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Abstract. A (central) arrangement is a finite family of one-codimensional subspaces of a vector space V. We
study the module of logarithmic forms with poles along the hyperplanes. We use a certain cochain complex and
its cohomological groups to prove that cohomological properties of the module are closely related to the explicit
structure of the module.

1. Introduction.

In 1991, L. Rose and H. Terao analysed the module of logarithmic forms of generic
arrangements. They found that if .4 is a generic £-arrangement, the projective dimension of
the module of logarithmic p-forms of A is less than or equal to p foreach0 < p < £. We
consider a cochain complex of the module of logarithmic forms. If the cohomology of the
complex of an arrangement A vanishes up to £ — 1 level, A is called pure. And if we use the
property of projective dimension, we can prove that generic arrangements are pure [S]. Since
the module of logarithmic p-forms of free arrangements are free for all p, free arrangements
are pure too. Strong Preparation Lemma proves that the module of logarithmic forms of
AU{H} can be obtained from the module of logarithmic forms of .A under some cohomology
conditions. With Strong Preparation Lemma we can prove that k-generic arrangements are
k-pure.

2. The setup.

Let K be a field. Let V be an £ dimensional vector space over K. A hyperplane H in
V is a codimension one subspace of V. An arrangement A in V is a finite set of hyperplanes
inV.LetS = K[xj, -, x¢] be the polynomial algebra. Let F = K(x1, x2,--- , x¢) be the
field of quotients of S.
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Each hyperplane H in V has a defining form
oy =a1x1+axy;+---+apxg (a; € K)
unique up to a constant multiple. A defining polynomial for A is given by

Q=0 =[] an.
HeA
Let L = L(.A) be the set of all subspaces of V which are intersections of elements of .A. We
call L(A) the intersection lattice of A. A partial order by reverse inclusion will be given to
L(A). A hyperplane H in V is called generic to A if H N X # X for every non zero X in
L(A). We call H k-generic to Aif HN X # X for every X € L(A) with codimension less
than k.

DEFINITION 2.1. We call an arrangement A generic if A has more than or equal to £
hyperplanes and every £ hyperplanes of .4 intersect only at the origin.

DEFINITION 2.2. We call an arrangement A k-generic if A has more than or equal to
k hyperplanes and the codimension of the intersection of every k hyperplanes of A is k.

We set
QFWV)= @  FdxiA---Adxy,).

I<ij<--<ip<t

We agree that .QO(V) = F. We call £27 (V) the module of rational differential p-forms on V.
We define amap d : 2P (V) — 2P*+1(V) as follows: For f € F, we define

Forw =3 fi)..i,dxiy A--- Adx;,, where | <ij <--- <ip <{fand f;..;, € F, we define

£
do =" @Bfyi,/0x)dxi Adxiy A--- Adxi, .
k=1

The map d is called the exterior differentiation. Let
QFVI= P S@xi A Adx,).

I<ij<--<ip<t

We agree that 20[V] = S, 2P[V] = 0 if p is negative. The elements of 2P[V] are called
regular differential p-forms on V.

DEFINITION 2.3. We define the module of logarithmic p-forms of A by
2P(A) = {w € 2P(V)| Quw € 2P[V] and Q(dw) € 2PF[V]}.
Define

d d
9P<A>=/\”<:;‘,---, “",dxl,...,dxe)

Qp

where A = {ker(ay), - - - , ker(ap)}.
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THEOREM 2.4 ([3, Theorem 1]). If A is a k-generic arrangement, then
2P(A) = 2P (A)
for p <k —2.
The module D of derivations consists of all k-linear maps 6 : S — S satisfying
0(f9) = f0(g) + g6(f)

forany f,g € S.
The module of derivations of A, D(A), is defined by

D(A) = {6 € D| Q(A) divides 0(Q(A))}.

We say an arrangement A is free if D(A) is a free S-module.

3. Strong Preparation Lemma.

In this section we prove the Strong Preparation Lemma.
Let H be a hyperplane which is not in 4. Let H = ker(f). Define a map Adf;
RP(A) —» 2PT1(A) by w — @ A df. Then we can define a complex

0 294 > ') > --- > 2¢A) — 0.
We also consider another chain complex
0—> RQUAU{H) —» RQUAUH) > --- > 2 AU{H) - 0,

with a coboundary map Adf/f; 2P(AU {H}) - 2PF (AU {H}) by w > w Adf/f. Itis
known that the complex (2*(A U {H}), Adf/f) is acyclic [4, Prop. 4.86].
LEMMA 3.1 ([6, Lemma 2.2.1]). For any w € 2P (A), there exist a rational (p — 1)-
form o' and a rational p-form " such that
w=uw ANdAf/f)+d",
Q'w’ and Q'w"” are both regular.
LEMMA 3.2. Suppose that w € QP(AU{H)), H = Ker(f). Then fw is in 27 (A).

PROOF. If H € A, itis trivial. Let H ¢ A. Let Q and Qf be defining polynomials of
A and A U {H} respectively. Let w € 2P (AU {H}). Since Q(fw) = (Qf)w € 2P[V], itis
enough to show that Qd(fw) = Q(df)w + Qfdw. By Lemma 3.1, w = o’ A (df/f) + ",
so Q(df) Aw = Qu”, is regular. Qf (dw) is regular, since w € 27 (AU {H}). So both terms
on the right hand side are in 27*![V]. O

COROLLARY 3.3. Letw € 2P(AU({H}). Thenw A df € 2P (A).

PROOF. Since df/f € Q1(AU{H}), w A (df/f) € 2P (AU{H}). By Lemma 3.2,
o Adf € 2PYI(A). O
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LEMMA 3.4. Let H = ker(f),and H ¢ A. Let v € 2P(A) and w Adf = 0. Then
w/f € 2P(AU{H)).

PROOF. It is enough to show that Qf - d(w/f) is regular. Butd(w/f) = (dw) f —
w(df))/f? = dw/f. Since Q(dw) is regular, it is done. O

LEMMA 3.5 ([7, Lemma 3.6)). Let H = ker(f), and H is not in A. Let v € 2P (A)
and wlg = 0. Then w/f € 2P(AU {H}).

LEMMA 3.6. Let H = ker(f). Let w € QP(A). If o Adf = 0, then }(05,0)) €
2P-1(AU {H)).

PROOF. We define an S-linear map (fg, ) : 2P(A) — 27-1(A) by

O, dxiy Adxiy A+ Adxi) =Y (=D xipdxi, A Adxi_ Adxig, Ao Adx,
k

Then (0g, w) € 2P~1(A), and Qf - %(05, w) is regular. So, it is enough to show that
acof) - %(95, w) is regular. If we use the fact that
e, df)=f, df hw=0,

we get

d(Qf) - (31;«9& w>) - f(dQ)%wE, o) + Q(df)%(eE, o)

1
= (dQ) A Bk, w) + 7Q(df) A 0k, w)

1 1
= (dQ) A (0, ) + 7Q<9E, af) A —7Q(95, df N w)
=(dQ) A (0, 0) + Qu.
Since both terms on the right hand side are regular, it is done. [

PROPOSITION 3.7. Let H = ker(f) and H is not in A. If 2P 2(AU {H)) =
RP2(A) + 2P 3(A) A (df/f), then
P 1(AU{H))
RP-1(A) + 2P-2(A) Adf/f)
PROOF. We define two maps y and 4,

HP(£2*(A), Adf) =

2P (AU {H)
2P~1(A) + 2P72(A) A df/)
5 2P1(AU(H))

" 2pP71(A) + 2P72(A) A dS/)

y : HP(2*(A), Adf) —

— HP(22*(A), Adf)

as follows;

1
y(w) = [?(95, w)] » 0([n) = ~Adf].
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First, we check the well-definedness of y. Choose w € £27(.A) such that w A df = 0. Then
+(6E, ») is in 2771 (AU {H)). Let » € 277" (A) A df. Then for some w* € P14,

%(eg,a» - }(95,& A df)
— %(9,;, o*) ANdf + (—1)P‘1-Jl;w* AA(BE,df)
= (0, w*) A de + (=P lw*.

In this case we have y ([w]) = 0. This proves the well-definedness of y. Second, we check
the well-definedness of 8. Choose € 2P~ 1(AU{H}). Then n Adf € 2P~!1(A) Adf. This
proves the well-definedness of 8. Third, we prove §y = tidentity. Choose w € 2P (A) such
that o A df = 0. Then,

1
8y ([w]) =8 (—(GE, w)) = [l(GE, w) /\df]

f f
- [-}-(91;,@ ndf) + (—1)"%(» A <05,df>]
= [(-1)Pw].

Fourth, we prove y8 = +identity. Choose n € 2P~1(AU {H}). Then,

1
vé(m =y(nAdf]) = [7(95, nA df)]

~ [%(95, n) Adf + (—I)P"%n A <9E’df)] :

(g, 1) is in 2P~2(AU {H}). By assumption, (g, ) € 2P"2(A) + 2P~3(A) Adf/f. This
shows that y8([n]) = [(-1)P~'5]. O
As a corollary of this, we get the following theorem.

COROLLARY 3.8. The following two conditions are equivalent.
1. HP(Q2*(A),Ndf)=0,for0 < p <k,
2. QP(AU{H)) = 2P(A) + 2P Y(A) Adf/f,forO0<p <k—1.

Under these conditions, we have
kAU {H))

k+1,* =
H™ (25 AN = oS o100 A @
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4. k-pure arrangements.

DEFINITION 4.1. An arrangement A is called pure if
HP (22*(A), Adf) =0,
for p < ¢, for every H generic to A.
THEOREM 4.2 ([S, Prop. 5.10]). Every free arrangement is pure.
THEOREM 4.3 ([5, Prop. 5.12]). Every generic arrangement is pure.
THEOREM 4.4 ([5, Prop. 5.15]). Every £-arrangement is pure for £ < 3.
The following proposition is a corollary of Corollary 3.8.
PROPOSITION 4.5. Let H = ker(f). IfH is generic to A and A is pure, then 2P (AU
(H}) = QP(A) + QP 1 (A) Adf/f,forO< p<£-2.
Now we define k-pure arrangements and get the followings.
DEFINITION 4.6. An arrangement A is called k-pure if
HP(22*(A), Adf) =0,
for p < k, for every H generic to A.
COROLLARY 4.7. Let H = Ker(f). If H is generic to A, and A is k-pure, then
RP(AU{H)) = 2P(A) + 2P 1(A) Adf/f forp < k —2.
PROPOSITION 4.8. Every k-generic arrangement is k-pure.

PROOF. Let A be a k-generic arrangement. If H is generic to A, then AU {H} is a
k-generic arrangement. By Theorem 2.4, 2P (AU {H}) = P(AU{H}) if p <k — 2. Also
QP(A) = QP(A)if p < k—2. This implies that 27 (AU{H}) = 27 (A)+RP-L(A)Adf/f
if p < k — 2. By Corollary 3.8, we get HP(2*(A), Adf) =0if p<k—1. O
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