{N}/V]$ , which is induced from the group homomorphism
$Z^{N}\rightarrow Z^{N}/V$. Since dim$k[Z^{N}/V]=rankZ^{N}/V=N-r$, we have $htI(V)B=r$ . Hence

PROPOSITION 1.1. Let $V\subset Z^{N}$ be asubmodule ofrank $r,0<r<N$. Then ht$I(V)=r$ .
For later use, we prove a lemma;

LEMMA 1.2. Let $V\subset Z^{N}$ a submodule of rank $r$ where $0<r<N$. If $I(V)+(X_{1})$ is
a proper ideal in $A$ , it is of height $r+1$ .

$PR\infty F$ . Since $I(V)B\cap A=I(V)$ and since $X_{1}$ is a unit in $B,$ $X_{1}$ is not a zero
divisor on $A/I(V)$ . Hence the assertion is clear. Q.E.D.

By the definition of $I(V)$ , we have
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PROPOSITION 1.3. Let $V$ be a submodule of $Z^{N}$ of rank $r$ . Then $I(V)$ is prime if and
only $lf$ there is a surjective homomorphism $\phi:Z^{N}\rightarrow Z^{N-}$ with $ V=Ker\phi$ .

2. Complete intersection ideals.

For $\phi=(m_{ij})\in Hom(Z^{N}, Z^{N^{\prime}})$ , we say that $\phi$ is positive if $m_{ij}\geq 0$ for any $i,j$ and
$\sum_{i}m_{ij}>0$ for each $j$. For $v\in Z^{N}$ , we say that $v$ is usual if there are $i,$

$i^{\prime}$ with $\sigma_{i}(v)>0$

and $\sigma_{i’}(v)<0$ .
In this section, we assume that $V$ is contained in Ker $\phi$ where $\phi:Z^{N}\rightarrow z^{\prime}$ is a

positive homomorphism. Then $I(V)$ is a homogeneous ideal in a positively multigraded
ring $A=k[X_{1}, \cdots, X_{N}]$ . And there is a minimal generating system of $I(V)$ consisting of
polynomials of the form $F(v)$ where $v$ is a usual vector.

We say that the signatures of $z$ and $z^{\prime}(z, z^{\prime}\in Z)$ are the same if $zz^{\prime}\geq 0$ . For
$v_{1},$ $\cdots,$ $v_{l}\in V$, we consider the condition

$(*)$ for any $s(2\leq s\leq l)$ , for any numbers $i_{1},$ $\cdots,$ $i_{s}$ and $j_{1},$ $\cdots,j_{s}$, there exists $m$ such
that the signatures of $\sigma_{i_{l}}(v_{j_{m}})$ are the same for $l=1,$ $\cdots,$ $s$ .

PROPOSITION 2.1. Let $V$ be a submodule of $Z^{N}$ of rank $r$ and assume that there are
$v_{1},$ $\cdots,$ $v_{r}\in VsuchthatI(V)$ is generatedby $F(v_{1}),$ $\cdots,$ $F(v)$ . Then $v_{1},$ $\cdots,$ $v$ satisfy $(*)$ .

$PR\infty F$ . We fix $s$ . By renumbering, if necessary, we may assume $i_{l}=j_{l}=l$ for
$l=1,$ $\cdots,$ $s$ . Assume that for any $m(1\leq m\leq s)$ , there exist $i_{m},$ $i_{m}^{\prime}$ such that $\sigma_{i_{m}}(v_{m})>0$ ,
$\sigma_{i_{m}^{\prime}}(v_{m})<0$ . Then $F(v_{m})$ is contained in the ideal $(X_{i_{m}}, X_{i_{m}}, )$ . Consider the ideal
$J=I(V)+(X_{1}, \cdots, X_{s})$ . By Lemma 1.2, we have $ht(I(V)+(X_{1}))=r+1$ . Since $J$ contains
it, we have ht $J\geq r+1$ .

On the other hand, $F(v_{m})$ is contained in the ideal $(X_{1}, \cdots, X_{s})$ for any $m$ . Hence
$\mu(J)\leq r+s-s=r$ . This contradicts ht $J\geq r+1$ . Q.E.D.

In section 1, we proved that in a Laurent polynomial ring, $F(v_{1}+v_{2})$ is contained
in the ideal generated by $F(v_{1})$ and $F(v_{2})$ . But in a polynomial ring, it is not always
contained in $(F(v_{1}), F(v_{2}))$ . In [2], the following lemma is proved.

LEMMA 2.2 ([2, Lemma 1.2]). Let $v,$ $v_{1},$ $v_{2}\in V$.
(1) For any $d\in Z,$ $F(dv)$ is contained in the ideal $(F(v))$ .
(2) $F(v_{1}+v_{2})\in(F(v_{1}), F(v_{2})),$ $ifthereisnopair(i, i^{\prime})$ such that

$\sigma_{i}(v_{1})<0$ , $\sigma_{i}(v_{2})>0$ , and that $\sigma_{i^{\prime}}(v_{1})>0$ , $\sigma_{i’}(v_{2})<0$ .

PROPOSITION 2.3. Assume $v_{1},$ $\cdots,$ $v_{l}\in V$ satisfy $(*)$ and let $ V^{\prime}=\langle v_{1}, \cdots, v_{l}\rangle$ . Then
$I(V^{\prime})$ is generated by $(F(v_{j}))_{1\leq j\leq l}$ .

$PR\infty F$ . We prove the assertion by induction on $l$. It is obvious if $l=1$ . Assume
$1>1$ . Let $J=(F(v_{j}))_{1\leq j\leq l}$ . For $w=\sum d_{j}v_{j}\in V$, we claim that $F(w)$ is contained in $J$. By
induction hypothesis, if some $d_{j}=0,$ $F(w)$ is contained in $J$. So, assume $d_{j}\neq 0$ for all $j$.
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If necessary, replaoe $v_{j}$ by $-v_{j}$, then we may assume $d_{j}>0$ for all $j$.
If $F(w)$ is $co$ntained in the ideal $(F(v_{j}), F(w-d_{j}v_{j}))$ for some $j$, it is contained in $J$

by induction hypothesis. Hence we also assume $F(w)$ is not contained in $(F(v_{j})$,
$F(w-d_{j}v_{j}))$ for any $j$.

Since $F(w)\not\in(F(v_{1}), F(w-d_{1}v_{1}))$, there are $i_{1},$ $i_{2}$ such that

$\sigma_{i_{1}}(v_{1})>0$ , $\sigma_{i_{2}}(v_{1})<0$ ,
$\sigma_{i_{1}}(w-d_{1}v_{1})<0$ , $\sigma_{i_{2}}(w-d_{1}v_{1})>0$ .

Say $i_{1}=1,$ $i_{2}=2$ . Since $\sigma_{2}(w-d_{1}v_{1})>0$, there is $j$ such that $\sigma_{2}(v_{j})>0$ . For, $w-d_{1}v_{1}=$

$d_{2}v_{2}+\cdots+d_{l}v_{l}$ and $d_{j}>0$ . Say $j=2$ .
Since $F(w)\not\in(F(v_{2}), F(w-d_{2}v_{2}))$, there is $i$ such that

$\sigma_{i}(v_{2})<0$ , $\sigma_{i}(w-d_{2}v_{2})>0$ .
If $i=1,$ $v_{1},$ $v_{2}$ do not satisfy $t*$), a contradiction. Hence $i>2$ . Say $i=3$ . As the same
argument as before, there is $j\neq 2$ such that $\sigma_{3}(v_{j})>0$ . Ifj $=1,$ $v_{2},$ $v_{3}$ do not satisfy $(*)$ ,
a contradiction. Hence $j>2$ . Say $j=3$ .

Repeating this process $l$ times, we have

$\sigma_{i}(v_{i})>0$ , $\sigma_{i+1}(v_{i})<0$ , for $i=1,$ $\cdots,$ $l-1$ .
Then, since $F(w)\not\in(F(v_{l}), F(w-d_{l}v_{l}))$ , there is $j\neq l$ such that $\sigma_{l}(v_{j})>0$ . Then $v_{1},$ $\cdots,$ $v_{l}$

do not satisfy $(*)$, a contradiction. Q.E.D.

From Proposition 2.1 and Proposition 2.3, we have

THEOREM 2.4. $I(V)$ is a complete intersection if and only $\iota f$ there exist $v_{1},$ $\cdots,$ $v_{r}$

satisfying $(*)$ which generate $V$.
In the case of rank $V=N-1$ , we have

COROLLARY 2.5 (Delorme [1, Lemma 6]). A complete intersection monomial
curve is obtained from unimodular vectors of less length than $N$, which define complete
intersection monomial curves, respectively.

We will give a proof: Assume $V=Keru$ where $u=(n_{1}, \cdots, n_{N})$ is a unimodular
vector of length $N$ whose entries are positive integers. Then $I(V)$ is the defining ideal
of a monomial curve. Sinoe rank $V=N-1$ , for each $i$, there is $v$ with $\sigma_{i}(v)<0$ and
$\sigma_{i^{\prime}}(v)\geq 0$ if $i\neq i^{\prime}$ . Hence $ I(\eta$ contains polynomials of the form $X_{i}^{-\sigma_{t}\langle v)}-\prod_{i*i}X_{l’}^{\sigma_{l^{\prime}}(v)}$ .
Then, if $I(V)$ is a complete intersection, its generating system must contain a polynomial
of the form $X_{i}^{\alpha_{i}}-X_{i^{\prime}}^{\alpha_{l^{\prime}}}$ . Hence we may assume $\sigma_{1}(v_{1})=-\alpha_{1},$ $\sigma_{2}(v_{1})=\alpha_{2}$ and $\sigma_{i^{\prime}}\cdot(v_{1})=0$

otherwise.
Now let $d$ be the g.c. $d$ . of $n_{1},$ $n_{2}$ . Then $\alpha_{1}=d^{-1}n_{2}$ and $\alpha_{2}=d^{-1}n_{1}$ . Put $u^{\prime}=$

$(d, n_{3}, \cdots, n_{N})$ be a positive unimodular vector of length $N-1$ and $V^{\prime}=Keru^{\prime}$ . And
consider a map $\phi:Z^{N}\rightarrow Z^{N-1}$ which sends $e_{1}$ to $\alpha_{2}e_{1},$ $e_{2}$ to $\alpha_{1}e_{1}$ and $e_{i}$ to $ e_{i-1}fo\iota$
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$i\geq 3$ . Then $\phi(V)=V^{\prime}$ and $\phi(v_{2}),$ $\cdots,$ $\phi(v_{N-1})$ satisfy $(*)$ . Hence $I(V^{\prime})$ is a complete
intersection by Theorem 2.4. Therefore an ideal $I(V)$ is obtained from unimodular
vectors $u^{\prime}$ and $(d^{-1}n_{1}, d^{-1}n_{2})$ , which define complete intersection monomial curves,
respectively. Q.E.D.

Now we investigate the case $r<N-1$ .
LEMMA 2.6. Let $v_{1},$ $\cdots,$ $v_{l}\in Z^{N}$ be usual vectors satisfying $(*)$ and assume $N\geq 3$ .

If $l<N-1$ , there are $i,$
$i^{\prime}$ with $\sigma_{i}(v_{j})\sigma_{i^{\prime}}(v_{j})\geq 0$ for any $j$.

$PR\infty F$ . We prove the lemma by induction on $N$. If $N=3$ , we have $l=1$ and the
assertion is clear. In general, we assume that $\sigma_{1}(v_{1})>0$ and $\sigma_{N}(v_{1})<0$ . For each $j$, let
$v_{j}^{\prime}$ be the image of $v_{i}$ by the map $Z^{N}\rightarrow Z^{N-1}$ which sends $e_{i}$ to $e_{i}(i=1, \cdots, N-1)$ and
$e_{N}$ to $e_{1}$ . Then $v_{2}^{\prime},$ $\cdots,$

$v_{l}^{\prime}$ satisfy $(*)$ . Hence, by the induction hypothesis, there are $i,$
$i^{\prime}$

with $\sigma_{i}(v_{j}^{\prime})\sigma_{i’}(v_{j}^{\prime})\geq 0$ for $j\geq 2$ . And $\sigma_{i}(v_{j})\sigma_{i^{\prime}}(v_{j})\geq 0$ for $j\geq 2$ .
If $i=1$ and $\sigma_{i’}(v_{1})\geq 0$ , then $\sigma_{1}(v_{1})\sigma_{i’}(v_{1})\geq 0$ and the assertion is proved. If $i=1$ and

$\sigma_{i’}(v_{1})<0$, then $\sigma_{N}(v_{1})\sigma_{i^{\prime}}(v_{1})>0$ . And $\sigma_{1}(v_{j})\sigma_{N}(v_{i})\geq 0$ for $j\geq 2$, since $v_{1},$ $\cdots,$ $v_{l}$ satisfy
$(*)$ . Thus $\sigma_{N}(v_{j})\sigma_{i’}(v_{i})\geq 0$ for $j\geq 2$ , and we obtain the result.

If $i,$ $t^{\prime}>1$ and $\sigma_{i}(v_{1})\sigma_{i^{\prime}}(v_{1})\geq 0$ , the assertion is clear. Assume $\sigma_{\iota}(v_{1})>0$ and
$\sigma_{\iota^{\prime}}(v_{1})<0$ . Then $\sigma_{1}(v_{j})\sigma_{i^{\prime}}(v_{j})\geq 0$ forj $\geq 2$ since $v_{1},$ $v_{l}$ satisfy $(*)$ and $\sigma_{1}(v_{1})>0,$ $\sigma_{i^{\prime}}(v_{1})<0$ .
Thus $\sigma_{1}(v_{j})\sigma_{i’}(v_{j})\geq 0$ for any $j$, sinoe $\sigma_{i}(v_{j})\sigma_{i^{\prime}}(v_{j})\geq 0$ for $j\geq 2$ . This completes the
proof. Q.E.D.

PROPOSITION 2.7. Let $v_{1},$ $\cdots,$
$v\in Z^{N}$ be usual vectors satisfying $(*)$ . If $r<N-1$ ,

there are usual vectors $v_{+1},$ $\cdots,$ $v_{N-1}\in Z^{N}$ such that $v_{1},$ $\cdots,$ $v_{N-1}$ satisfy $(*)$ .
$PR\infty F$ . $ByLemma2.6$ , there are i, $i^{\prime}$ with $\sigma_{1}(v_{j})\sigma_{i^{\prime}}(v_{j})\geq 0foranyj$. We choose a

vector $v_{r+1}$ with $\sigma_{i}(v_{+1})\sigma_{i’}(v_{+1})<0$ and $\sigma_{i’}(v_{+1})=0$ if $t^{\prime\prime}\neq i,$ $i^{\prime}$ . Then $v_{1},$ $\cdots,$ $v_{r+1}$

satisfy $(*)$ . We can repeat this prooess $N-r-1$ times. Q.E.D.

LEMMA 2.8. Let $v\in Z^{N}$ be a usual vector with $\sigma_{i}(v)=0$ if $i>s$ . Then there are a
positive surjective homomorphism $\psi:Z^{N}\rightarrow Z^{N-1}$ with $\psi(v)=0$ and $\psi(e_{i})=e_{i-1}$ if $i>s$ .

$PR\infty F$ . Let $d$ be the g.c. $d$ . of $\sigma_{1}(v),$ $\cdots,$ $\sigma_{s}(v)$ . Since $v$ is usual, there is a positive
matrix $M\in GL_{s}(Z)$ with $M(d^{-1}v)=e_{1}$ . Then $M$ induces a positive $su\dot{\eta}\infty tive$

homomorphism $\beta:Z^{s}\rightarrow Z^{s-1}$ with $\beta(v)=0$ :

$0\rightarrow Z\rightarrow Z^{s}Z^{s-1}d^{-1}v\underline{\beta}\rightarrow 0$

$\Vert$

$\downarrow M$
$\Vert$

$0\rightarrow ZZ^{s}\underline{e_{1}}\rightarrow Z^{s-1}\rightarrow 0$ .

Now $\psi=(\beta 0$ $E_{N-}0$) satisfies the condition of the lemma. Q.E.D.
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PROPOSITION 2,9. Let $v_{1},$ $\cdots,$
$v\in Z^{N}$ be usual vectors satisfying $(*)$ and $V=$

$\langle v_{1}, \cdots, v\rangle$ . Then rank $V=r$ and $V$ is contained in the kernel of a positive surjective
homomorphism.

$PR\infty F$ . We will prove the assertion by induction on $r$ . It is clear, if $r=1$ . Assume
$r>1$ . Since $v_{1},$ $\cdots,$ $v$ satisfy $(*)$ , there is some $j$ such that for each $j^{\prime}\neq j$, we have
$\sigma_{i}(v_{j^{\prime}})\sigma_{i^{\prime}}(v_{j^{\prime}})\geq 0$ , for $i,$

$i^{\prime}$ with $\sigma_{i}(v_{j})\sigma_{i^{\prime}}(v_{j})\neq 0$ . Say $j=1$ and assume $\sigma_{i}(v_{1})\neq 0$ if $i\leq s$

and $\sigma_{i}(v_{1})=0$ if $i>s$ . Note $s<N$. Applying Lemma 2.8 to $v_{1}$ , there is $\psi:Z^{N}\rightarrow Z^{N-1}$ a
positive $su\dot{\eta}ective$ homomorphism with $\psi(v_{1})=0$ and $\psi(e_{i})=e_{i-1}$ if $i>s$ . Then
$\psi(v_{2}),$ $\cdots,$ $\psi(v)$ satisfy $(*)$ , hence by induction hypothesis, they form a space of rank
$r-1$ and contained in the kemel of a positive $su\dot{q}ective$ homomorphism $\gamma:Z^{N-1}\rightarrow Z^{r^{\prime}}$

If $d_{1}v_{1}+\cdots+d_{r}v_{r}=0$ , then $d_{2}\psi(v_{2})+\cdots+d_{r}\psi(v)=0$ and $d_{2}=\cdots=d=0$ , hence
$d_{1}=0$ . Thus rank $V=r$ . And $V$ is contained in the kemel of a positive surjective
homomorphism $\gamma\psi$ . Q.E.D.

From Proposition 2.7 and Proposition 2.9, we obtain

THEOREM 2.10. Let $V$ be a submodule of $Z^{N}$ of rank $r$ with $r<N-1$ . Assume thal
$V$ is contained in the kernel of a positive surjective homomorphism. If $I(V)$ is a complete
intersection and generated by $F(v_{1}),$ $\cdots,$ $F(v)$ , there are $F(v_{r+1}),$ $\cdots,$ $F(v_{N-1})$ such thal
$F(v_{j})s$ generate a complete intersection ideal of the form $I(V^{\prime})$ of height $N-1$ , which is
homogeneous in the positive graded ring $A$ .

Hence if $I(V)$ is a complete intersection, it is generated by a part of a minimai
generating system of a complete intersection homogeneous ideal of height $N-1$ .

Finally, we remark that we cannot take $V^{\prime}$ so that $I(V^{\prime})$ is prime even if $I(V)$ is
prime.

For example, let $V=Ker\left(\begin{array}{llll}0 & 2 & 1 & 1\\8 & 0 & 2 & 3\end{array}\right)$ . Then $V$ is generated by ${}^{t}(-1, -2,4,0)$

and ${}^{t}(-1, -1, -2,4)$ , hence $I(V)$ is prime and is a complete intersection.
To extend $I(V)$ to a complete intersection of height 3, we must choose a vector of

the form ${}^{t}(-a, b, 0,0)$ with $a>0,$ $b>0$ by Theorem 2.4. But it is never prime for
any $a,$

$b$, since the cokemel of the injection $ V+\langle w\rangle$ to $Z^{4}$ has a torsion.
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