
TOKYO J. MATH.
VOL. 24, No. 1, 2001

Generalized H\"older’s Theorem for Vign\’eras’
Multiple Gamma Function

Michitomo NISHIZAWA

Waseda University

(Communicated by K. Kobayasi)

Abstract. We prove that Vign\’eras’ multiple gamma function does not satisfy any algebraic differential equa-
tion over $C(z)$ by using a relation between logarithmic derivative of this function and the psi-function. Furthermore,
we apply this relation to calculation of convergent factors in the Weierstrass product representation of Vign\’eras’
multiple gamma function.

1. Introduction.

In 1974, Vign\’eras [13] showed the existence and the uniqueness of the hierarchy of
functions satisfying the following conditions $(i)-(iv)$ :

(i) $G_{r}(z+1)=G_{r-1}(z)G_{r}(z)$ ,
(ii) $G_{r}(1)=1$ ,

(iii) $\frac{d^{r+1}}{dz^{r+1}}$ log $G_{r}(z+1)\geq 0$ for $z\geq 0$ ,

(iv) $G_{0}(z)=z$ .
This hierarchy is a special case of the one of Bames’ multiple gamma functions [2] and

includes gamma function $\Gamma(z)=G_{1}(z)$ . The function $G_{r}(z)$ is called Vign\’eras’ multiple
gamma function (For simplicity, we often call this function only “multiple gamma function”
in this paper.). This function appears in various topics. The following are remarkable exam-
ples: Representation of determinant of Laplacian and of the Selberg zeta function [7], [8],
[12], [13], [14], mean values of L-function [4], Jost functions of some quantum integrable
systems [5] and asymptotic behavior of $\tau$ -function of the Ising model [10]. It is expected
that this function would play important roles in number theory, in spectral geometry and in
quantum integrable systems.

In this paper, we prove that the multiple gamma function $G_{r}(z)$ does not satisfy any
algebraic differential equations over the rational function field $C(z)$ . This was considered by
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Bames [3] as a special case of more general problem. He showed that if there is differential
relations between logarithmic derivative of the function, then we can obtain a such good
relation that it can be applied to the proof. This is proved through an abstract procedure and
the relation is not always represented explicitly if it exists. However, as concems Vign\’eras’
multiple gamma function, we can find the following relation:

$\psi_{r+1}(z)=\left(\begin{array}{l}z\\r\end{array}\right)\psi_{1}(z)+P_{r}(z)$ , (1)

where $\psi_{r}(z)$ is the logarithmic derivative of $G_{r}(z+1)$ and $P_{r}(z)$ is a polynomial of degree
$r$ . By using this relation, an algebraic differential equation for $\psi_{r}(z)$ is easily reduced to an
algebraic differential equation for $\psi_{1}(z)$ . From Holder’s theorem for gamma function $(cf\not\subset$

Komatsu [6]), it follows that there is not such differential equation.
Relation (1) is applicable to calculation of a convergent factor of the Weierstrass product

representation for $G_{r}(z+1)$ . The Weierstrass product representation was derived by Ueno-
Nishizawa [11].

PROPOSITION 1. (Ueno-Nishizawa). $G_{r}(z+1)$ has $a$ infinite product representa.
tion

$G_{r}(z+1)=\exp(F_{r}(z))\prod_{k=1}^{\infty}\{(1+\frac{z}{k})^{-()}n-1-k$ exp $(\Phi_{r}(z, k))\}$ , (2)

where $F_{r}(z)$ is a polynomial ofdegree $r$ and $\Phi_{r}(z, k)$ is a convergentfactor which is a poly $\cdot$

nomial of $z$ and a Laurent polynomial of $k$. Its degree of $k$ is larger equal than-l. $\square $

After slightly complicated calculation, they derived explicit form of $\Phi_{r}(z, k)$ . We give
an easier procedure for computation of $\Phi_{r}(z, k)$ by using relation (1) in Section 4.

2. Logarithmic derivative of multiple gamma function.

In this paper, we denote $C(z)$ by the rational function field generated by $z$ over the com.
plex number field C. We define a function $\psi_{r}(z)$ by the logarithmic derivative of
$G_{r}(z+1)$ ,

$\psi_{r}(z)$ $:=\frac{d}{dz}$ log $G_{r}(z+1)$

$=\frac{d}{dz}F_{r}(z)+\sum_{k=1}^{\infty}\{-\frac{1}{z+k}\left(\begin{array}{ll} & -k\\r & -1\end{array}\right)+\phi_{r}(z, k)\}$ ,

where $\phi_{r}(z, k)$ $:=\frac{d}{dz}\Phi_{r}(z, k)$ and $F_{r}(z)$ is a polynomial of degree $r$ (See Ueno-Nishizawz
[11]).

We don’t give an explicit form of $F_{r}(z)$ here because it is no need for the argument ir
this paper. Let $\tilde{\psi}_{r}(z)$ be the infinite sum part of $\psi_{r}(z)$

$\tilde{\psi}_{r}(z)$
$:=\sum_{k=1}^{\infty}\{-\frac{1}{z+k}\left(\begin{array}{ll} & -k\\r & -1\end{array}\right)+\phi_{r}(z, k)\}$ .
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Then, we can see a relation between $\tilde{\psi}_{r+1}(z)$ and $\tilde{\psi}_{r}(z)$ .

LEMMA 2.

$\frac{z-r+1}{r}\tilde{\psi}_{r}(z)=\tilde{\psi}_{r+1}(z)$ .

PROOF. First, we remark the following identity:

$\frac{z-r+1}{r(z+k)}\left(\begin{array}{l}-k+r2\\-r1\end{array}\right)=-\frac{1}{z+k}\left(\begin{array}{ll}k+r & -1\\r & \end{array}\right)+\frac{1}{r}\left(\begin{array}{l}-k+r2\\-r1\end{array}\right)$

for $r,$ $k\in Z_{>0}$ . We have

$\frac{z-r+1}{r}\tilde{\psi}_{r}(z)=\frac{z-r+1}{r}\sum_{k=1}^{\infty}\{\frac{(-1)^{r}}{z+k}\left(\begin{array}{l}-k+r2\\-r1\end{array}\right)+\phi_{r}(z, k)\}$

$=\sum_{k=1}^{\infty}\{\frac{-1}{z+k}\left(\begin{array}{l}-k\\r\end{array}\right)+\frac{-1}{r}\left(\begin{array}{ll} & -k\\r & -1\end{array}\right)+\frac{z+r-1}{r}\phi_{r}(z, k)\}$ .

From absolute convergence of $\tilde{\psi}_{r}(z)$ , it follows that a sum of the right hand side is absolutely
convergent. The convergent factor of this sum have to be equal to $\phi_{r+1}(z, k)$ . In fact, the
factor is uniquely determined when its degree of $k$ is larger than-2. $\square $

The following formula follows from the above argument:

COROLLARY 3.

$\phi_{r+1}(z, k)=-\frac{1}{r}\left(\begin{array}{ll} & -k\\r & -1\end{array}\right)+\frac{z-r+1}{r}\phi_{r}(z, k)$ . $\square $

From Lemma 2, we have relations between logarithmic derivatives.

PROPOSITION 4. (i) $\psi_{r}(z)$ satisfies a recurrenceformula

$\psi_{r+1}(z)=\frac{z-r+1}{r}\psi_{r}(z)+p_{r}(z)$ , (3)

where $p_{r}(z)$ is a polynomial ofdegree less than equal $r$ .
(ii) $\psi_{r+1}(z)$ is transfomed by the followingformula:

$\psi_{r+1}(z)=\left(\begin{array}{l}z\\r\end{array}\right)\psi_{1}(z)+P_{r}(z)$ , (4)

where $P_{r}(z)$ is a polynomial ofdegree less than equal $r$ .

PROOF. (i) From Lemma 2, it follows that

$\psi_{r+1}(z)=\frac{z-r+1}{r}\psi_{r}(z)+\{\frac{d}{dz}F_{r+1}(z)-\frac{z-r+1}{r}\frac{d}{dz}F_{r}(z)\}$ .
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Thus, the claim holds because $F_{r}(z)$ is a polynomial of degree $r$ .
(ii) We prove the claim by induction on r. In the case whenr $=1$ , it follows from the

following result (cf. Bames [1]):

$\psi_{2}(z)=z\psi_{1}(z)-z+\frac{1}{2}$ log $\pi-\frac{1}{2}$ .

By using (2) and the assumption of the induction, we have

$\psi_{r+1}(z)=\left(\begin{array}{l}z\\r\end{array}\right)\psi_{1}(z)+\frac{z-r+1}{r}P_{r-1}(z)+p_{r}(z)$ .

The claim follows from the facts that $P_{r}(z)$ and $p_{r}(z)$ are polynomials and that their degrees
are less than equal $r$. $\square $

3. Generalized H\"older’s theorem.

Now, we prove the main theorem.

THEOREM 5. Vign\’eras’ multiple gamma function does not satisfy any algebraic dif-
ferential equation over $C(z)$ . In other words,for any $r,$ $n\in Z\geq 0$ , there is no $(n+1)$ -variable
polynomial

$f(t_{0}, t_{1}, t_{2}, \cdots , t_{n})\in C(z)[t_{0}, t_{1}, t_{2}, \cdots , t_{n}]$

such that

$f(G_{r}(z), G_{r}^{(1)}(z),$ $\cdots$ $G_{r}^{(n)}(z))=0$ (5)

where
$G_{r}^{(l)}(z)$ $:=\frac{d^{l}}{dz^{l}}G_{r}(z)$ .

PROOF. We remark that the logarithmic derivative of a solution for an algebraic dif-
ferential equation also satisfies some algebraic differential equation (cf. Komatsu [6], Pastro
[9]). Therefore, if some polynomial satisfies (5), then there exists an algebraic differential
equation for $\psi_{r}(z)$ . However, from Proposition 4 (2), it follows that there exists an algebraic
differential equation for $\psi_{1}(z)$ over $C(z)$ . This contradicts to H\"older’s theorem for gamma
function (cf. Komatsu [6]). $\square $

4. Representation of a convergent factor.

By means of Corollary 3, we can calculate a convergent factor $\Phi_{r}(z, k)$ in (2).

PROPOSITION 6.

$\phi_{r}(z, k)=\frac{1}{(r-1)!}\sum_{i=0}^{r-1}(-1)^{\iota}k^{i-1}(\sum_{j=0}^{r-1-i}r-1S_{j+i}z^{j})$
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where $ks_{J}$ is the Stirling number of the 1 $st$ kind defined by

$\left(\begin{array}{l}x\\n\end{array}\right)=:\frac{1}{n!}\sum_{j=0}^{n}Sx^{j}$

for $n\geq 0$.

PROOF. In the case when $r=1,$ $\phi_{1}(z, k)=1/k$ . It coincides with the well known re-
sult about gamma function (cf. Whittaker-Watson [15]). Thus, we show that $\phi_{r}(z, k)$ satisfies
the recurrence relation of Corollary 3. From a relation between the Stirling numbers

$nSj=n-1S_{J}-1-(n-1)_{n-1}S_{j}$ , for $j=0,$ $\cdots$ , $n$ ,

it follows that

$-\frac{1}{r}\left(\begin{array}{ll} & -k\\r & -1\end{array}\right)+\frac{z-r+1}{r}\phi_{r}(z, k)$

$=\frac{-1}{r!}[\sum_{i=0}^{r-1}(-k)^{i-1}\{r-1-\sum_{j=0}^{r-1-i}(r-1)_{r-1}S_{j+i}z^{j}\}$

$+\sum_{i=0}^{r-1}r-1S_{j}(-k)^{i-1}]$

$=\frac{-1}{r!}[\sum_{i=0}^{r-1}(-k)^{i-1}\{r-l-(r-1)_{r-1}S_{j+i})z^{j}\}$

$+\sum_{i=0}^{r-1}r-1S_{i}(-k)^{\iota}-(r-1)\sum_{i=0}^{r-1}r-1S_{i}(-k)^{i-1}]$

$=\frac{-1}{r!}\{\sum_{i=0}^{r-1}(-k)^{i-1}(\sum_{j=1}^{r-i}Sz^{j})+\sum_{i=0}^{r}$ S $(-k)^{i-1}\}$

$=\phi_{r+1}(z, k)$ ,

for $r\in Z\geq 2$ . We have thus proved the proposition. $\square $

COROLLARY 7. The convergentfactor $\Phi_{r}(z, k)$ in (2) is represented by the formula

$\Phi_{r}(z, k)=\int_{0}^{z}\phi_{r}(x, k)dx$ . $\square $
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For example, first few $\Phi_{r}(z, k)$ can be represented by the following formulas:

$\Phi_{1}(z, k)=\frac{z}{k}$
$\Phi_{2}(z, k)=\frac{z^{2}}{2k}-z$ ,

$\Phi_{3}(z, k)=(\frac{z^{3}}{6}-\frac{z^{2}}{4})\frac{1}{k}-(\frac{z^{2}}{4}-\frac{z}{2})+\frac{z}{2}k$ ,

$\Phi_{4}(z, k)=(\frac{z^{4}}{24}-\frac{z^{3}}{6}+\frac{z^{2}}{6})\frac{1}{k}-(\frac{z^{3}}{18}-\frac{z^{2}}{4}+\frac{z}{3})+(\frac{z^{2}}{12}-\frac{z}{2})k-\frac{z}{6}k^{2}$ ,

$\Phi_{5}(z, k)=(\frac{z^{5}}{120}-\frac{z^{4}}{16}+\frac{11}{72}z^{3}-\frac{z^{2}}{8})\frac{1}{k}-(\frac{z^{4}}{96}-\frac{z^{3}}{12}+\frac{11}{48}z^{2}-\frac{z}{4})$

$+(\frac{z^{3}}{72}-\frac{z^{2}}{8}+\frac{11}{24}z)k-(\frac{z^{2}}{48}-\frac{z}{4})k^{2}+\frac{z}{24}k^{3}$

These results coincide with the representations by Ueno-Nishizawa [11], which were derivec
through power series expansion of $(_{r-1}^{-k})$ log $(1+z/k)$ .
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