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Abstract. We consider nonnegative solutions to the exterior Dirichlet problem for quasilinear parabolic
equations $u_{t}=\Delta u^{m}+u^{p}$ with $p=m+2/N$ and $m\geq 1$ . In this paper we show that when $N\geq 3$ all nontrivial
solutions to above problem blow up in finite time. For this aim, it is important to study the asymptotic
behavior of solutions to the exterior Dirichlet problem for the quasilinear parabolic equations $u_{t}=\Delta u^{m}$ .

1. Introduction.

This paper is continued from the previous our work with K. Mochizuki “Critical
exponent and critical blow-up for quasilinear parabolic equations” [8].

Let $N\geq 2$ and let $\Omega$ be an exterior domain in $R^{N}$ with a smooth boundary $\partial\Omega$ . In
the work [8] we considered the initial-boundary value problem

(1.1) $\partial_{t}u=\Delta u^{m}+u^{p}$ in $(x, t)\in\Omega\times(O, T)$

(1.2) $u(x, 0)=u_{0}(x)$ in $ x\in\Omega$

(1.3) $u(x, t)=0$ on $(x, t)\in\partial\Omega\times(O, T)$

where $p>m\geq 1$ and $u_{0}(x)\geq 0$ and showed that

(1.4) $p_{m}^{*}=m+2/N$

is the critical exponent for the above initial boundary-value problem. Namely, the
following results hold:

(I) If $m<p<p_{m}^{*}$ , then all nontrivial nonnegative weak solutions of $(1.1)-(1.3)$

blow up in finite time.
(II) If $p>p_{m}^{*}$ , then all global solutions of $(1.1)-(1.3)$ exist when the initial data

are sufficiently small.
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Case (I) is called the blow-up case; (II) is called the global existence case. The
definition of a nonnegative weak solutions of $(1.1)-(1.3)$ is referred to [8].

It is not yet established in [8] whether or not $p=p_{m}^{*}$ is in the blow-up case (also
refer to Levine [7] which is a survey of such results and related problems). It is the
purpose ofthis paper to answer this problem. More precisely, our result is as follows:

THEOREM 1.1. If $N\geq 3$ and $p=p_{m}^{*}$ , then all nonnegative nontrivial solutions of
$(1.1)-(1.3)$ blow up in finite time.

In the following, we assume
(1.5) $p=p_{m}^{*}$ .
Further, without loss of generality, we assume

(1.6) $\Omega=E_{R}\equiv\{x||x|>R\}$ $(R>0)$

and $u_{0}(x)$ has the compact support in $\overline{\Omega}$ :

(1.7) $u_{0}(x)\in C_{0}(\overline{\Omega})$ .

Let $u(x, t)$ be a global weak solution to $(1.1)-(1.3)$ with $\Omega=E_{R}$ and $p=p_{m}^{*}$ . Then
we see that $u(\cdot, t)\in L^{1}(\Omega)$ for each $t\in(O, T)$ . In order to show Theorem 1.1 with $\Omega=E_{R}$ ,
we need the following $L^{1}$ -estimates for the global weak solution $u(x, t)$ when $N\geq 3$ ,

which is obtained by [8]:

(1.8) $\int_{E_{R}}u(x, t)\rho_{R}(|x|)dx\leq C(N)$ for any $t\geq 0$

where $C(N)=\pi^{N/2}(2N+4)^{1/(p-m)}$ and

(1.9) $\rho_{R}(r)=(r-R)/r$ .
This inequality and equation (1.1) imply another inequality

(1.10) $\int_{0}^{\tau}\int_{E_{R}}u(x, t)^{p}\rho_{R}(|x|)dxdt\leq C(N)$ for any $\tau>0$

and then $u(x, t)\equiv 0$ is concluded by reduction to absurdity.
In case $\Omega=R^{N},$ $(1.10)$ holds with $\rho_{R}\equiv 1$ and we directly found a subsolution $v\leq u$

of $(1.1)-(1.3)$ (which is a Barenblatt-Pattle solution; see [8]) to satisfy

(1.11) $\int_{0}^{\infty}\int_{R^{N}}\iota Xx,$ $ t)^{p}dxdt=\infty$ .

But in case $R>0$ , it is difficult to find such subsolution. We need another consideration.
For a global solution $u$ of $(1.1)-(1.3)$ with $\Omega=E_{R}$ , put

(1.12) $u_{k}(x, t)=k^{N}u(kx, k^{N/l}t)$ where $l=(p_{m}^{*}-1)^{-1}$
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Then $u_{k}$ becomes also a global solution of the same system with $E_{R}$ and $u_{0}(x)$ replaced
by $E_{R/k}$ and $k^{N}u_{0}(kx)$ respectively, and $u_{k}$ satisfies the inequality

(1.13) $\int_{0}^{\tau}\int_{E_{R/k}}u_{k}(x, t)^{p}\rho_{R/k}(|x|)dxdt\leq C(N)$

for any $\tau>0$ and $k\geq 1$ . Assume $u_{k}\not\equiv 0$ . Then we can find a subsolution $v_{k}\leq u_{k}$ of (1.1)

to satisfy

(1.14) $\lim_{k\rightarrow\infty}\inf\int_{0}^{\tau}\int_{E_{R/k}}v_{k}(x, t)^{p}\rho_{R/k}dxdt=\infty$

and hence we can reduce to the contradiction. More precisely, we choose $v_{k}(x, t)$ as

(1.15) $v_{k}(x, t)=k^{N}v(kx, k^{N/l}t)$

where $v(x, t)$ is a unique weak solution of the initial-boundary value problem

(1.16) $\left\{\begin{array}{ll}\partial_{t}v=\Delta v^{m} & (x, t)\in\Omega\times(0, T)\\v(x, 0)=u_{0}(x) & x\in\Omega\\ v(x, t)=0 & on x\in\Omega, t>0\end{array}\right.$

with $\Omega=E_{R}$ .
Therefore, in order to show (1.14) it becomes very important to study the asymptotic

behavior of $v_{k}(x, t)$ as $ k\rightarrow\infty$ , and this is the main contents of this paper.
Let $V_{m}(x, t;L)$ be a unique weak solution of

(1.17) $\left\{\begin{array}{ll}\partial_{t}v=\Delta v^{m} & (x, t)\in R^{N}\times(0, \infty)\\v(x, 0)=L\delta(x) & x\in R^{N}\end{array}\right.$

where $L\geq 0$ and $\delta(x)$ is Dirac’s $\delta$-function. Then we can show that for some $L>0$

(1.18) $v_{k}\rightarrow V_{m}(x, t;L)$ as $ k\rightarrow\infty$ ,

locally uniformly in $\{R^{N}\backslash \{0\}\}\times(0, \infty)$ , and hence (1.14) follows from

(1.19) $\int_{0}^{\tau}\int_{R^{N}}V_{m}^{p}dxdt=\infty$ .

In case $\Omega=R^{N},$ $(1.18)$ was shown by Friedman-Kamin [6]. Then the convergence
of $v_{k}$ is locally uniform convergence in $R^{N}\times(0, \infty)$ . The methods of the proof of (1.18)

are same as those in [6], namely, are based on the self-similarity of equation (1.16) and
the equicontinuity of the solution to (1.16) (see also Alikakos-Rostamian [1]).

The rest of the paper is organized as follows. In the next Section 2 we define a
weak solution of (1.16) and prepare several preliminary lemmas to show (1.18). In
Section 3, by using these lemmas we show (1.18). Finally, in Section 4 we prove Theorem
1.1. In appendix we mention the asymptotic behavior of a solution to (1.16) as direct
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applications of the results of Section 3.
Finally, we note that when $N=2$ it is still unsolved whether or not $p=p_{m}^{*}$ is in the

blow-up case.

ACKNOWLEDGEMENT. The author wishes to express his gratitude to Professor K.
Mochizuki for his valuable suggestions and helpful encouragement.

2. Preliminaries.

In this and next section we consider the initial-boundary value problem

(2.1) $\partial_{t}v=\Delta v^{m}$ in $(x, t)\in E_{R}\times(0, \infty)$

(2.2) $v(x, 0)=v_{0}(x)$ in $x\in E_{R}$

(2.3) $v(x, t)=0$ on $x\in E_{R}$ , $t>0$

where $m\geq 1$ and $v_{0}(x)\geq 0$ , and prepare several lemmas for the proof of (1.18). The
definition of a nonnegative weak solution $v(x, t)\in BC(\overline{E}_{R}\times[0, \infty))$ (bounded continuous
functions) to $(2.1)-(2.3)$ is referred to [8].

For this aim we need a concrete expression of the elementary solution of the initial
value problem (1.17). Let

(2.4) $l=(m-1+2/N)^{-1}=(p_{m}^{*}-1)^{-1}$ ,

(2.5) $G_{m}(s)=\left\{\begin{array}{ll}(4\pi)^{-n/2}e^{-s^{2}/4} & m=1\\[A-Bs^{2}]_{+}^{1/\langle m-1)} & m>1\end{array}\right.$

where $[a]_{+}=\max\{a, 0\},$ $B=(m-1)l/(2mN)$ and $A>0$ is chosen to satisfy

$\int_{R^{N}}G_{m}(|x|)dx=1$ .

LEMMA 2.1. The weak solution of (1.17) is given by

(2.6) $V_{m}(x, t;L)\equiv L(L^{m-1}t)^{-l}G_{m}((L^{m-1}t)^{-l/N}|x|)$

and it is self-similar in the following sense: For any $k>0$

(2.7) $k^{N}V_{m}(kx, k^{N/l}t;L)=V_{m}(x, t;L)$ .
Furthermore, it satisfies

(2.8) $\int_{R^{N}}V_{m}dx=L$ and $\int_{0}^{\tau}\int_{R^{N}}V_{m}^{m}dxdt<\infty$

and, if $L>0$ and $p=p_{m}^{*}$ ,
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(2.9) $\int_{0}^{\tau}\int_{R^{N}}V_{m}^{p}dxdt=\infty$

for each $\tau>0$ .
PROOF. If $m=1,$ $(2.6)$ gives the usual heat kernel. (2.6) with $m>1$ is also well

known as the Barenblatt-Pattle solution to the porous media equation (1.17) (see e.g.
Barenblatt [2], Pattle [10]). (2.7), (2.8) and (2.9) follow from the concrete expression
(2.6). $\square $

This weak solution of (1.17) is unique in the following sense:

LEMMA 2.2. Let $v(x, t),$ $v(x, t)^{m}\in L^{1}(R^{N}\times(0, T))\cap L^{\infty}(R^{N}\times(\tau, T))$ for any $\tau\in(0, T)$

and $v(x, t)\geq 0$ . If $v(x, t)$ satisfies the identity

(2.10) $\int_{R^{N}}v\zeta dx|_{t=\tau}=\int_{0}^{\tau}\int_{R^{N}}(v\zeta_{t}+v^{m}\Delta\zeta)dxdt+L\zeta(0,0)$

for any $\tau\in(0, T)$ and $\zeta\in C_{0}^{\infty}(R^{N}\times[0, T))$ , then

(2. 11) $v(x, t)\equiv V_{m}(x, t;L)$ in $R^{N}\times(0, T)$ .

PROOF. See Pierre [9]. But the assumptions in this lemma are stronger than those
in [9]. $\square $

Let $v(x, t)$ be a weak solution to the initial-boundary value problem $(2.1)-(2.3)$

with $v_{0}(x)\in C_{0}(\overline{E}_{R})$ . In the rest of this section we consider the one-parameter family of
functions

(2.12) $v_{k}(x, t)=k^{N}v(kx, k^{N/l}t)$ $k\geq 1$ .

Then $v_{k}(x, t)$ is self-similar, namely, $v_{k}(x, t)$ is a weak solution to the initial-boundary
value problem

(2.13) $\left\{\begin{array}{ll}\partial_{t}v=\Delta v^{m} & (x, t)\in E_{R/k}\times(0, \infty)\\v(x, 0)=k^{N}v_{0}(kx) & x\in E_{R/k}\\v(x, t)=0 & on |x|=R/k , t>0.\end{array}\right.$

Since $v_{0}(x)\leq V_{m}(x, \tau;L)$ in $E_{R}$ for some $\tau>0$ and $L>0$ , the next lemma follows
immediately from (2.7).

LEMMA 2.3.

(2.14) $v_{k}(x, t)\leq V_{m}(x,$ $t+\frac{\tau}{k^{N/l}};L)\leq\frac{L^{2l/N}}{t^{l}}G_{m}(0)$

for $|x|\geq R/k,$ $t\geq 0$ , and hence for any $t_{1}>0$
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$L^{2l/N}$

(2.15)
$v_{k}(x, t)\leq G_{m}(0)\overline{t_{1}^{l}}$

for $|x|\geq R/k,$ $t\geq t_{1}$ .
$PR\infty F$ . (2.14) and (2.15) are obvious by the comparison theorem (which is referred

to Proposition 2.1 of [8]). $\square $

Therefore, for any $\delta>0$

(2.16) $v_{k}(x, t)\leq C_{\delta}$ for $|x|\geq\delta$ , $ t\geq\delta$ , $k\geq 1$

where $C_{\delta}$ is a constant depending on $\delta$ . Applying the continuity result of DiBenedetto
[5] and Caffarelli-Friedman [3] [4], we reduce that

(2.17) $v_{k}(x, t)$ are equicontinuous in $|x|\geq\delta,$ $ t\geq\delta$ for $k\geq 1$ .
Hence, the next lemma holds.

LEMMA 2.4. For any sequence $\{k_{i}^{*}\}\uparrow\infty$ , there exists subsequence $\{k_{i}\}\subset\{k_{i}^{*}\}$ and
$w(x, t)\in C(\{R^{N}\backslash \{0\}\}\times(0, \infty))$ such that

(2.18) $v_{k_{i}}(x, t)\rightarrow w(x, t)$ as $ k_{i}\rightarrow\infty$

uniformly in $(x, t)$ in any compact subset of $\{R^{N}\backslash \{0\}\}\times(0, \infty)$ . Further

(2.19) $w(x, t)\leq V_{m}(x, t;L)$ for $(x, t)\in\{R^{N}\backslash \{0\}\}\times(0, \infty)$ .
$PR\infty F$ . Let $\delta>0$ be fixed. Applying Ascoli-Arzel\‘a theorem to $v_{k}$ , from any

sequence $\{k_{i}^{*}\}\uparrow\infty$ we can extract a subsequence $\{k_{i}\}\subset\{k_{i}^{*}\}$ such that

(2.20) $v_{k_{i}}(x, t)\rightarrow w(x, t)$ as $ k\rightarrow\infty$

uniformly in $\delta\leq|x|\leq 1/\delta,$ $\delta\leq t\leq 1/\delta$ . Using the diagonal methods, we can choose a
subsequence $\{k_{i}\}$ uniformly with respect to $\delta>0$ , and finish the proof of (2.18). (2.19)
follows soon from (2.14). $\square $

The limit function $w$ may a priori depend on the sequence $\{k_{i}^{*}\}$ . If we show that
for some $L>0$

(2.21) $w(x, t)\equiv V_{m}(x, t;L)$ ,

then we can conclude (1.18).

3. Asymptotic behavior of $v_{k}(x, t)$.
Let $v_{k_{i}}(x, t)$ and $w(x, t)$ be as in Lemma 2.4. In this section we shall show (2.21)

and so (1.18) when $N\geq 3$ . For this aim we shall use Lemma 2.2. Namely, we shall show
(2.10) with $v(x, t)$ replaced by $w(x, t)$ for some $L>0$ .
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First, since $v_{k}$ is a weak solution to (2.13), it satisfies the integral identity

(3.1) $\int_{E_{R/k}}v_{k}(x, T)\varphi(x, T)dx-\int_{E_{R/k}}k^{N}v_{0}(kx)\varphi(x, O)dx$

$=\int_{0}^{T}\int_{E_{R/le}}\{v_{k}\partial_{t}\varphi+v_{k}^{m}\Delta\varphi\}$ dxdt

for any $T>0$ and $\varphi(x, t)\in C_{0}^{\infty}(\overline{E}_{R/k}\times[0, \infty))$ (see (2.3) of [8]).

Let $\zeta(x, t)$ be a $C^{\infty}$ -function with support in $R^{N}\times(-\infty, \infty)$ and put

(3.2) $K_{R}(r;N)=\frac{r^{N-2}-R^{N-2}}{r^{N-2}}$ $(N\geq 3)$ .

If we choose $\varphi(x, t)=K_{R/k}(|x|;N)\zeta(x, t)$ in (3.1), then we have

(3.3) $\int_{E_{R/k}}v_{k}(x, T)K_{R/k}(|x|)\zeta(x, T)dx$

$=\int_{0}^{T}\int_{E_{R/k}}v_{k}K_{R/k}\zeta_{t}dxdt+2(N-2)(\frac{R}{k})^{N-2}\int_{0}^{T}\int_{E_{R/k}}v_{k}^{m}|x|^{-N}x\cdot\nabla\zeta dxdt$

$+\int_{0}^{T}\int_{E_{R/k}}v_{k}^{m}K_{R/k}\Delta\zeta dxdt+\int_{E_{R/k}}k^{N}v_{0}(kx)K_{R/k}(|x|)\zeta(x, O)dx$

$\equiv J_{1}+J_{2}+J_{3}+J_{4}$ .

Here we have used

(3.4) $\Delta K_{R/k}(|x|;N)=0$ ,

(3.5) $\nabla K_{R/k}(|x|;N)=(N-2)(\frac{R}{k})^{N-2}|x|^{-N_{X}}$ .

In the following, we shall estimate the both sides of (3.3).

LEMMA 3.1. If $ k=k_{i}\rightarrow\infty$ , then

(3.6) the left side of $(3.3)\rightarrow\int_{R^{N}}w(x, T)\zeta(x, T)dx$

and

(3.7) $J_{4}\rightarrow\zeta(0,0)I_{N}$ ,

where

(3.8) $I_{N}=\int_{E_{R}}v_{0}(x)K_{R}(|x|;N)dx$ .
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$PR\infty F$ . If we note (2.14), (2.18) and the inequality

(3.9) $K_{R/k}(|x|;N)\leq 1$ for $x\in E_{R/k}$ ,

then (3.6) follows from the Lebesgue dominated convergence theorem. (3.7) similarly
follows, since we have

(3.10) $J_{4}=\int_{E_{R}}v_{0}(x)K_{R}(|y|;N)\zeta(\frac{y}{k},$ $0)dy$ . $\square $

LEMMA 3.2.

(3.11) $J_{3}\rightarrow\int_{0}^{T}\int_{R^{N}}w\Delta\zeta dxdt$ as $ k=k_{i}\rightarrow\infty$ .

$PR\infty F$ . Let $\delta$ be a positive real number and put

(3.12) $J_{3}=\int_{0}^{\delta}\int_{E_{R/k}}v_{k}^{m}K_{R/k}\Delta\zeta dxdt+\int_{\delta}^{T}\int_{E_{R/k}}v_{k}^{m}K_{R/k}\Delta\zeta dxdt$

$\equiv J_{3,\delta}^{+}+J_{3,\delta}^{-}$ .
Set

(3.13) $t_{k}(\tau)=t+\tau/k^{N/l}$

Then, it follows from (2.14) and (3.9) that

(3.14) $|J_{3,\delta}^{+}|\leq C\int_{0}^{\delta}\int_{R^{N}}V_{m}(x, t_{k}(\tau);L)^{m}$ dxdt

$=CL^{2lm/n}\int_{0}^{\delta}t_{k}^{-ml}\int_{R^{N}}G_{m}((L^{m-1}t_{k})^{-l/N}|x|)^{m}dxdt$

where $C$ is a constant independent of $\delta$ and $k$ . Here, we have used the equality

(3.15) $2l/N+l(m-1)=1$ .

Put $y=(L^{m-1}t_{k})^{-l/N}x$ . Then, noting $t_{k}\geq t$ and (3.15), we have

(3.16) $|J_{3,\delta}^{+}|\leq CL^{l\langle m-1+2m/N)}\int_{0}^{\delta}t_{k}^{-l\langle m-1)}dt\int_{R^{N}}G_{m}(|y|)^{m}dy$

$\leq C_{1}\int_{0}^{\delta}t^{-l\langle m-1)}dt=\frac{N}{2l}C_{1}\delta^{2l/N}$

where $C_{1}=CL^{l\langle m-1+2m/N)}\int_{R^{N}}G_{m}(|y|)^{m}dy$ . Hence, we obtain

(3.17) $J_{3,\delta}^{+}\rightarrow 0$ as $\delta\downarrow 0$

uniformly with respect to $k$ .
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On the other hand, in view ofLebesgue dominated convergence theorem, we have

(3.18) $J_{3,\delta}^{-}\rightarrow\int_{\delta}^{T}\int_{R^{N}}w\Delta\zeta dxdt$ as $ k=k_{i}\rightarrow\infty$ .

Therefore, combining this and (3.17) we obtain (3.11). The proof is complete. $\square $

Similarly, since

(3.19) $|\int_{0}^{\delta}\int_{E_{R/k}}v_{k}K_{R/k}\zeta_{t}dxdt|\leq C\int_{0}^{\delta}\int_{R^{N}}V_{m}(x, t_{k}(\tau);L)dxdt$

$=C\delta L\rightarrow 0$ as $\delta\downarrow 0$

(see (2.8)) uniformly with respect to $k$ , we obtain

LEMMA 3.3.

(3.20) $J_{1}\rightarrow\int_{0}^{T}\int_{R^{N}}w\zeta_{t}dxdt$ as $ k=k_{i}\rightarrow\infty$ .

$p_{R\infty F}$ . The proof is similar to that of Lemma3.2. We omit it. $\square $

Finally we consider $J_{2}$ .
LEMMA 3.4.

(3.21) $J_{2}\rightarrow 0$ as $ k\rightarrow\infty$ .
PROOF. Similarly as above proofs, we have

(3.22) $|J_{2}|\leq 2C(N-2)(\frac{R}{k})^{N-2}\int_{0}^{T}\int_{R^{N}}V_{m}(x, t_{k}(\tau);L)^{m}|x|^{-N+1}dxdt$

$=C_{1}k^{-\langle N-2)}\int_{0}^{T}\{t_{k}(\tau)\}^{-l\langle m-1/N)}dt$

where $C$ is a positive constant independent of $\delta$ and $k$ , and

$C_{1}=2C(N-2)L^{l\langle 3m-1)/N}R^{N-2}\int_{R^{N}}|y|^{-N+1}G_{m}(|y|)^{m}dy$ .

We note $1-1(m-1/N)=-l(N-3)/N$. Hence, when $N>3$ we get

(3.23) $|J_{2}|\leq\frac{C_{1}N}{l(N-3)}k^{-\langle N-2)}[\tau^{-l\langle N-3)/N}k^{N-3}-(T+\tau k^{-N/l})^{-t\langle N-3)/N}]$

$\leq\frac{C_{1}N}{l(N-3)}\tau^{-l\langle N-3)/N}k^{-1}\rightarrow 0$ as $ k\rightarrow\infty$ .

Similarly, when $N=3$ , noting $l(m-1/N)=1$ we get
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(3.24) $|J_{2}|\leq C_{1}k^{-1}(\log(T+\tau k^{-N/l})-\log(\tau k^{-N/l}))$

$\leq C_{1}k^{-1}(\frac{N}{l}\log k++1og\frac{T+\tau}{\tau})\rightarrow 0$ as $ k\rightarrow\infty$ .

The proof is complete. $\square $

Combining these four lemmas, if $ k=k_{i}\rightarrow\infty$ in (3.3), then we get the following
integral identity for the limit function $w(x, t)$ :

(3.25) $\int_{R^{N}}w\zeta dx|_{t=T}=\int_{0}^{T}\int_{R^{N}}(w\zeta_{t}+w^{m}\Delta\zeta)dxdt+I_{N}\zeta(0,0)$

for any $T>0$ and $\zeta\in C_{0}^{\infty}(R^{N}\times[0, \infty))$, where $I_{N}$ is defined by (3.8). Hence, since $w(x, t)$ ,
$w(x, t)^{m}\in L^{1}(R^{N}\times(0,7)\cap L^{\infty}(R^{N}\times(\tau, T))$ for any $T>0$ and $\tau\in(0, T)$ by (2.8) and (2.19),
it follows from Lemma 2.2 that

(3.26) $w\equiv V_{m}(x, t;I_{N})$ in $R^{N}\times[0, \infty$).

Thus, we obtain the following result.

PROPOSITION 3.5. Assume $N\geq 3$ . Let $v(x, t)$ be a nonnegative weak solution to
$(2.1)-(2.3)$ with $v_{0}(x)\in C_{0}(\overline{E}_{R})$ , and put $v_{k}(x, t)=k^{N}v(kx, k^{N/l}t)$ . Then

(3.27) $v_{k}(x, t)\rightarrow V_{m}(x, t;I_{N})$ as $ k\rightarrow\infty$

locally uniformly in $\{R^{N}\backslash \{0\}\}\times(0, \infty)$ where $I_{N}$ is defined by (3.8).

$PR\infty F$ . This proposition follows from Lemma 2.4 and (3.26). $\square $

4. Proof of Theorem 1.1.

In this section we prove Theorem 1.1. The next result due to K. Mochizuki-R.
Suzuki [8] plays an important role in the proof of it.

LEMMA 4.1. Assume $N\geq 3$ . Let $u(x, t)$ be a global weak solution of $(1.1)-(1.3)$ with
$\Omega=E_{R}$ and $u_{0}(x)\in C_{0}(\overline{E}_{R})$ . Then

(4.1) $u(\cdot , t)\in L^{1}(E_{R})$ for $t\geq 0$

and $\iota fp=p_{m}^{*}$ , then

(4.2) $\int_{E_{R}}u(x, t)\rho_{R}(|x|)dx\leq C(N)$ for any $t\geq 0$

where $C(N)=\pi^{N/2}(2N+4)^{1/\langle p-m)}$ and

(4.3) $\rho_{R}(r)=(r-R)/r$ .
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PROOF. (4.1) $isinProposition2.2of[8]$ . $(4.2)followsfromLemma4.3of[8]$ if
$\epsilon\rightarrow 0$ . $\square $

This inequality and equation (1.1) imply the following lemma.

LEMMA 4.2. Let $u(x, t)$ be as in Lemma 4.1. Then, if $p=p_{m}^{*}$ ,

(4.4) $\int_{0}^{\tau}\int_{E_{R}}u(x, t)^{p}\rho_{R}(|x|)dxdt\leq C(N)$ for any $\tau>0$ .

$PR\infty F$ . Since $u(\cdot, t)\in L^{1}(E_{R})$ , we can choose $\rho_{R}(|x|)$ as a test function in the
integral identity satisfied by $u$ (see (2.3) of [8]). Then we have

(4.5) $\int_{E_{R}}u(x, \tau)\rho_{R}(|x|)dx\geq\int_{0}^{\tau}\int_{E_{R}}u(x, t)^{p}\rho_{R}(|x|)dxdt+\int_{E_{R}}u_{0}(x)\rho_{R}(|x|)dx$ .

Here we have used

(4.6) $\Delta\rho_{R}(|x|)=(\partial_{r}^{2}+\frac{N-1}{r}\partial_{r})\rho_{R}(|x|)\geq 0$ $(N\geq 3)$ .

Therefore, (4.2) and (4.5) is reduced to (4.4). $\square $

PROOF OF THEOREM 1.1. (Special case) Let $u(x, t)$ be as in the above lemma and
$u_{k}(x, t)=k^{N}u(kx, k^{N/l}t)$ where $l=(p_{m}^{*}-1)^{-1}$ . Then, when $p=p_{m}^{*},$ $u_{k}$ is a global weak
solution of the initial-boundary value problem

(4.7) $\left\{\begin{array}{l}\partial_{t}u=\Delta u^{m}+u^{p}\\u(x, 0)=k^{N}u_{0}(kx)\end{array}\right.$

$u(x, t)=0$

Applying Lemma 4.2 to $u_{k}$ , we have

$(x, t)\in E_{R/k}\times(0, \infty)$

$x\in E_{R/k}$

on $|x|=R/k$ , $t>0$ .

(4.8) $\int_{0}^{\tau}\int_{E_{R/k}}u_{k}^{p}\rho_{R/k}dxdt\leq C(N)$ for any $\tau>0$ .

If we set $v_{k}(x, t)=k^{N}v(kx, k^{N/l}t)$ where $v(x, t)$ is a weak solution to $(2.1)-(2.3)$ with
$v_{0}(x)=u_{0}(x)$ , then $v_{k}(x, t)\leq u_{k}(x, t)$ in $E_{R/k}\times(0, \infty)$ by the comparison theorem (see

Proposition 2.1 of [8]). Hence, we obtain

(4.9) $\int_{0}^{\tau}\int_{E_{R/k}}v_{k}^{p}\rho_{R/k}dxdt\leq C(N)$ for any $\tau>0$ .

Suppose $u_{0}(x)\not\equiv 0$ and let $ k\rightarrow\infty$ in (4.9). Then, since $\rho_{R/k}(r)\rightarrow 1$ as $ k\rightarrow\infty$ in $r>0$ , it
follows from Proposition 3.5 and Fatau’s lemma that

(4.10) $\int o\int$ . $V_{m}(x, t;I_{N})^{p}dxdt\leq C(N)$ for $\tau>0$



408 RYUICHI SUZUKI

where $I_{N}(>0)$ is defined by (3.8) with $v_{0}(x)=u_{0}(x)$ . This is a contradiction to (2.9) and
so $u_{0}(x)\equiv 0$ . The proof is complete.

(General case) The methods of the proof are same as those in [8]. We omit it. $\square $

Appendix.

In this appendix, applying Proposition 3.5 directly, we shall study the asymptotic
behavior of the solution $tXx,$ $t$ ) of the initial-boundary value problem $(2.1)-(2.3)$ as
$ t\rightarrow\infty$ . We shall show the following theorem.

THEOREM A.1. Assume $N\geq 3$ . Let $\iota\langle x,$ $t$ ) be a weak solution to $(2.1)-(2.3)$ with
$\Omega=E_{R}$ and $v_{0}(x)\in C_{0}(\overline{E}_{R})$ . Then

(A.1) $t^{l}|v(x, t)-V_{m}(x, t;I_{N})|\rightarrow 0$ as $ t\rightarrow\infty$

uniformly on sets

(A.2) $P_{\delta,C}(t)=\{x\in R^{N}|\delta t^{l/N}\leq|x|\leq Ct^{l/N}\}$ $(C>\delta>0)$ ,

where $V_{m}$ and $I_{N}$ are as in Proposition 3.5. Further

(A.3) $\int_{E_{R}}l\langle x,$ $t$ )$dx\rightarrow I_{N}$ as $ t\rightarrow\infty$

and so

(A.4) $t^{l}\sup_{x\in E_{R}}v(x, t)\rightarrow I_{N}^{2l/N}G_{m}(0)$ as $ t\rightarrow\infty$ .

$PR\infty F$ . (A.1) follows soon from Proposition 3.5 (see Friedman-Kamin [6]).

(A.3) follows from the Lebesgue dominated convergence theorem as follows:

(A.5) $\int_{E_{R}}v(x, t)dx=\int_{E_{R/k}}v_{k}(x, 1)dx|_{k=t}\rightarrow\int_{R^{N}}V_{m}(x, 1;I_{N})dx=I_{N}$ (as $ t\rightarrow\infty$ ).

For any $\tau>0$ , let $\tilde{v}_{\tau}(x, t)$ be a weak solution to the Cauchy problem

(A.6) $\left\{\begin{array}{l}\partial_{t}\tilde{v}=\Delta\tilde{v}^{m}\\\iota^{\sim}\langle x,\tau=v(x, \tau)\end{array}\right.$

By the comparison theorem we have

$(x, t)\in R^{N}\times(\tau, T)$

$x\in R^{N}$

(A.7) $v(x, t)\leq\tilde{v}_{\tau}(x, t)$ in $(x, t)\in E_{R}\times(\tau, \infty)$ .
If we recall the result [6] such that

(A.8) $t^{l}\sup_{x\in R^{N}}v_{\tau}(x, t)\rightarrow J_{\tau}^{2l/N}G_{m}(0)$ as $ t\rightarrow\infty$
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where $J_{\tau}=\int_{E_{R}}v(x, \tau)dx$ , then

(A.9)
$\lim_{t\rightarrow\infty}$

$sup\{t^{l}\sup_{x\in E_{R}}v(x, t)\}\leq J_{\tau}^{2l/N}G_{m}(0)$ .

Hence, since $J_{\tau}$ converges $I_{N}$ as $\tau\rightarrow\infty$ by (A.3), we get

(A.10)
$\lim_{t\rightarrow\infty}$

$sup\{t^{l}\sup_{x\in E_{R}}v(x, t)\}\leq I_{N}^{2l/N}G_{m}(0)$ .

On the other hand, by virtue of (A. 1) we obtain

(A. 11) $I_{N}^{2l/N}G_{m}(0)\leq\lim_{t\rightarrow\infty}\inf\{t^{l}\sup_{x\in E_{R}}v(x, t)\}$ .

Thus, (A.10) and (A. 11) imply (A.4). The proof is complete. $\square $

REMARK A.2. By the same methods as those in Friedman-Kamin [6], we can
show Proposition 3.5 and (A.1) under the condition $v_{0}(x)\in C_{0}(\overline{E}_{R})$ replaced by
$v_{0}(x)\in L^{1}(E_{R})$ . The proof is omitted.
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