Homological Properties of the Module of Logarithmic Forms of Arrangements

Ki-Suk LEE

Korea National University of Education

(Communicated by M. Oka)

Abstract. A (central) arrangement is a finite family of one-codimensional subspaces of a vector space V. We study the module of logarithmic forms with poles along the hyperplanes. We use a certain cochain complex and its cohomological groups to prove that cohomological properties of the module are closely related to the explicit structure of the module.

1. Introduction.

In 1991, L. Rose and H. Terao analysed the module of logarithmic forms of generic arrangements. They found that if \mathcal{A} is a generic ℓ -arrangement, the projective dimension of the module of logarithmic p-forms of \mathcal{A} is less than or equal to p for each $0 \le p \le \ell$. We consider a cochain complex of the module of logarithmic forms. If the cohomology of the complex of an arrangement \mathcal{A} vanishes up to $\ell - 1$ level, \mathcal{A} is called pure. And if we use the property of projective dimension, we can prove that generic arrangements are pure [5]. Since the module of logarithmic p-forms of free arrangements are free for all p, free arrangements are pure too. Strong Preparation Lemma proves that the module of logarithmic forms of $\mathcal{A} \cup \{H\}$ can be obtained from the module of logarithmic forms of \mathcal{A} under some cohomology conditions. With Strong Preparation Lemma we can prove that k-generic arrangements are k-pure.

2. The setup.

Let K be a field. Let V be an ℓ dimensional vector space over K. A hyperplane H in V is a codimension one subspace of V. An arrangement \mathcal{A} in V is a finite set of hyperplanes in V. Let $S = K[x_1, \dots, x_\ell]$ be the polynomial algebra. Let $F = K(x_1, x_2, \dots, x_\ell)$ be the field of quotients of S.

Received October 14, 1999

Revised January 14, 2000 This work was supported by KRF 1997-003-D00041. 88 KI-SUK LEE

Each hyperplane H in V has a defining form

$$\alpha_H = a_1 x_1 + a_2 x_2 + \cdots + a_\ell x_\ell \quad (a_i \in K)$$

unique up to a constant multiple. A defining polynomial for A is given by

$$Q=Q(\mathcal{A})=\prod_{H\in\mathcal{A}}\alpha_H.$$

Let L = L(A) be the set of all subspaces of V which are intersections of elements of A. We call L(A) the intersection lattice of A. A partial order by reverse inclusion will be given to L(A). A hyperplane H in V is called generic to A if $H \cap X \neq X$ for every non zero X in L(A). We call H k-generic to A if $H \cap X \neq X$ for every $X \in L(A)$ with codimension less than k.

DEFINITION 2.1. We call an arrangement \mathcal{A} generic if \mathcal{A} has more than or equal to ℓ hyperplanes and every ℓ hyperplanes of \mathcal{A} intersect only at the origin.

DEFINITION 2.2. We call an arrangement A k-generic if A has more than or equal to k hyperplanes and the codimension of the intersection of every k hyperplanes of A is k.

We set

$$\Omega^{p}(V) = \bigoplus_{1 \leq i_{1} < \cdots < i_{p} \leq \ell} F(dx_{i_{1}} \wedge \cdots \wedge dx_{i_{p}}).$$

We agree that $\Omega^0(V) = F$. We call $\Omega^p(V)$ the module of rational differential p-forms on V. We define a map $d: \Omega^p(V) \to \Omega^{p+1}(V)$ as follows: For $f \in F$, we define

$$df = \sum_{k=1}^{\ell} \frac{\partial f}{\partial x_k} dx_k .$$

For $\omega = \sum f_{i_1 \cdots i_p} dx_{i_1} \wedge \cdots \wedge dx_{i_p}$, where $1 \leq i_1 < \cdots < i_p \leq \ell$ and $f_{i_1 \cdots i_p} \in F$, we define

$$d\omega = \sum_{k=1}^{\ell} (\partial f_{i_1 \cdots i_p} / \partial x_k) dx_k \wedge dx_{i_1} \wedge \cdots \wedge dx_{i_p}.$$

The map d is called the exterior differentiation. Let

$$\Omega^{p}[V] = \bigoplus_{1 \leq i_{1} < \cdots < i_{p} \leq \ell} S(dx_{i_{1}} \wedge \cdots \wedge dx_{i_{p}}).$$

We agree that $\Omega^0[V] = S$, $\Omega^p[V] = 0$ if p is negative. The elements of $\Omega^p[V]$ are called regular differential p-forms on V.

DEFINITION 2.3. We define the module of logarithmic p-forms of A by

$$\Omega^{p}(A) = \{ \omega \in \Omega^{p}(V) \mid Q\omega \in \Omega^{p}[V] \text{ and } Q(d\omega) \in \Omega^{p+1}[V] \}.$$

Define

$$\Omega^{p}\langle A\rangle = \bigwedge^{p} \left\langle \frac{d\alpha_{1}}{\alpha_{1}}, \cdots, \frac{d\alpha_{n}}{\alpha_{n}}, dx_{1}, \ldots, dx_{\ell} \right\rangle$$

where $\mathcal{A} = \{ker(\alpha_1), \cdots, ker(\alpha_n)\}.$

THEOREM 2.4 ([3, Theorem 1]). If A is a k-generic arrangement, then

$$\Omega^p(\mathcal{A}) = \Omega^p \langle \mathcal{A} \rangle$$

for $p \leq k-2$.

The module D of derivations consists of all k-linear maps $\theta: S \to S$ satisfying

$$\theta(fg) = f\theta(g) + g\theta(f)$$

for any $f, g \in S$.

The module of derivations of A, D(A), is defined by

$$D(A) = \{ \theta \in D \mid Q(A) \text{ divides } \theta(Q(A)) \}.$$

We say an arrangement A is *free* if D(A) is a free S-module.

3. Strong Preparation Lemma.

In this section we prove the Strong Preparation Lemma.

Let H be a hyperplane which is not in A. Let H = ker(f). Define a map $\wedge df$; $\Omega^p(A) \to \Omega^{p+1}(A)$ by $\omega \mapsto \omega \wedge df$. Then we can define a complex

$$0 \to \Omega^0(\mathcal{A}) \to \Omega^1(\mathcal{A}) \to \cdots \to \Omega^{\ell}(\mathcal{A}) \to 0.$$

We also consider another chain complex

$$0 \to \Omega^0(\mathcal{A} \cup \{H\}) \to \Omega^1(\mathcal{A} \cup \{H\}) \to \cdots \to \Omega^{\ell}(\mathcal{A} \cup \{H\}) \to 0,$$

with a coboundary map $\wedge df/f$; $\Omega^p(A \cup \{H\}) \to \Omega^{p+1}(A \cup \{H\})$ by $\omega \mapsto \omega \wedge df/f$. It is known that the complex $(\Omega^*(A \cup \{H\}), \wedge df/f)$ is acyclic [4, Prop. 4.86].

LEMMA 3.1 ([6, Lemma 2.2.1]). For any $\omega \in \Omega^p(A)$, there exist a rational (p-1)-form ω' and a rational p-form ω'' such that

$$\omega = \omega' \wedge (df/f) + \omega'',$$

 $Q'\omega'$ and $Q'\omega''$ are both regular.

LEMMA 3.2. Suppose that $\omega \in \Omega^p(A \cup \{H\})$, H = Ker(f). Then $f \omega$ is in $\Omega^p(A)$.

PROOF. If $H \in \mathcal{A}$, it is trivial. Let $H \notin \mathcal{A}$. Let Q and Qf be defining polynomials of \mathcal{A} and $\mathcal{A} \cup \{H\}$ respectively. Let $\omega \in \Omega^p(\mathcal{A} \cup \{H\})$. Since $Q(f\omega) = (Qf)\omega \in \Omega^p[V]$, it is enough to show that $Qd(f\omega) = Q(df)\omega + Qfd\omega$. By Lemma 3.1, $\omega = \omega' \wedge (df/f) + \omega''$, so $Q(df) \wedge \omega = Q\omega''$, is regular. $Qf(d\omega)$ is regular, since $\omega \in \Omega^p(\mathcal{A} \cup \{H\})$. So both terms on the right hand side are in $\Omega^{p+1}[V]$. \square

COROLLARY 3.3. Let $\omega \in \Omega^p(A \cup \{H\})$. Then $\omega \wedge df \in \Omega^{p+1}(A)$.

PROOF. Since $df/f \in \Omega^1(A \cup \{H\})$, $\omega \wedge (df/f) \in \Omega^{p+1}(A \cup \{H\})$. By Lemma 3.2, $\omega \wedge df \in \Omega^{p+1}(A)$. \square

90 KI-SUK LEE

LEMMA 3.4. Let H = ker(f), and $H \notin A$. Let $\omega \in \Omega^p(A)$ and $\omega \wedge df = 0$. Then $\omega/f \in \Omega^p(A \cup \{H\})$.

PROOF. It is enough to show that $Qf \cdot d(\omega/f)$ is regular. But $d(\omega/f) = ((d\omega)f - \omega(df))/f^2 = d\omega/f$. Since $Q(d\omega)$ is regular, it is done. \square

LEMMA 3.5 ([7, Lemma 3.6]). Let H = ker(f), and H is not in A. Let $\omega \in \Omega^p(A)$ and $\omega|_H = 0$. Then $\omega/f \in \Omega^p(A \cup \{H\})$.

LEMMA 3.6. Let H = ker(f). Let $\omega \in \Omega^p(A)$. If $\omega \wedge df = 0$, then $\frac{1}{f} \langle \theta_E, \omega \rangle \in \Omega^{p-1}(A \cup \{H\})$.

PROOF. We define an S-linear map $\langle \theta_E, \rangle : \Omega^p(A) \to \Omega^{p-1}(A)$ by

$$\langle \theta_E, dx_{i_1} \wedge dx_{i_2} \wedge \cdots \wedge dx_{i_p} \rangle = \sum_k (-1)^{k-1} x_{i_k} dx_{i_1} \wedge \cdots \wedge dx_{i_{k-1}} \wedge dx_{i_{k+1}} \wedge \cdots \wedge dx_{i_p}.$$

Then $\langle \theta_E, \omega \rangle \in \Omega^{p-1}(\mathcal{A})$, and $Qf \cdot \frac{1}{f} \langle \theta_E, \omega \rangle$ is regular. So, it is enough to show that $d(Qf) \cdot \frac{1}{f} \langle \theta_E, \omega \rangle$ is regular. If we use the fact that

$$\langle \theta_E, df \rangle = f, \quad df \wedge \omega = 0,$$

we get

$$d(Qf) \cdot \left(\frac{1}{f} \langle \theta_E, \omega \rangle\right) = f(dQ) \frac{1}{f} \langle \theta_E, \omega \rangle + Q(df) \frac{1}{f} \langle \theta_E, \omega \rangle$$

$$= (dQ) \wedge \langle \theta_E, \omega \rangle + \frac{1}{f} Q(df) \wedge \langle \theta_E, \omega \rangle$$

$$= (dQ) \wedge \langle \theta_E, \omega \rangle + \frac{1}{f} Q \langle \theta_E, df \rangle \wedge -\frac{1}{f} Q \langle \theta_E, df \wedge \omega \rangle$$

$$= (dQ) \wedge \langle \theta_E, \omega \rangle + Q\omega.$$

Since both terms on the right hand side are regular, it is done. \Box

PROPOSITION 3.7. Let H = ker(f) and H is not in A. If $\Omega^{p-2}(A \cup \{H\}) = \Omega^{p-2}(A) + \Omega^{p-3}(A) \wedge (df/f)$, then

$$H^p(\Omega^*(\mathcal{A}), \wedge df) \cong \frac{\Omega^{p-1}(\mathcal{A} \cup \{H\})}{\Omega^{p-1}(\mathcal{A}) + \Omega^{p-2}(\mathcal{A}) \wedge (df/f)}$$

PROOF. We define two maps γ and δ ,

$$\gamma: H^{p}(\Omega^{*}(\mathcal{A}), \wedge df) \to \frac{\Omega^{p-1}(\mathcal{A} \cup \{H\})}{\Omega^{p-1}(\mathcal{A}) + \Omega^{p-2}(\mathcal{A}) \wedge (df/f)}$$
$$\delta: \frac{\Omega^{p-1}(\mathcal{A} \cup \{H\})}{\Omega^{p-1}(\mathcal{A}) + \Omega^{p-2}(\mathcal{A}) \wedge (df/f)} \to H^{p}(\Omega^{*}(\mathcal{A}), \wedge df)$$

as follows;

$$\gamma([\omega]) = \left[\frac{1}{f}\langle\theta_E,\omega\rangle\right], \quad \delta([\eta]) = [\eta \wedge df].$$

First, we check the well-definedness of γ . Choose $\omega \in \Omega^p(\mathcal{A})$ such that $\omega \wedge df = 0$. Then $\frac{1}{f}\langle \theta_E, \omega \rangle$ is in $\Omega^{p-1}(\mathcal{A} \cup \{H\})$. Let $\omega \in \Omega^{p-1}(\mathcal{A}) \wedge df$. Then for some $\omega^* \in \Omega^{p-1}(\mathcal{A})$,

$$\frac{1}{f} \langle \theta_E, \omega \rangle = \frac{1}{f} \langle \theta_E, \omega^* \wedge df \rangle
= \frac{1}{f} \langle \theta_E, \omega^* \rangle \wedge df + (-1)^{p-1} \frac{1}{f} \omega^* \wedge \langle \theta_E, df \rangle
= \langle \theta_E, \omega^* \rangle \wedge \frac{df}{f} + (-1)^{p-1} \omega^* .$$

In this case we have $\gamma([\omega]) = 0$. This proves the well-definedness of γ . Second, we check the well-definedness of δ . Choose $\eta \in \Omega^{p-1}(A \cup \{H\})$. Then $\eta \wedge df \in \Omega^{p-1}(A) \wedge df$. This proves the well-definedness of δ . Third, we prove $\delta \gamma = \pm identity$. Choose $\omega \in \Omega^p(A)$ such that $\omega \wedge df = 0$. Then,

$$\begin{split} \delta \gamma ([\omega]) &= \delta \left(\frac{1}{f} \langle \theta_E, \omega \rangle \right) = \left[\frac{1}{f} \langle \theta_E, \omega \rangle \wedge df \right] \\ &= \left[\frac{1}{f} \langle \theta_E, \omega \wedge df \rangle + (-1)^p \frac{1}{f} \omega \wedge \langle \theta_E, df \rangle \right] \\ &= \left[(-1)^p \frac{1}{f} \omega f \right] \\ &= \left[(-1)^p \omega \right]. \end{split}$$

Fourth, we prove $\gamma \delta = \pm identity$. Choose $\eta \in \Omega^{p-1}(A \cup \{H\})$. Then,

$$\gamma \delta(\eta) = \gamma([\eta \wedge df]) = \left[\frac{1}{f} \langle \theta_E, \eta \wedge df \rangle\right]$$
$$= \left[\frac{1}{f} \langle \theta_E, \eta \rangle \wedge df + (-1)^{p-1} \frac{1}{f} \eta \wedge \langle \theta_E, df \rangle\right].$$

 $\langle \theta_E, \eta \rangle$ is in $\Omega^{p-2}(A \cup \{H\})$. By assumption, $\langle \theta_E, \eta \rangle \in \Omega^{p-2}(A) + \Omega^{p-3}(A) \wedge df/f$. This shows that $\gamma \delta([\eta]) = [(-1)^{p-1}\eta]$. \square

As a corollary of this, we get the following theorem.

COROLLARY 3.8. The following two conditions are equivalent:

- 1. $H^p(\Omega^*(A), \wedge df) = 0, \text{ for } 0 \le p \le k,$
- 2. $\Omega^p(A \cup \{H\}) = \Omega^p(A) + \Omega^{p-1}(A) \wedge df/f, \text{ for } 0 \leq p \leq k-1.$

Under these conditions, we have

$$H^{k+1}(\Omega^*(\mathcal{A}, \wedge df) \cong \frac{\Omega^k(\mathcal{A} \cup \{H\})}{\Omega^k(\mathcal{A}) + \Omega^{k-1}(\mathcal{A}) \wedge (df/f)}.$$

4. k-pure arrangements.

DEFINITION 4.1. An arrangement A is called *pure* if

$$H^p(\Omega^*(A), \wedge df) = 0$$
.

for $p < \ell$, for every H generic to A.

THEOREM 4.2 ([5, Prop. 5.10]). Every free arrangement is pure.

THEOREM 4.3 ([5, Prop. 5.12]). Every generic arrangement is pure.

THEOREM 4.4 ([5, Prop. 5.15]). Every ℓ -arrangement is pure for $\ell \leq 3$.

The following proposition is a corollary of Corollary 3.8.

PROPOSITION 4.5. Let H = ker(f). If H is generic to A and A is pure, then $\Omega^p(A \cup \{H\}) = \Omega^p(A) + \Omega^{p-1}(A) \wedge df/f$, for $0 \le p \le \ell - 2$.

Now we define k-pure arrangements and get the followings.

DEFINITION 4.6. An arrangement A is called k-pure if

$$H^p(\Omega^*(\mathcal{A}), \wedge df) = 0$$

for p < k, for every H generic to A.

COROLLARY 4.7. Let H = Ker(f). If H is generic to A, and A is k-pure, then $\Omega^p(A \cup \{H\}) = \Omega^p(A) + \Omega^{p-1}(A) \wedge df/f$ for $p \le k-2$.

PROPOSITION 4.8. Every k-generic arrangement is k-pure.

PROOF. Let \mathcal{A} be a k-generic arrangement. If H is generic to \mathcal{A} , then $\mathcal{A} \cup \{H\}$ is a k-generic arrangement. By Theorem 2.4, $\Omega^p(\mathcal{A} \cup \{H\}) = \Omega^p(\mathcal{A} \cup \{H\})$ if $p \leq k-2$. Also $\Omega^p(\mathcal{A}) = \Omega^p(\mathcal{A})$ if $p \leq k-2$. This implies that $\Omega^p(\mathcal{A} \cup \{H\}) = \Omega^p(\mathcal{A}) + \Omega^{p-1}(\mathcal{A}) \wedge df/f$ if $p \leq k-2$. By Corollary 3.8, we get $H^p(\Omega^*(\mathcal{A}), \wedge df) = 0$ if $p \leq k-1$. \square

References

- [1] E. KUNZ, Introduction to Commutative Algebra and Algebraic Geometry, Birkhäuser (1985).
- [2] K. S. LEE, On logarithmic forms and arrangements of hyperplanes, Ph. D. Thesis, Univ. of Wisconsin (1995).
- [3] K. S. LEE and H. TERAO, The logarithmic forms of k-generic arrangements, J. Math. Sci. Univ. Tokyo 3 (1996), 83-89.
- [4] P. ORLIK and H. TERAO, Arrangements of Hyperplanes, Grundlehren Math. Wiss. 300 (1991).
- [5] P. ORLIK and H. TERAO, Arrangements and Milnor Fibers, Math. Ann. 301 (1995), 211–235.
- [6] L. ROSE and H. TERAO, A Free Resolution of the Module of Logarithmic Forms of a Generic Arrangements,J. Algebra 136 (1991), 376-400.
- [7] G. M. ZIEGLER, Algebraic combinatorics of hyperplane arrangements, Ph. D. Thesis, M.I.T. (1987).

Present Address:

DEPARTMENT OF MATHEMATICS EDUCATION, KOREA NATIONAL UNIVERSITY OF EDUCATION, CHONGWON, CHOONGBOOK 363-791, KOREA.