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Abstract. Let $X_{1}$ and $X_{2}$ be two independent Hunt processes which take values in a metric space and
have the same transition density functions with respect to a reference measure. We describe explicit conditions
on the transition density functions so that $X_{1}$ and $X_{2}$ have collisions with positive probability or with
probability one or do not have any collision. The applications to L\’evy processes, diffusions driven by s.d. $e$ . $s$

and Brownian motions on fractals are exhibited.

\S 1. Introductions and notations.

Let $X_{1}$ and $X_{2}$ be two independent Brownian motions in $R^{d}$ . It is well-known that
$X_{1}$ and $X_{2}$ have intersections, i.e. $X_{1}(t_{1})=X_{2}(t_{2})$ for some $t_{2},$ $t_{2}>0$ , when $d\leq 3$ . However,
$X_{1}$ and $X_{2}$ have collisions, i.e. $X_{1}(t)=X_{2}(t)$ for some $t>0$ , only when $d=1$ . Jain-Pruitt
[8], Hawkes [9] and Pruitt [13] studied the collisions of two stable processes on the
line. Shieh [14] considered the collisions of two L\’evy processes on the line. In this
paper, we present explicit conditions on the transition density functions of two
independent Hunt processes, taking values in a metric space, so that they have collisions
with positive probability or with probability one or do not have any collision. Our
general results are directly applicable to some specific processes; we concem with L\’evy
processes, diffusions driven by s.d. $e$ . $s$ , and Brownian motions on fractals. As one
consequence, we prove that two independent Brownian motions on Sierpinski Gasket
or Carpet have collisions with probability one (see (\S 5, iii), while it is interesting to
note that the intersections of these processes are trivially true). The basic idea ofderiving
our results follows somewhat ”standard” one in the various problems on intersections
and collisions. To prove the collisions, we construct explicitly a non-trivial measure
supported on $\{t;X_{1}(t)=X_{2}(t)\}$ ; to prove the non-collision, we show that the diagonal
$\{(x, x)\}$ is polar for the product process $Y(t)=(X_{1}(t), X_{2}(t))$ . However, our methods
and calculations in this paper are quite different from those in [8, 9, 13]; we are mainly
motivated by a device of Marcus [12] on level sets of real-valued stochastic processes.
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Moreover, even for L\’evy processes and diffusions on the line, our results about the
time when and the interval where the collisions happen appear to be novel (\S 5, $i$ and
ii).

We prove our result on the collisions with positive probability in \S 2 and that with
probability one in \S 3. We prove a result on the non-collision in \S 4. In the final \S 5 we
give specific applications. Now, we commence with some basic notations and facts used
throughout this paper. We assume that the state space is a locally compact separable
complete metric space $(E, \rho)$ , and assume that there is an everywhere dense Radon
measure $m(dx)$ defined on $E$ which plays the role of reference measure. Let $B(x, \epsilon),$ $x\in E$

and $\epsilon>0$ , denote the closed ball in $E$ with the center $x$ and the radius $\epsilon$ . We assume
that there exists some $\epsilon_{O}$ such that $B(x, \epsilon_{0})$ is compact for each $x$; moreover, for $0<\epsilon\leq\epsilon_{O}$

$m(B(x, \epsilon))=m(B(y, \epsilon))$ for all $x,$ $y\in E$ .
Note that the above quantity is finitely positive. We always let $X_{1}$ and $X_{2}$ be two
independent E-valued Hunt prooesses (no explosions) which are defined on a certain
underlying probability space $ w\in\Omega$ and have the same transition density functions
$p(t, x, y)$ with respect to $m(dx)$ , i.e. for $s,$ $t>0$ and $x\in E$, Borel $A\subset E$

$P[X_{j}(t+s)\in A|X_{j}(s)=x]=\int_{A}p(t, x, y)m(dy)$ .

We assume that
(1.1) $p(t, x, y)$ is jointly measurable in $(t, x, y)$ ;
(1.2) $p(t, x, y)$ is continuous in $(x, y)$ for each t $>0$ , and
(1.3) the Chapman-Kolmogorov equation

$\int_{z\epsilon E}p(t, x, z)p(s, z, y)m(dz)=p(t+s, x, y)$

holds for all $s,$ $t>0$ and $x,$ $y\in E$. We shall only need (1.1) and (1.2) in $\Re 2,3$ and (1.3)

is needed only in \S 4. We also use the notations $P^{x,y}$ and $E^{x,y}$ to indicate the probability
and the expectation corresponding to the initial conditions $X_{1}(0)=x$ and $X_{2}(0)=y$ . We
need frequently a simple identity that

(1.4) $\int_{B}p(t, x, y)m(dy)=1$ for all $t>0$ and $x\in E$ .

\S 2. The collisions with positive probability.

Let $X_{1}(t)$ and $X_{2}(t)$ be two independent E-valued Hunt processes with $p(t, x, y)$ as
transition density functions, as those mentioned in \S 1. We assume further in this section
that



COLLISIONS OF MARKOV PROCESSES 113

(2.1) $p(t, x, y)>0$ for all $t>0$ and $x,$ $y\in E$ .
For compact $K\subset E$, we set

$\alpha_{K}(t)=\sup_{x.yeK}p(t, x, y)$ ; $\beta_{K}(t)=\inf_{x,y\in K}p(t, x, y)$ .

Note that $\alpha_{K}(t)<\infty$ and $\beta_{K}(t)>0$ by our conditions (1.2) and (2.1).

THEOREM 2.1. Assume (1.1), (1.2) and (2.1). Let compact $K\subset E$ be with positive
m-measure and let $x,$ $y\in K$. If

(2.2) $\int_{0}^{1}\alpha_{K}(t)dt<\infty$ ,

then

$P^{x,y}$[ $ w:\exists$ uncountably many $t\in(O,$ $1$ ] $s.t$ . $X_{1}(t, w)=X_{2}(t, w)\in K$] $>0$ .
$PR\infty F$ . We aim to construct a non-trivial measure supported on $\{t;X_{1}(t)=$

$X_{2}(t)\in K\}$ ; the arguments are motivated from Marcus’ [12, Theorem 1] work on the
capacity of level sets of real-valued processes. Define the approximation kernels by

$\psi_{\epsilon}(x, y)=\frac{1_{B\langle x,\epsilon)}(y)}{m(B(x,\epsilon))}$ .

By our assumptions on the measure $m(dx)$ mentioned in \S 1, $\psi_{\epsilon}(x, y)$ is well-defined
when $\epsilon$ is small enough and $\psi_{\epsilon}(x, y)=\psi_{\epsilon}(y, x)$ . We dePne

(2.3) $Z_{\epsilon}(t)=\int_{0}^{t}1_{K}(X_{1}(s))\psi_{\epsilon}(X_{1}(s), X_{2}(s))ds$ , $0\leq t\leq 1$ .
We firstly prove that

(2.4)
$\lim_{\epsilon.\epsilon’\downarrow 0}E^{x,y}Z_{\epsilon}(t)Z_{\epsilon^{\prime}}(t)$

$=2\int_{0}^{t}\int_{0}^{s^{\prime}}\{\int_{z_{2}\in K}\int_{z_{1}\in K}p(s, x, z_{2})p(s, y, z_{1})p^{2}(s^{\prime}-s, z_{1}, z_{2})m(dz_{1})m(dz_{2})\}\& ds^{\prime}<\infty$ ,

where the finiteness of the multiple integral is a part of the assertion. By (1.1) the
right-handed side of (2.4) is well-defined, and we observe that

(2.5) $E^{x,y}Z_{\epsilon}(t)Z_{\epsilon^{\prime}}(t)=2\int_{0}^{t}\int_{0}^{s^{\prime}}\{\int_{y_{2}\epsilon\dot{K}_{\epsilon}},$ $\int_{x_{2}eK}\int_{y_{1}eK_{\epsilon}}\int_{x_{1}eK}$

$\psi_{e}(x_{1}, y_{1})\psi_{\epsilon^{\prime}}(x_{2}, y_{2})p(s, x, x_{1})p(s^{\prime}-s, x_{1}, x_{2})$

$p(s, y, y_{1})p(s^{\prime}-s, y_{1}, y_{2})m(dx_{1})m(dy_{1})m(dx_{2})m(dy_{2})\}\& ds^{\prime}$ ,
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where $K_{\epsilon}=\{y|\rho(y, K)\leq\epsilon\}$ . For fixed $s$ and $s^{\prime}$ , we claim that the integral in the brace
of (2.5) converges to the corresponding integral of (2.4) as $\epsilon,$

$\epsilon^{\prime}\downarrow 0$ . We use the notations
$\{\cdot\}_{\epsilon,\epsilon’}$ and $\{\cdot\}$ respectively for these two integrals. Since for all fixed $x_{1}$ and $y_{2}$

(2.6) $\int_{y_{1}}\psi_{\epsilon}(x_{1}, y_{1})m(dy_{1})=1$ and $\int_{x_{2}}\psi_{\epsilon’}(x_{2}, y_{2})m(dx_{2})=1$ ,

changing $z_{1},$ $z_{2}$ into $x_{1},$ $y_{2}$ and inserting $x_{2},$ $y_{1}$ we can write $\{\cdot\}$ as

$\{\cdot\}=\int_{y_{2}eK}\int_{x_{2}\epsilon K}\int_{y_{1}\in K}\int_{x_{1}eK}p(s, x, x_{1})p(s, y, x_{1})\psi_{e}(x_{1}, y_{1})$

$p(s^{\prime}-s, x_{1}, y_{2})p(s^{\prime}-s, x_{1}, y_{2})\psi_{\epsilon’}(x_{2}, y_{2})m(dx_{1})m(dy_{1})m(dx_{2})m(dy_{2})$ .
Thus, the convergence of $\{\cdot\}_{\epsilon,\epsilon^{\prime}}$ to $\{\cdot\}$ as $\epsilon,$

$\epsilon^{\prime}\downarrow 0$ follows from the uniform continuity
of $p(s, x, y)$ in $(x, y)\in K_{\epsilon}\times K_{\epsilon}$ , which is a consequence of (1.2). Now, we show that we
may apply the dominated convergence theorem to assert (2.4). We have

$\{\cdot\}_{e.\epsilon^{\prime}}\leq\alpha_{K}(s)\alpha_{K}(s^{\prime}-s)$

$\times\int_{y2}\int_{x_{2}}\int_{y1}\int_{x_{1}}\psi_{\epsilon}(x_{1}, y_{1})\psi_{\epsilon^{\prime}}(x_{2}, y_{2})$

$p(s, y, y_{1})p(s^{\prime}-s, y_{1}, y_{2})m(dx_{1})m(dy_{1})m(dx_{2})m(dy_{2})$ ;

the above multiple integral is $\leq 1$ by repeatedly using (1.4) and (2.6). By (2.2)
$g(s, s^{\prime}):=\alpha_{K}(s)\alpha_{K}(s^{\prime}-s)$ is integrable over $(s, s^{\prime})$ , and thus the dominated convergence
theorem is indeed applicable. Now, (2.4) implies that $Z_{e}(t)$ is Cauchy in $L^{2}(dP^{x,y})$ as
$\epsilon\downarrow 0$ . Therefore, we can find a sequence $\epsilon_{n}\downarrow 0$ such that

(2.7) $P^{x,y}[w:\lim_{n\rightarrow\infty}Z_{\epsilon_{n}}(t, w):=Z(t, w)existsforallrationalt\in[0,1]]=1$ .

Obviously, $Z(t, w)$ is nondecreasing in $t$, and thus it determines a Borel measure on
$[0,1]$ which we denote by $Z(dt, w)$ . From the integrability of $\alpha_{K}(s)$ , we ,can construct
a decreasing continuous $\phi:r\in(O, \infty)\rightarrow\phi(r)\in[1, \infty)$ with $\phi(0+)=\infty$ such that

$\int_{0}^{1}\alpha_{K}(t)\phi(t)dt<\infty$ ,

see Shieh [14, p. 504]. By the same arguments as those in Marcus $[12, (2.5)-(2.8)]$ , we
have

(2.8) $P^{x.y}[\int_{0}^{1}\int_{0}^{1}’$ .

From the construction of $Z(dt)$, the support of $Z(dt)$ is contained in $\{t;X_{1}(t)=X_{2}(t)$

and both $X_{j}$ are continuous at $t$}. By (2.8) and that $\phi(0+)=\infty,$ $Z(dt)$ has no atoms;
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moreover both $X_{j}$ have at most countably many discontinuities (being Hunt processes).
Therefore, we may use a simple Fubini argument to assert that

(2.9) $P^{x,y}[suppZ(dt)\subset\{t; X_{1}(t)=X_{2}(t)\}]=1$ .
By (2.8), (2.9) and an elementary Schwartz-type inequality, cf. Marcus [12, (2.10)], we
have

(2.10) $P^{x.y}$[$the$ set $\{t\in(O,$ $1$] : $X_{1}(t)=X_{2}(t)$} has positive $\phi$-capacity]

$\geq P^{x,y}[Z[0,1]>0]$

$\geq\frac{(E^{x,y}Z[0,1])^{2}}{E^{x,y}Z^{2}[0,1]}$ .

We can eas.ily see from $(2.3)-(2.5)$ and the definitions of $\alpha_{K},$
$\beta_{K}$ that

(2.11) $E^{x,y}Z[0,1]=\int_{0}^{1}\int_{z\in K}p(t, x, z)p(t, y, z)m(dz)dt$

$\geq m(K)\int_{0}^{1}\beta_{K}^{2}(t)dt>0$ , and

(2.12) $E^{x,y}Z^{2}[0,1]=2\int_{s}^{1}\int_{0}^{1}\int_{z_{2}eK}\int_{z_{1}\in K}$

$p(s, x, z_{1})p(s, y, z_{1})p^{2}(s^{\prime}-s, z_{1}, z_{2})m(dz_{1})m(dz_{2})dsdr^{\prime}$

$\leq 2\int_{s}^{1}\int_{0}^{1}\alpha_{K}(s)\alpha_{K}(s^{\prime}-s)dsds^{\prime}<\infty$ .

In (2.12), we have used again the identity (1.4), and the finiteness of the last integral
above follows from (2.2). Since a set with positive $\phi$-capacity is certainly uncountable,
$(2.10)-(2.12)$ complete the proof of the theorem.

\S 3. The a.s. collisions and complementary remarks.

Theorem 2.1 concems merely with positive probability. Under certain “non-
transient” condition (see Remark 3 below the proof of Theorem 3.1), we can prove
an almost sure result by some “patch-up” technique. In the following context, “a.s.”
means $P^{x,y}- a.s$ . etc.

THEOREM 3.1. Assume (1.1), (1.2) and (2.1); moreover, assume thatfor all compact
$K\subset E$ and $x,$ $y\in E$

(3.1) $\int_{0}^{1}\alpha_{K}(t)dt<\infty’$
’ and
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(3.2)
$n\rightarrow\infty\varliminf_{neN}$

max $\{\rho(x, X_{1}(n)), \rho(y, X_{2}(n))\}<\infty$

Then, for $a.s$ . $w$, there exists uncountably many $t$ such that $X_{1}(t, w)=X_{2}(t, w)$ .
$PR\infty F$ . Note that (3.2) holds trivially when the space $E$ is compact. Thus, we

assume that $E$ is non-compact and regard the compact case as a particular one. Since
$E$ is separable and locally compact, given $x,$ $y\in E$ there exists an increasing sequence
$K_{l}$ of compacts such that $x,$ $y\in K_{1}$ and $K_{l}\uparrow E$. We may also assume that each $K_{l}$ is of
positive m-measure and that the diameter of $K_{l}$ increases to $\infty$ . For $n,$ $l\in N$ we set

$A_{n}^{l}=$ [$ w:\exists$ uncountably many $t\in(n,$ $n+1$] s.t. $X_{1}(t, w)=X_{2}(t, w)\in K_{l}$],

$A_{n}=$ [$ w:\exists$ uncountably many $t\in(n,$ $n+1$] s.t. $X_{1}(t, w)=X_{2}(t, w)$].

By the Markov property, for a.s. $w$

$P^{x.y}[A_{n}|X_{1}(t), X_{2}(t), t\leq n-1](w)$

$=P^{X_{1}(n-1.w),X_{2}\langle n-1.w)}[A_{1}]\geq P^{X_{1}(n-1,w).X_{2}(n-1,w)}[A_{1}^{l}]$ .
By the proof of Theorem 2.1, the above display

$\int_{0}^{1}\int_{z\in K_{l}}p(t, X_{1}(n-1, w), z)p(t, X_{2}(n-1, w), z)m(dz)dt$

$\geq\ovalbox{\tt\small REJECT} 2\int_{s}^{1}\int_{0}^{1}\alpha_{K_{l}}(s)\alpha_{K_{l}}(s^{\prime}-s)dsds^{\prime}$

.

The numerator of the above fraction

$\geq m(K_{l})\int_{0}^{1}\beta_{K_{l}}^{2}(t)dt$ ,

whenever $X_{1}(n-1, w),$ $X_{2}(n-1, w)\in K_{l}$ . Thus, for each $K_{l}$ and for a.s. $w$

(3.3) $\sum_{n\Rightarrow 1}^{\infty}p^{x.y}[A_{n}|X_{1}(t), X_{2}(t), t\leq n-1](w)$

$N_{l}(w)\cdot m(K_{l})\cdot\int_{0}^{1}\beta_{K_{l}}^{2}(t)dt$

$\geq\overline{2\int_{s}^{1}\vee\int_{0}^{1}\alpha_{K_{l}}(s)\alpha_{K_{l}}(s^{\prime}-s)\&\&\prime}$

where $N_{l}(w)=\#\{n=n(w)|X_{1}(n-1, w), X_{2}(n-1, w)\in K_{l}\}$ . Under (3.2), there exists an
a.s. finite positive random variable $r=r(w)$ such that almostly surely $\rho(x, X_{1}(n))<r$ and
$\rho(y, X_{2}(n))<r$ hold for infinitely many $n$ . Thus, by our choice of compacts $K_{l}$ , for a.s.
$w$ we can find one $K_{l}$ (which may depend on w) such that $ N_{l}(w)=\infty$ . By (3.3), we then
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have

(3.4) $\sum_{n=1}^{\infty}P^{x,y}[A_{n}|X_{1}(t), X_{2}(t), t\leq n-1]=\infty$

By the conditional Borel-Cantelli lemma mentioned, for example, in Breiman [6, $p$ .
96], it follows from (3.4) that $P^{x.y}[A_{n}i.0.]=1$ . This proves the theorem.

We mention several remarks concerning with the possible extensions of Theorems
2.1 and 3.1.

REMARKS. 1. We may allow $X_{1},$ $X_{2}$ to have different transition densities $p_{1},p_{2}$ .
Theorems 2.1 and 3.1 hold when both of $p_{l}$ satisfy (2.1) and one of $p_{i}$ satisfies (2.2) and
(3.1).

2. In (2.2) the upper bound 1 for the integral of $\alpha_{K}$ can be replaced by any positive
$T$. Hence, we can assert in Theorem 2.1 that the collisions happen with positive
probability in any small initial interval of time and in any compact neighborhood of
the initial points $x,$ $y$.

3. We regard (3.2) as a ”non-transient” condition for the $ E\times$ E-valued Markov
chain $Y(n)=(X_{1}(n), X_{2}(n))$ . A ready sufficient condition for (3.2) is that $Y(n)$ is
neighborhood-recurrent in $E\times E$; our arguments in Theorem 3.1 actually show that the
collisions then happen with probability one in any compact neighborhood of the initial
points $x,$ $y$ . Moreover, as we may see from the proof of Theorem 3.1 that (3.2) is
unnecessary in case that the state space $E$ is compact or in case that $X_{i}$ are L\’evy processes
(the simple 0-1 law is sufficient to derive the a.s. result from the result of positive
probability).

4. We may proceed most of our arguments under the (weaker) assumptions on
the resolvent densities (Green functions) rather than on transition densities, as Rogers
[14] did for multiple points of Markov processes.

5. We observe that, in the proofs of Theorems 2.1 and 3.1 we actually have just
used the simple Markov property and the consequence that the paths have at most
countably many discontinuities. Therefore, we may state our Theorems 2.1 and 3.1 for
(simple) Markov processes with transition density functions $p(t, x, y)$ for which

$\int_{yeE-B\langle x.\epsilon)}p(t, x, y)m(dy)=o(1)$ as $t\rightarrow 0$ ,

uniformly on x-compacts, for each $\epsilon>0$ . This classical condition asserts the ”cadlaguity”
of sample paths.

6. The translation-invariant condition $m(B(x, \epsilon))=m(B(y, \epsilon))$ for the measure $m$

can be weakened to that the two quantities are mutually bounded by certain absolute
constants. We may see this from the arguments leading to the construction of the
measure $Z(\cdot)$ in the proof of Theorem 2.1. I thank to the referee for this indication.

7. Professor T. Shiga indicates me the existence of a paper by S. Karlin and J.
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McGregar “Coincidence Probabilities” (Pacific J. Math. 9 (1959) 1141-1161), in which
the probability of non-collisions up to a given time instant was evaluated in terms of
a certain determinant (Theorem 1 at p. 1149 with $n=2$). Their method is different from
ours and the evaluated probability seems not comparable with our lower bound estimate
in \S 2. Moreover, we cannot derive the a.s. collisions by their estimate and the ”patch-up”
technique in \S 3. Furthermore, the various general formulations for non-polar sets stated
in Blumenthal and Getoor [1, e.g. p. 89] seem also not applicable to our specific
conditions in \S \S 2,3.

\S 4. The nontoUision.

In this section, we give explicit conditions so that $X_{1},$ $X_{2}$ cannot have any collision.
Since we shall use the capacity theory, we have to assume some duality condition. Here,
we confine ourselves to the simplest symmetric case. Let $X_{1}$ and $X_{2}$ be two independent
E-valued Hunt processes with the same transition density functions $p(t, x, y)$ . We assume
that

(4.1) $p(t, x, y)=p(t, y, x)$ for all $t>0$ and all $x,$ $y\in E$ .
We assume also that

(4.2) $\exists$ positive $\delta,$
$\delta^{\prime}$ s.t. $ p(t, x, y)\leq\delta$ for all $(t, x, y)\in(O, 1$ ] $\times\{\rho(x, y)>\delta^{\prime}\}$ .

THEOREM 4.1. Assume $(1.1)-(1.3)$ and (4.1), (4.2). If

(4.3) $\int_{0}^{1}\{\inf_{y\in K}p(t, y, y)\}dt=\infty$

for all compact $K\subset E$ with positive m-measure, then $X_{1}$ and $X_{2}a.s.$ do not have any
collision.

$PR\infty F$ . We prove that the diagonal $\{(x, x)\}$ is polar for the $ E\times$ E-valued Hunt
process $Y(t)=(X_{1}(t), X_{2}(t))$ . Since $Y(t)$ is m-symmetric, the capacity theory mentioned,
for example, in Blumenthal-Getoor [1, Chapter VI pp. 285-6] is applicable. Hence, it
suffices to prove that, for each fixed compact $K\subset E$ with positive m-measure, the set
$D_{K}=\{(x, x)|x\in K\}$ is of the natural (with respect to $Y$) l-capacity zero. Note that the
l-potential kemel of $Y(t)$ is

(4.4) $u^{\langle 1)}((x, y),$ $(x^{\prime}, y^{\prime}))=\int_{0}^{\infty}e^{-\iota}p(t, x, x^{\prime})p(t, y, y^{\prime})dt$ .

Let $\mu(d\kappa dy)$ be a finite positive Borel measure on $E\times E$ and let $v(dx)$ be its marginal
distribution on $E$. Suppose that $supp\mu\subset D_{K}$ and that

(4.5) $U^{\langle 1)}\mu(x, y)=\int u^{\langle 1)}((x, y),$ $(x^{\prime}, y^{\prime}))\mu(d\kappa^{\prime}dy^{\prime})\leq 1$ ,
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for all $(x, y)$ . By (4.4), (4.5) and the definition of $v(dx)$ we have, for all $(x, y)$

(4.6) $\int_{0}^{\infty}\int_{K}e^{-t}p(t, x, z)p(t, y, z)v(dz)dt\leq 1$ .

Choose a compact $K^{\prime}$ such that $K\subset K^{\prime}$ and that $\sigma(x, y)\geq\delta^{\prime}$ whenever $x\in K$ and $y\not\in K^{\prime}$ .
Integrating (4.6) for $x=y$ over $K^{\prime}$ with respect to $m(dx)$ , we have

$\int_{0}^{\infty}\int_{xeK},$ $\int_{z\in K}e^{-t}p(t, x, z)p(t, x, z)v(dz)m(dx)dt\leq m(K^{\prime})$ .

By (1.3) and (4.1) we have

$\int_{x\in K^{\prime}}p(t, x, z)p(t, x, z)m(dx)=\int_{x\in K},p(t, z, x)p(t, x, z)m(dx)$

$=[\int_{x\in E}-\int_{xfK},]p(t, z, x)p(t, x, z)m(dx)$

$=p(2t, z, z)-\int_{x\not\in K^{\prime}}p^{2}(t, z, x)m(dx)$ .

By (4.2) and our choice of K’ we have

$\int_{x\not\in K},$ $\int_{z\in K}p^{2}(t, z, x)v(dz)m(dx)\leq\delta\cdot v(K)$ ,

since, by (1.4),

$\int_{xg_{K}},p(t, z, x)m(dx)\leq 1$ for all $t$ and $z$ .

Thus,

$\int_{0}^{\infty}e^{-t}\int_{z\in K}p(2t, z, z)v(dz)dt\leq m(K^{\prime})+Const.v(K)$ .

Consequently,

$\int_{0}^{\infty}e^{-t}\{\inf_{z\in K}p(2t, z, z)\}dt\leq\frac{m(K^{\prime})}{v(K)}+Const.<\infty$ ,

which contradicts (4.3). Hence, there cannot exist a finite positive Borel measure
supported on $D_{K}$ for which the l-potential function is bounded. This proves that $D_{K}$

is of l-capacity zero and hence proves the theorem.

REMARK. We have used the symmetric condition (4.1) in Theorem 4.1 twice. One
is to enforce the capacity theory and the other is to relate the integral of $p^{2}(t, x, z)$ in
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$x$ to $p(2t, z, z)$ . Is the symmetric assumption essentially needed? Consider two
independent Cauchy processes on the line. They satisfy (4.3) and they do not have
collisions [8, \S 1] no matter they are symmetric or asymmetric. However, we are unable
to prove a more general non-collision result just under oertain duality assumption (I
thank S. Watanabe for indicating such a consideration).

\S 5. Applicatiom.

(i) L\’evy processes. Let $X_{1}$ and $X_{2}$ be two independent L\’evy processes in $R^{d}$ with
the same characteristic exponent $\psi(\lambda)$ , i.e. $Ee^{i\lambda\cdot X_{1}\{t)}=Ee^{i\lambda\cdot X_{2}(\iota)}=e^{-\psi(\lambda)}$ for all $t>0$ and
$\lambda eR^{d}$ . When the Blumenthal-Getoor lower index $\beta^{\prime\prime}:=\sup\{\zeta\geq 0:|\lambda|^{-\zeta}{\rm Re}\psi(\lambda)\rightarrow\infty$ as
$|\lambda|\rightarrow\infty\}$ is positive, then both $X_{j}(t)$ have a common bound continuous density $p(t, x)$

with respect to the Lebesgue measure. We assume that $p(t, x)$ is everywhere positive.
Applying $\Re 2,3$ we have: if $d=1$ and $\beta^{n}>1$ then $X_{1}$ and $X_{2}$ have collisions with
probability one and the collisions happen in any small initial time-interval and in any
compact interval containing the initial points. Applying \S 4 we have: if $\psi(\lambda)$ is real (so
that each $X(t)$ is symmetric), then $X_{1}$ and $X_{2}$ do not have any collision in case either
$d=1,$ $\beta^{n}\leq 1$ or $d\geq 2$ . The above results extend greatly Shieh [15, Theorem 1] and some
are new even for stable processes. In the L\’evy case, the collisions with probability one
follows from that of positive probability as we have remarked in Remark 3.3.

(ii) Diffusions driven by s.d.e. $s$ . Let $X_{1}$ and $X_{2}$ be two independent diffusions
in $R^{l}$ driven by the same stochastic differential equation $dX_{j}(t)=\sigma(X_{j}(t))dB(t)+$

$b(X_{j}(t))dt$, where $\sigma^{2}$ is uniformly elliptic and $\sigma,$
$b$ are bounded and H\"older continuous.

The transition density functions have well-known Gaussian estimates. Applying $\Re 2$,
3 we have: if $d=1$ then $X_{1}$ and $X_{2}$ have collisions with probability one and the collisions
happen in any small initial time-interval and in any compact interval containing the
initial points. Note that the chain $Y(n)=(X_{1}(n), X_{2}(n))$ is neighborhood-recurrent, as
we can apply the criterion in Friedman [7, \S 2]. Applying \S 4 we have: if $d\geq 2$ then $X_{1}$

and $X_{2}$ do not have any collision (to ensure (4.1), we have to assume that $b\equiv 0$; then
we use the Cameron-Martin theorem for $b\not\equiv O.$). We remark that Lindvall [10] and
Lindvall-Rogers [11] have studied relevant results from the viewpoint of coupling
theory.

(iii) Brownian motions on fractals. Brownian motions on (planar compact)
Sierpinski Gasket and Carpet have been constructed by Barlow-Perkins [5] and
Barlow-Bass [2]. The transition density functions with respect to the natural Hausdorff
measure associated with the fractal have been proven existent and been precisely
estimated as follows $[4, 5]$

$p(t, x, y)\sim t^{-l.\prime 2}e^{\langle con*|.|x-y|t^{-1}/a_{w)^{\ell}\sqrt l_{w}-1}}$ ,

where $d_{s}$ is “the spectral dimension” and $d_{w}$ is “the dimension of the walk”. The
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numerical values and estimates for $d_{s}$ and $d_{w}$ given in $[4, 5]$ ; in both cases, $d_{s}\in(1,2)$

and $d_{w}>2$ . By \S \S 2, 3 we have: any two independent Brownian motions on either S.G.
or S.C. have collisions with probability one. We remark that the intersections of these
processes are trivially true, since they are point-recurrent $[3, 5]$ .

ACKNOWLEDGEMENT. I am indebted to inspiring discussions with Professor S.
Watanabe in which the consideration on intersections and collisions of diffusions on
fractals is suggested and the possibility of exploiting the various ideas in my previous
works [15, 16, 17] is indicated.
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