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1. Introduction.

We consider the Teichm\"uller spaces of the closed torus and the once punctured torus.
This is a part of a series of papers in which we investigate explicit relations between these
spaces and we will give some remarks on our obtained results. In [A1] and [A2] we gave
correspondences of subsets of these Teichm\"uller spaces and constructed holomorphic map-
pings between once punctured tori and closed tori based on these correspondences. In this
paper we will show that constructions of these holomorphic mappings are closely related to
constructions of cusp forms of weight 1.

First we recall a coordinate system for the Teichm\"uller space of the closed torus. We
describe a closed torus by $R_{\tau}=C/\Gamma_{\tau},$ $\Gamma_{\tau}=\{m+n\tau|m, n\in Z\}$ , then the Teichm\"uller

space $\mathcal{T}_{1,0}$ of the closed torus is the upper half-plane $H,$ $i.e.$ , a point in the Teichm\"uller space
$\mathcal{T}_{1,0}$ of the closed torus is denoted by $\tau\in H$ . (See, for example, [IT].) We introduce the three

${\rm Re}(\tau)\leq 0\}andL_{3}=\{\tau\in Hsubsetsof\mathcal{T}_{1,0}:L_{1}=\{\tau\in H|\left|\begin{array}{l}\tau\\\tau\end{array}\right|\geq 1and{\rm Re}(\tau)=-1/2\}.Thesesetsarecharacterizedby1and{\rm Re}(\tau)=0\},L_{2}=\{\tau\in H||\tau|=land-l/2\leq$

the fact that in a fundamental domain for the modular group, $\tau\in L_{1}\cup L_{2}\cup L_{3}$ if and only if
$\tau$ is a closed torus associated with a real lattice, that is, $\overline{\mu\Gamma_{\tau}}=\{\overline{\mu\gamma}|\mu\gamma\in\mu\Gamma_{\tau}\}=\mu\Gamma_{\tau}$ for
some $\mu\in$ C.

Next we recall a coordinate system for the Teichm\"uller space of the once punctured
torus. We use the convention that an element in $PSL(2, R)$ represents the M\"obius transfor-
mation induced by it. In this paper we consider a Fuchsian group $G$ consisting of M\"obius

transformations of $PSL(2, R)$ and having the following properties: (i) $G$ is discontinuous in
the upper half-plane $H$ , (ii) every real number is a limit point for $G$ , (iii) $G$ is finitely gener-
ated. A Fuchsian group $\Gamma=(A, B)$ which is a free group generated by $A,$ $B\in PSL(2, R)$ is
called a Fricke group if $X^{2}+Y^{2}+Z^{2}=XYZ$ and $X,$ $Y,$ $Z>2$ , where $X=trA,$ $Y=trB$

and $Z=tr$ AB. We consider a once punctured torus which is uniformized by a Fricke group
$\Gamma$ and take a normalized form for the representation of $\Gamma$ (see [Sc]), then the Teichm\"uller

space $\mathcal{T}_{1,1}$ of the once punctured torus can be identified with the set of all Fricke groups (see
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[K]), that is, a point in the Teichmuller space $\mathcal{T}_{1,1}$ of the once punctured torus is denoted by
a triple (X, $Y,$ $Z$). Associated with $L_{1},$ $L_{2}$ and $L_{3}$ we define the three subsets of $\mathcal{T}_{1,1}$ : $M_{1}=$

$\{(X, Y, Z)\in \mathcal{T}_{1,1}|2<X\leq Y\leq Z=XY/2\},$ $M_{2}=\{(X, Y, Z)\in \mathcal{T}_{1,1}|2<X=Y\leq Z\}$

and $M_{3}=\{(X, Y, Z)\in \mathcal{T}_{1,1}|2<X\leq Y=Z\}$ .
Now we summarize the results obtained in [A1] and [A2]. We represent a point in the

upper half-plane $H$ and a point in the complex plane $C$ by $z$ and $u$ , respectively. We call $H$

the z-plane and $C$ the u-plane. Then a once punctured torus (X, $Y,$ $Z$) can be identified with a
fundamental domain in the z-plane and a closed torus $\tau$ can be identified with a fundamental
domain in the u-plane. A holomorphic mapping from $(3, 3, 3)\in \mathcal{T}_{1,1}$ to $\rho_{3}=e^{2\pi i/3}\in \mathcal{T}_{1,0}$

is given by the relation
$1-J(z)=\wp^{\prime}(u)^{2}=4\wp(u)^{3}+1$ , (1.1)

and a holomorphic mapping from $(2\sqrt{2},2\sqrt{2},4)\in \mathcal{T}_{1,1}$ to $i\in \mathcal{T}_{1,0}$ is given by the relations

$J_{4}(z)=\wp(u)^{2}$ and $\wp^{\prime}(u)^{2}=4\wp(u)^{3}-4\wp(u)$ , (1.2)

where $\wp(u)$ are the Weierstrass $\wp$-functions defined by the above equations, $J(z)$ is the mod-
ular function and $J_{4}(z)$ is a function having similar properties to $J(z)$ (see Proposition 3.1).

The relation (1.1) was first used in [C1]. Generalizing these relations, we obtained the follow-
ing theorems. A basic idea of our proof is abelianization of Fricke group.

THEOREM 1.1. For any (X, $Y,$ $Z$) $\in M_{1}$ there uniquely exists an element $\tau\in L_{1}$ sat-
isfying thefollowing conditions: if $\tau\in L_{1}$ then $p(x)=4x^{3}-g_{2}(\tau)x-g_{3}(\tau)$ has three distinct
real roots and a holomorphic mapping between (X, $Y,$ $Z$) and $\tau$ is given by the relation

$\wp(u)=(x_{2}-x_{1})J_{(X,Y,Z)}(z)+x_{2}$ , (1.3)

where $x_{1}<x2<x3$ are the three real roots of $p(x),$ $\wp(u)$ is the Weierstrass $\wp$-function
defined by $\wp^{\prime}(u)^{2}=4\wp(u)^{3}-g_{2}(\tau)\wp(u)-oe(\tau)$ and $J_{(X,Y,Z)}(z)$ is afunction having similar
properties to the modularfunction $J(z)$ .

The precise definition of $J_{(X,Y,Z)}(z)$ will be recalled in \S 3.2. A proof of this theorem
was shown in \S 5 of [A1].

THEOREM 1.2. For any (X, $Y,$ $Z$) $\in M_{k},$ $k=2,3$ there uniquely exist an element
$\tau\in L_{k}$ and a number $P$ satisfying $7-4\sqrt{3}\leq P\leq 1$ if $\tau\in L_{2}$ and $P\geq 7+4\sqrt{3}$ if $\tau\in L_{3}$

such that a holomorphic mapping between (X, $Y,$ $Z$) and $\tau$ is given by the relation

$\wp(u)=J_{(X,Y,Z)}(z)-\frac{P}{J_{(X,Y,Z)}(z)}+\frac{1-P}{3}$ , (1.4)

where $\wp(u)$ is the Weierstrass $\wp$ -function defined by

$\wp^{\prime}(u)^{2}$

$=4(\wp(u)-\frac{2}{3}(P-1))(\wp(u)-(\frac{1-P}{3}+2\sqrt{P}i))(\wp(u)-(\frac{1-P}{3}-2\sqrt{P}i))$

and $J_{(X,Y,Z)}(z)$ is afunction having similarproperties to the modularfunction $J(z)$ .
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For the precise definition of $J_{(X,Y,Z)}(z)$ and a proof of this theorem we refer the reader
to [A2].

The results described above were proved geometrically, that is, by investigating funda-
mental domains identified with once punctured and closed tori. The first aim in this paper is to
point out an analytic approach to our problem, that is, to show that the problem of construct-
ing a holomorphic mapping between a closed torus and a once punctured torus uniformized
by $\Gamma$ is equivalent to the problem of constructing a cusp form of weight 1 for $\Gamma$ . Then we
obtain the following assertion:

THEOREM 1.3. Let $\Gamma$ be a Fricke group associated with $a$ once punctured torus
(X, $Y,$ $Z$) $.$ A cuspform ofweight 1 for $\Gamma$ is given by (1.1) if (X, $Y,$ $Z$) $=(3,3,3)$ , by (1.2) if
(X, $Y,$ $Z$) $=(2\sqrt{2},2\sqrt{2},4)$ , by (1.3) $lf(X, Y, Z)\in M_{1}$ and by (1.4) if (X, $Y,$ $Z$) $\in M_{2}\cup M_{3}$ .

It is important that such cusp forms give holomorphic quadratic differentials on once
punctured tori, because the Teichm\"uller geodesic is defined by using them. Remarks on these
points will be given in \S 2.

The second aim is to show explicit representations of cusp forms mentioned above. The
Fricke groups associated with (3, 3, 3) and $(2\sqrt{2},2\sqrt{2},4)$ are subgroups of the moular group
$SL(2, Z)$ and a Hecke group, respectively. For these special cases some constructions of
automorphic forms have been studied. By using them we will show the following result:

THEOREM 1.4. For the Fricke group $\Gamma_{\rho 3}$ associated with (3, 3, 3) we can obtain an
explicit representation ofa cuspform ofweight 1 for $\Gamma_{\rho_{3}}$ determined by (1.1) which is a sixth
root ofa cuspform ofweight 6 for the modular group $SL(2, Z)$ .

THEOREM 1.5. For the Fricke group $\Gamma_{i}$ associated with $(2\sqrt{2},2\sqrt{2},4)$ the cusp$fom$

ofweight 1 for $\Gamma_{i}$ determined by (1.2) is afourth root ofa cuspform ofweight 4for the Hecke

group generated by $\left(\begin{array}{ll}0 & -1\\1 & 0\end{array}\right)$ and $(_{0}^{1}$ $\eta_{1}^{2}$ .

In the case of (X, $Y,$ $Z$) $\in M_{1}$ we can obtain a similar result by using the extended Fricke
group [Sc] associated with (X, $Y,$ $Z$).

THEOREM 1.6. For the Fricke group $\Gamma_{\alpha}$ associated with (X, $Y,$ $Z$ ) $\in M_{1}$ and gener-
ated by

( $\frac{2\sqrt{1+\alpha^{2}}-1}{\alpha}$) and $(^{\sqrt{1+\alpha^{2}}}-\alpha$ $\sqrt{1+\alpha^{2}}-\alpha)$ for some $\alpha\geq 1$ ,

the cuspform ofweight 1 for $\Gamma_{\alpha}$ determined by (1.3) is a square root ofa cusp$fom$ ofweight
2 for the group generated by

$\left(\begin{array}{ll}0 & -1\\1 & 0\end{array}\right)$ , $(^{\sqrt{1+\alpha^{2}}}-\alpha$
$-\sqrt{\alpha^{2}}\frac{2+\alpha^{2}}{1+\alpha}$) and $(_{0}^{1}$ $\frac{2\sqrt{1+\alpha^{2}}}{\alpha,1})$

Generally, an explicit construction of a cusp form of weight 1 for a given Fuchsian group
is not easy to obtain. Our results give a construction of such a cusp form for a Fricke group $\Gamma$
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associated with (3, 3, 3), $(2\sqrt{2},2\sqrt{2},4)$ or (X, $Y,$ $Z$) $\in M_{1}$ . The basic ideas are summarized
as follows: find a Fuchsian group $G$ in which $\Gamma$ is a subgroup of index $l=6,4$ or2, construct
a cusp form of weight $l$ for $G$ , for example by using the Poincar\’e series, and take its l-th root.

ACKNOWLEDGMENTS. The author is grateful to P. Amoux for valuable discussions.

2. Cusp forms and quadratic differentials.

In this section by using cusp forms and quadratic differentials we will give interpretations
of our problem of constructing holomorphic mappings between closed tori and once punctured
tori.

We begin by recalling definitions of an automorphic form and a cusp form. We can refer

the reader to [Mi] for further details. Let $G$ be a Fuchsian group. We take $T=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in G$

and define

$C_{T,k}(z)=(\frac{dT}{dz})^{-k}=(cz+d)^{2k}$ where $k$ is some integer

for the M\"obius transformation $T(z),$ $ z\in$ H. Recall that a point $z$ is a cusp of $G$ if and only if
$G$ has a parabolic element whose fixed point is $z$

DEFINITION 2.1. Let $f$ be a function of $H$ satisfying $f(Tz)=C_{T,k}(z)f(z)$ for all
$z\in H$ and $T\in G$ . If $f$ is holomorphic on $H$ and is finite at each cusp of $G,$ $f$ is called an
automorphic$fom$ of weight $k$ for $G$ . And if the automorphic form $f$ vanishes at each cusp,
we call $f$ a cuspform of weight $k$ for $G$ . An automorphic form for the modular group is called
a modularform.

By using the Riemann-Roch theorem we obtain the following theorem which guarantees
the existence of an automorphic form and a cusp form.

THEOREM 2.1. The dimension $\delta_{k}^{a}(G)$ of the space of automorphic foms ofweight $k$

for $G$ is

$\delta_{k}^{a}(G)=(2k-1)(g-1)+tk+\sum_{j}[k\left(\begin{array}{l}1-\underline{1}\\e_{j}\end{array}\right)]$ $\iota fk>1$ ,

$\delta_{1}^{a}(G)=\left\{\begin{array}{ll}g & \iota ft=0,\\g+t-1 & \iota ft>0,\end{array}\right.$

and the dimension $\delta_{k}^{c}(G)$ of the space ofcuspfoms ofweight $k$ for $G$ is

$\delta_{k}^{c}(G)=(2k-1)(g-1)+t(k-1)+\sum_{j}[k\left(\begin{array}{l}1-\underline{1}\\e_{j}\end{array}\right)]$ $\iota fk>1$ and $\delta_{1}^{c}(G)=g$ ,

where $g$ is the genus of the Riemann sutace $R$ of $G$ , i.e., the compactification of $H/G$ ob-
tained by adding parabolic points with the appropriate local coordinates, $t$ is the number of
parabolic fixed points which are not equivalent to each other and the sum with respect to $j$

runs through the ellipticfixedpoints of $G$ in $R$ whose periods are $e_{j}$ .
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COROLLARY 2.1. Let $\Gamma=(A, B)$ be a Fricke group. Then $\delta_{1}^{a}(\Gamma)=\delta_{1}^{c}(\Gamma)=1$ .
PROOF. Let $R$ be the once punctured torus associated with $\Gamma$ . Since the genus of $R$ is 1

and four parabolic fixed points are equivalent to each other (see [Sc]), we obtain the assertion.
$\square $

Now we state a relation between an automorphic form for a Fricke group $\Gamma=(A, B)$

and a holomorphic mapping between elements of $T_{1,0}$ and $T_{1,1}$ . Our aimed mapping is a
holomorphic function $\Psi$ : $H\rightarrow C$ satisfying the following conditions:

(i) $\Psi(Az)=\Psi(z)+\omega_{1}$ and $\psi(Bz)=\Psi(z)+\omega_{2}$ for all $z\in H$ and some $\omega_{1},$
$\omega_{2}\in C$ .

(ii) Each cusp of $\Gamma$ is mapped to a lattice point of $\Omega(\omega_{1}, \omega_{2})=\{m\omega_{1}+n\omega_{2}|m,$ $ n\in$

$Z\}$ .
PROPOSITION 2.1. $\Psi$ is the function as above $\iota f$ and only $\iota f$ the derivative of $\Psi$ with

respect to $z$ is a cuspform ofweight 1 for $\Gamma$ .
PROOF. First we show that if $\Psi$ is the function satisfying (i) and (ii) then $\Psi^{\prime}$ is a cusp

form of weight 1 for $\Gamma$ . Sinc $e$ an automorphic form of weight 1 for $\Gamma$ must be a cusp form by
using Corollary 2.1, we only show that $\Psi^{\prime}$ is an automorphic form of weight 1 for $\Gamma$ . Taking
the derivative of the first equation of (i) with respect to $z$ , we have

$A^{\prime}(z)\Psi^{\prime}(Az)=\Psi^{\prime}(z)$ . (2.1)

If we set $A=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)$ , then $A^{\prime}(z)=1/(cz+d)^{2}$ , so the relation (2.1) is transformed into

$\Psi^{\prime}(Az)=(cz+d)^{2}\Psi^{\prime}(z)$ . We can apply the same argument as above to another equation of
(i). It is easily checked by using (ii) that $\Psi^{\prime}$ is finite at each cusp of $\Gamma$ .

The other direction is easily proved by using the fact that the constants $\omega_{1}$ and $\omega_{2}$ satis-
fying

$\int_{z}$

AZ
$f(w)dw=\omega_{1}$ and $\int_{z}$

BZ
$f(w)dw=\omega 2$

do not depend on $z$ , which comes from Cauchy’s theorem. $\square $

Therefore one approach to our problem is to construct a cusp form $f=\Psi^{\prime}$ of weight
1 for $\Gamma$ . A construction of such a cusp form has been tried for a long time; however, unfor-
tunately an explicit result has not been found yet. From Proposition 2.1 we readily get that
the relations (1.1), (1.2), (1.3) and (1.4) give a cusp form of weight 1 for an associated Fricke
group.

Next we recall a definition of quadratic differential.

DEFINITION 2.2. Let $R$ be a Riemann surface with a given complex structure
$\{(U_{i}, z_{i})\}_{i\in I}$ . A quadratic differential $\varphi=\{\varphi_{i}\}$ on $R$ is a set of meromorphic functions $\varphi_{i}$

on $z_{i}(U_{i})$ which satisfy $\varphi_{i}(z_{i})=\varphi_{j}(z_{j})(dz_{j}/dz_{i})^{2}$ whenever $ U_{i}\cap U_{j}\neq\emptyset$ . We write
$\varphi_{i}(z_{i})dz_{i}^{2}=\varphi_{j}(z_{j})dz_{j}^{2}$ and $\varphi=\varphi(z)dz^{2}$ for simplicity. If all the $\varphi_{i}$ are holomorphic, the
quadratic differential $\varphi$ is called holomorphic. The function $\varphi_{i}$ is called the representation
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of the quadratic differential $\varphi$ in terms of the local parameter $Zi$ . The norm of a quadratic
differential $\varphi=\varphi(z)dz^{2},$ $z=x+iy$ is defined as $||\varphi||=\iint_{R}|\varphi(z)|dxdy$ .

Quadratic differentials play an important role in a construction of the Teichmuller geo-
desic. For the Teichmuller space of the closed torus we can summarize a construction of the
Teichmuller geodesic as follows. A representation of a holomorphic quadratic differential in
terms of a local parameter on a closed torus $R_{\tau}$ for any $\tau\in H$ is a complex constant, which
comes from the fact that a doubly periodic holomorphic function in $C$ must be a complex con-
stant. If we suppose that the value of the norm of a holomorphic quadratic differential defined
on $R_{\tau}$ is equal to one, a representation of a holomorphic quadratic differential on $R_{\tau}$ in terms
of a local parameter $z$ is $\varphi(\theta)=({\rm Im}\tau)^{-1}(e^{i\theta})^{2}dz^{2}$ An orientation preserving affine diffeo-
morphism between two tori $R_{\tau}$ and $R_{\tau^{\prime}}$ for $\tau,$

$\tau^{\prime}\in H$ can be considered as a Teichm\"uller

mapping for a holomorphic quadratic differential $\varphi(\theta)$ on $R_{\tau}$ and a number corresponding
to the Teichmuller distance between $R_{\tau}$ and $R_{\tau^{\prime}}$ . The Teichm\"uller geodesic determined by
$\varphi(\theta)$ on $R_{\tau}$ is defined by using such Teichmuller mappings. Therefore the task of finding
holomorphic quadratic differentials on onc$e$ punctured tori is also important in our problem
of investigating explicit relations between the Teichm\"uller spaces of the closed torus and the
once punctured torus.

PROPOSITION 2.2. Letfbe an automorphicform ofweight 1 for a Fuchsian group $\Gamma$ .
Then $f^{2}dz^{2}$ is a holomorphic quadratic differential on a Riemann surface $H/\Gamma$ .

PROOF. If we set $w=Tz$ for $ T=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)\in\Gamma$ then it is easily obtained that

$f^{2}(w)dw^{2}=f^{2}(z)dz^{2}$ since $dz=(cz+d)^{2}dw$ and $f^{2}(w)=f^{2}(Tz)=(cz+d)^{4}f^{2}(z)$ .
$\square $

Therefore Theorem 1.3 can be changed into the following form:

THEOREM 2.2. Let $\Gamma$ be a Fricke group associated with $a$ once punctured torus
(X, $Y,$ $Z$) $.$ A holomorphic quadratic differential on (X, $Y,$ $Z$) is given by (1.1) $\iota f(X, Y, Z)=$

$(3,3,3)$ , by (1.2) $\iota f(X, Y, Z)=(2\sqrt{2},2\sqrt{2},4)$ , by (1.3) $\iota f(X, Y, Z)\in M_{1}$ and by (1.4) if
(X, $Y,$ $Z$) $\in M_{2}\cup M_{3}$ .

Moreover, such a holomorphic quadratic differential spans the space of holomorphic
quadratic differentials on a once punctured torus, because it has dimension 1.

3. Explicit representations of cusp forms.

3.1. Two special cases. In this subsection we will show explicit representations of
cusp forms coming from the relation (1.1) and (1.2) by using some facts on Hecke groups
and will show another representation for the cusp form coming from (1.1) by using Eisenstein
series. We begin by recalling Hecke groups. The following arguments are due to Chapter III
in [H].
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DEFINITION 3.1. The group $\Gamma_{q}$ generated by the following matrices $S$ and $U$ is called
a Hecke group

$S=\left(\begin{array}{ll}0 & -1\\1 & 0\end{array}\right)$ , $U=\left(\begin{array}{ll}1 & \lambda\\ 0 & 1\end{array}\right)$ for $\lambda=2\cos\frac{\pi}{q}$ with $q=3,4,$ $\cdots$ .

Note that if $q=3$ the Hecke group $\Gamma_{3}$ is equal to the modular group $SL(2, Z)$ . We take
the following domain:

$F_{q}^{*}=\{z\in H||z|\geq 1$ and $-\frac{\lambda}{2}\leq|Re(z)|\leq 0\}$ .

By the Riemann mapping theorem there exists a mapping from $F_{q}^{*}$ to $H$ and by applying
Schwarz’ reflection principle we can construct the mapping $J_{q}$ satisfying the following propo-
sition:

PROPOSITION 3.1. (i) $J_{q}$ is invariant under the action of the Hecke group $\Gamma_{q}$ , i.e.,
$J_{q}(T(z))=J_{q}(z)$ for all $z\in H$ and $T\in\Gamma_{q}$ , where $T(z)$ is a Mobius transfomation.

(ii) $J_{q}$ maps $L_{q}$ onto $R$ where $L_{q}=L_{q1}\cup L_{q2}\cup L_{q3}$ ,

$L_{q1}=$ {$z\in H||z|\geq 1$ and ${\rm Re}(z)=0$} ,

$L_{q2}=\{z\in H||z|=1$ and $-\frac{\lambda}{2}\leq{\rm Re}(z)\leq 0\}$ ,

$L_{q3}=\{z\in H||z|\geq 1$ and ${\rm Re}(z)=-\frac{\lambda}{2}\}$ .

Especially, $J_{q}(i\infty)=\infty,$ $J_{q}(i)=1$ and $J_{q}(\rho_{q})=0$ where $\rho_{q}=e^{(1-1/q)\pi i}$ .
(iii) $J_{q}$ maps $F_{q}$ onto $C$ where

$F_{q}=\{z\in H||z|\geq 1and|{\rm Re}(z)|\leq\frac{\lambda}{2}\}$

is a fundamental domainfor the Hecke group $\Gamma_{q}$ .
(iv) The mapping $J_{q}$ : $H\rightarrow C$ is holomorphic on H.

Let $f$ be a holomorphic function on the upper half-plane $H$ and satisfying the following
conditions:

$f(z+\lambda)=f(z)$ and $f\left(\begin{array}{l}1\\--\\z\end{array}\right)=(-iz)^{k}\gamma f(z)$ for some $k>0$ and $\gamma=1$ or $-1$ .

Then we say that the function $f$ has signature $(k, \gamma)$ . Such functions were used by Hecke
in connection with finding correspondences between automorphic forms for Hecke groups
and Dirichlet series satisfying a functional equation. Then we can construct explicitly the
following functions by using $J_{q}$ :

$f_{\rho_{q},q}(z)=(\frac{J_{q}^{;2}}{J_{q}(J_{q}-1)})^{q}\equiv^{1}$ with $(k, \gamma)=(\frac{4}{q-2},1)$ ,
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$f_{i,q}(z)=(\frac{J_{q}^{\prime q}}{J_{q^{q-1}}(J_{q}-1)})^{q}\equiv^{1}$ with $(k, \gamma)=(\frac{2q}{q-2},$ $-1)$ ,

$f_{i\infty,q}(z)=(\frac{J_{q}^{;2q}}{J_{q}^{2q-2}(J_{q}-1)^{q}})^{q}\equiv^{1}$ with $(k, \gamma)=(\frac{4q}{q-2},1)$ .

Moreover, $f_{\rho_{q},q},$ $f_{i,q}$ and $f_{i\infty,q}$ have only one zero at points $\rho_{q},$
$i$ and $ i\infty$ , respectively, and

their orders are equal to 1. We easily get the relation connecting them: $f_{i\infty,q}=f_{\rho_{q},q}^{q}-f_{i,q}^{2}$ .
If $q=3$ then we have

$f_{\rho_{3},3}(z)=\frac{J_{3^{2}}^{\prime}}{J_{3}(J_{3}-1)}$ , $f_{i,3}(z)=\frac{J_{3^{3}}^{\prime}}{J_{3^{2}}(J_{3}-1)}$ , $f_{i\infty,3}(z)=\frac{J_{3^{6}}^{\prime}}{J_{3}^{4}(J_{3}-1)^{3}}$

with signatures $(4, 1)$ , $(6, -1)$ and $(12, 1)$ , respectively. It follows from th$e$ definition of the
signature that $f_{\rho_{3},3}$ and $f_{i,3}$ are automorphic forms of weight 2 and 3 for $\Gamma_{3}=SL(2, Z)$ ,

respectively, and that $f_{i\infty,3}$ is a cusp form of weight 6 for $\Gamma_{3}$ . Note that $J_{3}$ is equal to $J$ used
in the relation (1.1) and $J_{3}=f_{\rho_{3},3}^{3}/f_{i\infty,3}$ .

We give the same argument as above for the case $q=4$ . The following functions are
obtained:

$f_{\rho_{4},4}(z)=(\frac{J_{4}^{;2}}{J_{4}(J_{4}-1)})^{1}2$ $f_{i,4}(z)=(\frac{J_{4}^{\prime 4}}{J_{4^{3}}(J_{4}-1)})^{1}2$ $f_{i\infty,4}(z)=(\frac{J_{4^{8}}^{\prime}}{J_{4}^{6}(J_{4}-1)^{4}})^{1}2$

with signatures $(2, 1)$ , $(4, -1)$ and $(8, 1)$ , respectively. Then $f_{i\infty,4}$ is a cusp form of weight4
for $\Gamma_{4}$ and we $getJ_{4}=f_{\rho_{4},4}^{4}/f_{i\infty,4}$ .

Now we study the relations (1.1) and (1.2). We take a representation of (3, 3, 3) as
follows (see [CI],[AI]):

$\Gamma_{\rho_{3}}=(A_{\rho_{3}}, B_{\rho_{3}})$ with $A_{\rho_{3}}=\left(\begin{array}{ll}l & l\\l & 2\end{array}\right)$ and $B_{\rho_{3}}=\left(\begin{array}{ll}1 & -1\\-1 & 2\end{array}\right)$ .

Then $\Gamma_{\rho 3}$ is a subgroup of index 6 in $\Gamma_{3}=SL(2, Z)$ . From Corollary 2.1 there must be a cusp
form of weight 1 for $\Gamma_{\rho_{3}}$ . Note that $J$ in the relation $(l.1)$ is equal to $J_{3}$ and we use $J$ in the
following discussion for simplicity. Taking the derivative of $1-J(z)=4\wp(u)^{3}+1$ in (1.1)

with respect to $u$ , we have

$-\frac{dJ}{du}=12\wp^{2}\frac{d\wp}{du}$ . (3.1)

From (1.1) we $get-J(z)=4\wp^{3}(u)$ and 1 $-J(z)=(\wp^{\prime}(u))^{2}$ . On the one hand $\rho_{3}$ and
$i$ are elliptic fixed points of $\Gamma_{3}$ in $F_{3}$ and have periods 3 and 2, respectively. On the other
hand the group $\Gamma_{\rho_{3}}$ does not have an elliptic fixed point, that is, a fundamental domain for
$\Gamma_{\rho_{3}}$ is a 3-sheeted covering of the fundamental domain $F_{3}$ for $\Gamma_{3}$ around $\rho_{3}$ and is a 2-sheeted
covering of $F_{3}$ around $i$ . (More precisely, see \S 4 in [A1].) We can make the same assertion
for equivalent points of $\rho_{3}$ and $i$ under the action of $\Gamma_{3}$ . Since $J(\rho_{3})=0$ and $J(i)=1$ , we
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can take a cube root of $J$ and a square root of 1 $-J$ . Then $\wp(u)=$ (const) $\cdot J(z)^{1/3}$ and
$\wp^{\prime}(u)=\pm(1-J(z))^{\iota/2}$ . Therefore (3.1) is transformed into the following:

$du=(const)\cdot\frac{1}{J^{21}3(1-J)z}\frac{dJ}{dz}dz^{d}=^{ef}$ (const). $\varphi_{3}(z)dz$

THEOREM 3.1. $\varphi_{3}$ is a cusp$fom$ ofweight 1 for $\Gamma_{\rho_{3}}$ and is a sixth root of $f_{i\infty,3}$ .

PROOF. Let $T=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)$ be an element of $\Gamma_{\rho_{3}}$ . As $J$ is T-invariant and satisfies

$dJ(Tz)/d(Tz)=(cz+d)^{2}dJ(z)/dz$ , it is easily obtained that $\varphi_{3}$ satisfies $\varphi_{3}(Tz)=(cz+$

$d)^{2}\varphi_{3}(z)$ . We easily have that $\varphi_{3}(z)$ is a sixth root of $f_{i\infty,3}$ . Since $f_{i\infty,3}$ vanishes at $ i\infty$ ,
$\varphi 3(z)$ is a cusp form. $\square $

Next we will give a similar discussion on the relation (1.2). We take a representation of
$(2\sqrt{2},2\sqrt{2},4)$ as follows (see [C2],[A1]):

$\Gamma_{i}=(A_{i},$ $B_{i}$ } with $A_{i}=\left(\begin{array}{ll}0 & -1\\1 & 2\sqrt{2}\end{array}\right)$ and $B_{i}=(_{-1}^{\sqrt{2}}$ $\sqrt{2}-1)$ .

Then $\Gamma_{i}$ is a subgroup of index 4 in the Hecke group $\Gamma_{4}$ . From Corollary 2.1 there must be
a cusp form of weight 1 for $\Gamma_{i}$ . Taking the derivative of the first equation $J_{4}(z)=\wp(u)^{2}$ in
(1.2) with respect to $u$ , we have

$\frac{dJ_{4}}{du}=2\wp\frac{d\wp}{du}$ . (3.2)

On the one hand it follows from the construction of $J_{4}$ in Proposition 3.1 that $\rho_{4}$ and $i$ are
elliptic fixed points of $\Gamma_{4}$ in $F_{4}$ and have periods 4 and 2, respectively. On the other hand the
group $\Gamma_{i}$ does not have an elliptic fixed point. By using the same argument as in the case for
$J_{3}$ we can take a fourth root of $J_{4}$ and a square root of $J_{4}-1$ . Then $\wp(u)=\pm J_{4}(z)^{1/2}$ and
$\wp^{\prime}(u)=$ (const) $\cdot J_{4}(z)^{1/4}(J_{4}(z)-1)^{1/2}$ from (1.2). Therefore (3.2) is transformed into the
following:

$du=(const)\cdot\frac{1}{J_{4^{\frac{3}{4}}}(J_{4}-1)z1}\frac{dJ_{4}}{dz}=def$ (const) $\cdot\varphi_{4}(z)dz$

THEOREM 3.2. $\varphi_{4}$ is a cusp form ofweight 1 for $\Gamma_{i}$ and is a fourth root of $f_{i\infty,4}$ .
The proof of this theorem is almost the same as the proof of Theorem 3.1.
In the rest of this subsection we will introduce a more explicit representation of a cusp

form of weight 1 for the Fricke group $\Gamma_{\rho_{3}}$ associated with (3, 3, 3). Let $G$ be a Fuchsian
group. The function $f$ in Definition 2.1 is represented by using the Fourier series

$f(z)=\sum_{n\in Z}a_{n}q^{n}$ with $q=e^{2\pi iz}$ ,

which is called its q-expansion. If $a_{n}=0$ for all $n<0,$ $f$ is an automorphic form of weight
$k$ for $G$ . And if we further have $a_{0}=0$ , then $f$ is a cusp form of weight $k$ for $G$ .
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We recall the normalized Eisenstein series as examples of modular forms. For $k\geq 1$ and
$z\in H$ we define

$E_{k}(z)=\frac{1}{2}$

$\sum_{m,n\in Z,(m,n)=1}\frac{1}{(mz+n)^{2k}}$

,

wh$ere(m, n)$ denotes the greatest common divisor of $m$ and $n$ . Then $E_{k}(z)$ is a modular form
of weight $k$ . For $k=2$ and 3 we obtain their q-expansions as follows:

$E_{2}(z)=1+240\sum_{n=1}^{\infty}\sigma_{3}(n)q^{n}$ and $E_{3}(z)=1-504\sum_{n=1}^{\infty}\sigma_{5}(n)q^{n}$

where $\sigma_{k}(n)=\sum_{d|n}d^{k}$ . Moreover, we define

$J(z)=\frac{E_{2}(z)^{3}}{E_{2}(z)^{3}-E_{3}(z)^{2}}$ .

Then $\Delta(z)=E_{2}(z)^{3}-E_{3}(z)^{2}$ is a cusp form of weight 6 for $SL(2, Z)$ and $J(z)$ is a modular
function of weight $0$, which we have used in the arguments above. From Theorem 2.1 we have
$\delta_{2}^{a}(\Gamma_{3})=\delta_{3}^{a}(\Gamma_{3})=1$ and $\delta_{6}^{c}(\Gamma_{3})=1$ . Therefore $E_{2},$ $E_{3}$ and $\Delta$ must be equal to $f_{\rho_{3},3},$ $f_{i,3}$

and $f_{i\infty,3}$ , respectively, modulo a complex constant multiple. Now we have another explicit
representation of a cusp form of weight 1 for $\Gamma_{\rho_{3}}$ .

COROLLARY 3. 1. $\varphi_{3}$ is a sixth root of $\Delta$ .
We will study the q-expansion of $\varphi_{3}(z)$ in order to check directly that $\varphi_{3}$ vanishes at $ i\infty$ .

Representing the normalized Eisenstein series for $k=2$ and 3 by
$ E_{2}(z)=1+a_{1}q+a_{2}q^{2}+a_{3}q^{3}+\cdots$ and $ E_{3}(z)=1+b_{1}q+b_{2}q^{2}+b_{3}q^{3}+\cdots$ ,

we have

$ J(z)=\ovalbox{\tt\small REJECT}(3a_{1}-2b_{1})q+(3(a_{1}^{2}+a_{2})-(b_{1}^{2}+2b_{2}))q^{2}+1+3a_{1}q+3(a_{1}^{2}+a_{2})q^{2}+\cdots\ldots$

$=c_{-1}\frac{1}{q}+c_{0}+c_{1}q+c_{2}q^{2}+\cdots$ ,

where $c-1=$ 1/1728 and $c_{i},$ $i=0,1,2,$ $\cdots$ are some real constants determined by the above
equation. Moreover, we get

$\frac{1}{\int 3(1-J)I21}=\ovalbox{\tt\small REJECT}_{3}(c_{-1}q+c_{0}+c_{1}q+\cdots)^{2}(1-c_{-1}q-c_{0}-c_{1}q-\cdots)211$

$=-ic_{-1}^{-}q^{6}+6^{7}7\ldots$ ,

and

$\frac{dJ}{dz}=\frac{dJ}{dq}\frac{dq}{dz}=(-c_{-1}\frac{1}{q^{2}}+c_{1}+2c_{2}q+\cdots)(2\pi iq)$

$=2\pi i(-c_{-1}\frac{1}{q}+c_{1}q+2c_{2}q^{2}+\cdots)$ .



RYUJI ABE 183

Therefore

$\varphi_{3}(z)=(-ic_{-1}^{-}6q^{\frac{7}{6}}+\cdots)\cdot 2\pi i7(-c_{-1}\frac{1}{q}+c_{1}q+2c_{2}q^{2}+\cdots)=2\pi i(\oint c_{-1}^{-}6q^{1}6+\cdots)1$ .

This means that $\varphi_{3}$ vanishes at infinity. Therefore we can prove that $\varphi_{3}$ is a cusp form of
weight 1 for $\Gamma_{\rho_{3}}$ without using results of Hecke groups.

3.2. The case (X, $Y,$ $Z$) in $M_{1}$ . We will show explicit representations of cusp forms
coming from the relation (1.3). We begin by recalling some facts (see \S 5 in [A1]). A repre-
sentation of (X, $Y,$ $Z$) $\in M_{1}$ is given by

$\Gamma_{\alpha}=(A_{\alpha}, B_{\alpha})$ with $A_{\alpha}=(_{1}^{0}$ $\frac{2\sqrt{1+\alpha^{2}}-1}{\alpha})$ and $ B_{\alpha}=(^{\sqrt{1+\alpha^{2}}}-\alpha$ $\sqrt{1+\alpha^{2}}-\alpha)$ ,

where $\alpha\geq 1$ is a parameter. A fundamental domain identified with the once punctured torus
(X, $Y,$ $Z$) can be represented as follows:

$D(\Gamma_{\alpha})=\{z\in H||z+\frac{3\sqrt{1+\alpha^{2}}}{\alpha}|\geq\frac{1}{\alpha}$ $|z+\frac{2\sqrt{1+\alpha^{2}}}{\alpha}|\geq 1$ ,

$|z+\frac{\sqrt{1+\alpha^{2}}}{\alpha}|\geq\frac{1}{\alpha}$ $|z|\geq 1,$ $-\frac{4+3\alpha^{2}}{\alpha\sqrt{1+\alpha^{2}}}\leq{\rm Re}(z)\leq\frac{\alpha}{\sqrt{1+\alpha^{2}}}\}$

(the part shaded by lines downward to the right in Fig. 3.1). Moreover, we used the following
notations:

$F_{\alpha}^{*}=\{z\in H||z+\frac{\sqrt{1+\alpha^{2}}}{\alpha}|\geq\frac{1}{\alpha}$ $|z|\geq 1,$ $-\frac{\frac{1\alpha^{2}}{+}}{\alpha}\leq{\rm Re}(z)\leq 0\}$ ,

$\eta=(-\frac{\sqrt{1+\alpha^{2}}}{\alpha},$ $\frac{1}{\alpha})$ and $\zeta=(-\frac{\alpha}{\sqrt{1+\alpha^{2}}},$ $\frac{1}{\sqrt{1+\alpha^{2}}})$ .

The region $F_{\alpha}^{*}$ (shown in broken line in Fig. 3.1) is a quadrangle with angles $0,$ $\pi/2,$ $\pi/2,$ $\pi/2$ .
We introduce the following transformations:

$S=\left(\begin{array}{ll}0 & -1\\1 & 0\end{array}\right)$ , $ S_{\alpha}=(^{\sqrt{1+\alpha^{2}}}-\alpha$
$-\sqrt{\alpha^{2}}\frac{2+\alpha^{2}}{1+\alpha}$), $U_{\alpha}=(_{0}^{1}$ $\frac{2\sqrt{1+\alpha^{2}}}{\alpha,1})$

Relations among $A_{\alpha},$ $B_{\alpha},$ $S,$ $S_{\alpha}$ and $U_{\alpha}$ are summarized in:

$A_{\alpha}=SU_{\alpha}$ , $B_{\alpha}=S_{\alpha}U_{\alpha}^{-1}$ (3.3)

$U_{\alpha}^{2}=B_{\alpha}^{-1}A_{\alpha}^{-1}B_{\alpha}A_{\alpha}$ . (3.4)

PROPOSITION 3.2. $\Gamma_{\alpha}$ is a subgroup of index 2 in $\hat{\Gamma}_{\alpha}=\{S,$ $S_{\alpha},$ $U_{\alpha}$ ).

PROOF. Since $U_{\alpha}\not\in\Gamma_{\alpha}$ and $\Gamma_{\alpha}\cap U_{\alpha}\Gamma_{\alpha}=\emptyset$ , we will prove $\hat{\Gamma}_{\alpha}=\Gamma_{\alpha}\cup U_{\alpha}\Gamma_{\alpha}$ .
It immediately follows from (3.3) that $\hat{\Gamma}_{\alpha}\supset\Gamma_{\alpha}\cup U_{\alpha}\Gamma_{\alpha}$ . Then we only show that $\hat{\Gamma}_{\alpha}\subset$

$\Gamma_{\alpha}\cup U_{\alpha}\Gamma_{\alpha}$ . Let $g$ be an element of $\hat{\Gamma}_{\alpha}$ . We can represent $g$ by using $A_{\alpha},$ $B_{\alpha}$ and $U_{\alpha}$ , for we
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Fig. 3.1

get $S=A_{\alpha}U_{\alpha}^{-1}$ and $S_{\alpha}=B_{\alpha}U_{\alpha}$ from (3.3). Generally, $A_{\alpha},$ $B_{\alpha}$ and $U_{\alpha}$ satisfy the following
relations:

$A_{\alpha}U_{\alpha}=U_{\alpha}A_{\alpha}^{-1}B_{\alpha}^{-1}A_{\alpha}^{-1}B_{\alpha}A_{\alpha}$ , $A_{\alpha}U_{\alpha}^{-1}=U_{\alpha}A_{\alpha}^{-1}$

$B_{\alpha}U_{\alpha}=U_{\alpha}^{-1}B_{\alpha}^{-1}$ , $B_{\alpha}U_{\alpha}^{-1}=U_{\alpha}^{-1}B_{\alpha}^{-1}A_{\alpha}^{-1}B_{\alpha}^{-1}A_{\alpha}B_{\alpha}$ .
By using these relations and (3.4), the element $g$ can be changed into either the form not
including $U_{\alpha}$ and $U_{\alpha}^{-1}$ or the form having $U_{\alpha}$ or $U_{\alpha}^{-1}$ at the left end. The former case means
$g\in\Gamma_{\alpha}tdthelattercasemetsg\in U_{\alpha}\Gamma_{\alpha}$ . $\square $

Note that $\hat{\Gamma}_{\alpha}$ is an extended Fricke group of $\Gamma_{\alpha}$ defined in \S 3.2 of [Sc].

Using this we can introduce a fundamental domain for $\hat{\Gamma}_{\alpha}$ :

$D(\hat{\Gamma}_{\alpha})=\{z\in H||z+\frac{\sqrt{1+\alpha^{2}}}{\alpha}|\geq\frac{1}{\alpha},$ $|z|\geq 1,$ $-\frac{2+\alpha^{2}}{\alpha\sqrt{1+\alpha^{2}}}\leq{\rm Re}(z)\leq\frac{\alpha}{\sqrt{1+\alpha^{2}}}\}$

(the part shaded by lines upward to the right in Fig. 3.1). Note that $D(\Gamma_{\alpha})$ is a 2-sheeted
covering of $D(\hat{\Gamma}_{\alpha})$ and that $\eta,$

$\zeta$ and $i$ are elliptic fixed points of $\hat{\Gamma}_{\alpha}$ in $D(\hat{\Gamma}_{\alpha})$ and their
periods are equal to 2. Moreover, we obtain that the genus of the Riemann surface of $\hat{\Gamma}_{\alpha}$ is
equal to $0$ and the number of cusps of $\hat{\Gamma}_{\alpha}$ is equal tol. Then it follows from Theorem 2.1 that
$\delta_{1}^{a}(\hat{\Gamma}_{\alpha})=\delta_{1}^{c}(\hat{\Gamma}_{\alpha})=0$ and $\delta_{2}^{c}(\hat{\Gamma}_{\alpha})=1$ .

Next we recall the function $J_{(X,Y,Z)}$ used in the relation (1.3). In the following discussion
$J_{(X,Y,Z)}$ is written in the form $J_{\alpha}$ , since the representation of (X, $Y,$ $Z$) is described by using
the parameter $\alpha$ . By the Riemann mapping theorem we get a holomorphic mapping from $F_{\alpha}^{*}$
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to $H$ and by applying Schwartz’ reflection principle with respect to the reflections in the four
circles:

$\Sigma_{1}$ : ${\rm Re}(z)=0$ , $\Sigma_{2}$ ; $|z|=1$ , $\Sigma_{3}$ ; $|z+\frac{\sqrt{1+\alpha^{2}}}{\alpha}|=\frac{1}{\alpha}$ , $\Sigma_{4}$ ; ${\rm Re}(z)=-\frac{\sqrt{1+\alpha^{2}}}{\alpha}$ ,

we can construct the mapping $J_{\alpha}$ satisfying the following proposition:

PROPOSITION 3.3. (i) $J_{\alpha}$ is invariant under the action of $\hat{\Gamma}_{\alpha}$ , i.e., $J_{\alpha}(T(z))=J_{\alpha}(z)$

for all $z\in H$ and $T\in\hat{\Gamma}_{\alpha}$ , where $T(z)$ is a Mobius transfomation.
(ii) $J_{\alpha}$ maps $L_{\alpha}$ onto $R$ where $L_{\alpha}=L_{\alpha 1}\cup L_{\alpha 2}\cup L_{\alpha 3}\cup L_{\alpha 4}$ and

$L_{\alpha 1}=L_{1}$ , $L_{\alpha 2}=\{z\in H||z|=1$ and $-\frac{\alpha}{\sqrt{1+\alpha^{2}}}\leq{\rm Re}(z)\leq 0\}$ ,

$L_{\alpha 3}=\{z\in H||z+\frac{\sqrt{1+\alpha^{2}}}{\alpha}|=\frac{1}{\alpha}$ and $-\frac{\sqrt{1+\alpha^{2}}}{\alpha}\leq{\rm Re}(z)\leq-\frac{\alpha}{\sqrt{1+\alpha^{2}}}\}$ ,

$L_{\alpha 4}=\{z\in H||z+\frac{\sqrt{1+\alpha^{2}}}{\alpha}|\geq\frac{1}{\alpha}$ and ${\rm Re}(z)=-\frac{\sqrt{1+\alpha^{2}}}{\alpha}\}$ .

Especially, $J_{\alpha}(i\infty)=\infty,$ $J_{\alpha}(i)=P$ for some $P\geq 1,$ $J_{\alpha}(\zeta)=0$ and $J_{\alpha}(\eta)=-1$ .
(iii) $J_{\alpha}$ maps $F_{\alpha}$ onto $C$ where

$F_{\alpha}=\{z\in H||z+\frac{\sqrt{1+\alpha^{2}}}{\alpha}|\geq\frac{1}{\alpha}$ $|z|\geq 1,$ $|z-\frac{\sqrt{1+\alpha^{2}}}{\alpha}|\geq\frac{1}{\alpha}$

$-\frac{\sqrt{1+\alpha^{2}}}{\alpha}\leq{\rm Re}(z)\leq\frac{\sqrt{1+\alpha^{2}}}{\alpha}\}$ .

(iv) The mapping $J_{\alpha}$ : $H\rightarrow C$ is holomorphic on H.

For the proof of this proposition we refer the reader to the proof of Proposition 5.1 in
[A1]. We note that the assertion (i) comes from the following relations:

$S=\Sigma_{1}\Sigma_{2}=\Sigma_{2}\Sigma_{1}$ , $S_{\alpha}=\Sigma_{3}\Sigma_{4}=\Sigma_{4}\Sigma_{3}$ , $U_{\alpha}=\Sigma_{1}\Sigma_{4}$ .

Now we recall relations used in Theorem 1.1. Let $\tau$ be an element in $L_{1}$ corresponding
to (X, $Y,$ $Z$) in $M_{1}$ . If $\tau\in L_{1}$ the polynomial $p(x)=4x^{3}-g_{2}(\tau)x-g_{3}(\tau)$ has three distinct
real roots. Let $x_{1}<x_{2}<x_{3}$ be these roots. Then we have

$\wp^{\prime}(u)^{2}=4(\wp(u)-x_{1})(\wp(u)-x_{2})(\wp(u)-x_{3})$ . (3.5)

The relation giving a holomorphic mapping between (X, $Y,$ $Z$) and $\tau$ is

$\wp(u)=(x_{2}-x_{1})J_{\alpha}(z)+x_{2}$ . (3.6)

We study the relations (3.5) and (3.6). Taking the derivative of (3.6) with respect to $u$ ,

we have
$\frac{dJ_{\alpha}}{du}=\frac{1}{x_{2}-x_{1}}\frac{d\wp}{du}$ (3.7)
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By using (3.6) and the relation $(x_{2}-x_{3})/(x_{2}-x_{1})=-P$ ($see$ Lemma 5.3 [A1]) we get the
following equation:

$(\wp(u)-x_{1})(\wp(u)-x_{2})(\wp(u)-x_{3})=(x_{2}-x_{3})^{3}(J_{\alpha}+1)J_{\alpha}(J_{\alpha}-P)$ .
On the one hand $\eta,$ $\zeta$ and $i$ are elliptic fixed points of $\hat{\Gamma}_{\alpha}$ in $D(\hat{\Gamma}_{\alpha})$ and their periods are
equal to 2, but on the other hand the group $\Gamma_{\alpha}$ does not have an elliptic fixed point, that is,
the fundamental domain $D(\Gamma_{\alpha})$ is a 2-sheeted covering of the fundamental domain $D(\hat{\Gamma}_{\alpha})$

around $\eta,$ $\zeta$ and $i$ . We can make the same assertion for equivalent points of $\eta,$ $\zeta$ and $i$ under
the action of $\hat{\Gamma}_{\alpha}$ . Since $J_{\alpha}(\eta)=-1,$ $J_{\alpha}(\zeta)=0$ and $J_{\alpha}(i)=P$ , we can take square roots of
$J_{\alpha}+1,$ $J_{\alpha}$ and $J_{\alpha}-P$ . Then the equation (3.5) is changed into the following:

$\frac{d\wp}{du}=\pm 2(x_{2}-x_{1})^{3}2(J_{\alpha}+1)zJ_{\alpha^{2}}(J_{\alpha}-P)z111$ (3.8)

Comparing (3.7) and (3.8), we obtain

$du=(const)\cdot\frac{1}{(J_{\alpha}+1)^{111}zJ_{\alpha}z(J_{\alpha}-P)z}\frac{dJ_{\alpha}}{dz}dz^{d}=^{ef}$ (const). $\varphi_{\alpha}(z)dz$

THEOREM 3.3. $\varphi_{\alpha}$ is a cusp $fom$ ofweight 1 for $\Gamma_{\alpha}$ and $\varphi_{\alpha}^{2}$ is a cusp$fom$ ofweight
2 for $\hat{\Gamma}_{\alpha}$ .

PROOF. We have already known the existence of these cusp forms. We show the latter

assertion. Let $T=\left(\begin{array}{ll}a & b\\c & d\end{array}\right)$ be an $e$lement of $\hat{\Gamma}_{\alpha}$ . As $J_{\alpha}(Tz)=J_{\alpha}(z)$ from Proposition 3.3

(i), we get $J_{\alpha}^{\prime}(Tz)=(cz+d)^{2}J_{\alpha}^{\prime}(z)$ . Then it is easily checked that $\varphi_{\alpha}^{2}(Tz)=(cz+d)^{4}\varphi_{\alpha}^{2}(z)$ .
Next we will show that $\varphi_{\alpha}^{2}$ vanishes at infinity. We introduce local coordinates around

$ z=i\infty$ defined by $w=e^{2\pi iz/\lambda}$ with $\lambda=2\sqrt{1+\alpha^{2}}/\alpha$ . Then an expansion of $J_{\alpha}$ around
$\iota\infty$ is represented by $ J_{\alpha}(z)=a_{-1}/w+a_{0}+a_{1}w+\cdots$ and its derivative with respect to $z$ is
$ J_{\alpha}^{\prime}(z)=b_{-1}/w+b_{0}+b_{1}w+\cdots$ , where $a_{i}$ and $b_{i}$ for $i=-1,0,1,$ $\cdots$ are some constants.
We substitute these expansions in $\varphi_{\alpha}^{2}(z)$ :

$\varphi_{\alpha}^{2}(z)=\frac{J_{\alpha}^{\prime 2}}{(J_{\alpha}+1)J_{\alpha}(J_{\alpha}-P)}=\frac{(const)(1/w)^{2}+}{(const)(1/w)^{3}+}=(const)w+\cdots$ .

This means $\varphi_{\alpha}^{2}(i\infty)=0$ . Therefore $\varphi_{\alpha}^{2}$ is a cusp form of weight 2 for $\hat{\Gamma}_{\alpha}$ .
By using the same argument as above the first assertion is also proved. $\square $
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