Tokyo J. Math. Vol. 24, No. 2, 2001

On the Hyers-Ulam Stability of Real Continuous Function Valued Differentiable Map

Takeshi MIURA, Sin-ei TAKAHASI and Hisashi CHODA

Niigata University, Yamagata University and Osaka Kyoiku University

(Communicated by K. Kobayasi)

Abstract. We consider a differentiable map f from an open interval to a real Banach space of all bounded continuous real-valued functions on a topological space. We show that f can be approximated by the solution to the differential equation $x'(t) = \lambda x(t)$, if $||f'(t) - \lambda f(t)||_{\infty} \le \varepsilon$ holds

1. Introduction.

In this paper, I denotes an open interval of **R**, the real number field. We consider not only bounded intervals but also unbounded one. That is,

$$I = (a, b), \quad -\infty \le a < b \le \infty.$$

The letters ε and λ stand non-negative real number and non-zero real number, respectively. We define $J = \{e^{-\lambda t} : t \in I\}$.

DEFINITION 1.1. Let A be a Banach space, f a map from I to A. We say that f is differentiable, if for every $t \in I$ there exists an $f'(t) \in A$ such that

$$\lim_{s \to 0} \left\| \frac{f(t+s) - f(t)}{s} - f'(t) \right\|_{A} = 0,$$

where $\|\cdot\|_A$ denotes the norm on A. We call the map $f': I \to A$ the derivative of f.

By definition, f is differentiable if and only if f is Fréchet differentiable at each point of I. While Fréchet derivative and our one differ from each other at first glance, we can identify them since $L_t(1) = f'(t)$ holds, where L_t denotes the Fréchet derivative for f at t.

Alsina and Ger [1] proved the following results in case where $\lambda = 1$. In a way similar to the proofs in [1], we obtain the following Propositions and the proofs are omitted.

PROPOSITION 1.1. Let f be a real-valued differentiable function on I. Then the following conditions are equivalent.

- (i) $|f'(t) \lambda f(t)| \le \varepsilon$ holds for every $t \in I$.
- (ii) There exists a real-valued differentiable function θ on J such that

 $0 \leq -\lambda \theta'(u) \leq 2\varepsilon \quad (u \in J),$

Received May 16, 2000

$$f(t) = \frac{\varepsilon}{\lambda} + \theta(e^{-\lambda t})e^{\lambda t}$$
 $(t \in I)$.

NOTE 1.1. By the mean value theorem, the function θ in the condition (ii) is a $2\varepsilon/|\lambda|$ -lipschitz function. That is,

$$|\theta(u) - \theta(v)| \leq \frac{2\varepsilon}{|\lambda|}|u - v|$$

holds for every $u, v \in J$.

Here and after $\lim_{u \leq s}$ denotes the right limit.

PROPOSITION 1.2. Let f be a real-valued differentiable function on I. If the inequality

 $|f'(t) - \lambda f(t)| \le \varepsilon$

holds for every $t \in I$, then $\lim_{u \to \inf J} \theta(u)$ exists and

$$\left|f(t) - \left\{\lim_{u \searrow \inf J} \theta(u)\right\} e^{\lambda t}\right| \leq \frac{3\varepsilon}{|\lambda|}$$

holds for every $t \in I$, where θ is the function given in Proposition 1.1.

Proposition 1.2 states that f can be approximated by the solution $ce^{\lambda t}$ to the differential equation $x'(t) = \lambda x(t)$, if $|f'(t) - \lambda f(t)| \le \varepsilon$ holds for every $t \in I$. According to [1], we call the stability in the sense of Proposition 1.2 the Hyers-Ulam stability.

In this paper, X denotes a topological space. Let C be the complex number field and $\mathbf{F} \in {\mathbf{R}, \mathbf{C}}$. We write $C(X, \mathbf{F})$ for the Banach space of all bounded continuous **F**-valued functions on X and $C_0(X, \mathbf{F})$ for the Banach space of all functions of $C(X, \mathbf{F})$ which vanish at infinity, in the following sense:

f vanishes at infinity if and only if for every $\delta > 0$ there exists a compact subset K in X such that $|f(x)| < \delta$ holds for every $x \in X \setminus K$.

We consider a differentiable map f from I to $C(X, \mathbf{R})$ (resp. $C_0(X, \mathbf{R})$) with the inequality $||f'(t) - \lambda f(t)||_{\infty} \leq \varepsilon$, where $|| \cdot ||_{\infty}$ denotes the supremum norm on X. Then we show that the Hyers-Ulam stability holds for f. That is, f can be approximated by the solution $e^{\lambda t}g$ to the differential equation $x'(t) = \lambda x(t)$ for some $g \in C(X, \mathbf{R})$ (resp. $C_0(X, \mathbf{R})$). As a corollary, we obtain the Hyers-Ulam stability of a certain differentiable map from I to $C(X, \mathbf{C})$.

To prove the Hyers-Ulam stability of the map f from I to $C(X, \mathbb{R})$ with the inequality $||f'(t) - \lambda f(t)||_{\infty} \leq \varepsilon$, let us consider for every $x \in X$ the function f_x from I to \mathbb{R} defined by

$$f_x(t) = f(t)(x) \quad (t \in I)$$

Then f_x is a real-valued differentiable function on I with the equality

$$f_x'(t) = f'(t)(x)$$

for each $x \in X$ and each $t \in I$. Therefore, we have the inequality

$$|f'_{\mathbf{x}}(t) - \lambda f_{\mathbf{x}}(t)| \leq \varepsilon \quad (x \in X, t \in I).$$

Thus by Proposition 1.1, for every $x \in X$ there exists a real-valued differentiable function θ_x on J such that

$$0 \leq -\lambda \theta'_x(u) \leq 2\varepsilon$$
 $(u \in J)$, $f_x(t) = \frac{\varepsilon}{\lambda} + \theta_x(e^{-\lambda t})e^{\lambda t}$ $(t \in I)$.

By Proposition 1.2 the function

$$g(x) = \lim_{u \searrow \inf J} \theta_x(u)$$

is well-defined and the inequality

$$|f_x(t) - e^{\lambda t}g(x)| \le \frac{3\varepsilon}{|\lambda|} \quad (t \in I)$$

holds for every $x \in X$. The function g obtained above plays an important role in this paper.

From now on, θ_x denotes the real-valued differentiable function on J with

$$0 \le -\lambda \theta'_x(u) \le 2\varepsilon$$
 $(u \in J)$, $f(t)(x) = \frac{\varepsilon}{\lambda} + \theta_x(e^{-\lambda t})e^{\lambda t}$ $(t \in I)$

for every $x \in X$, if f is a differentiable map from I to $C(X, \mathbf{R})$ with the inequality

$$\|f'(t) - \lambda f(t)\|_{\infty} \leq \varepsilon$$

for every $t \in I$. Moreover, g stands for the function defined by

$$g(x) = \lim_{u \searrow \inf J} \theta_x(u) \quad (x \in X)$$

which satisfies the inequality

$$\|f(t) - e^{\lambda t}g\|_{\infty} \leq \frac{3\varepsilon}{|\lambda|} \quad (t \in I).$$

2. Main results.

Before we turn to our main theorem, we consider a differential equation $x'(t) = \lambda x(t)$ for a differentiable map x from I to a Banach space. While the following proposition is well-known, we give a proof.

PROPOSITION 2.1. Let A be a real (resp. complex) Banach space, f a differentiable map from I to A. If $\mu \in \mathbb{R} \setminus \{0\}$ (resp. $\mu \in \mathbb{C} \setminus \{0\}$), the following conditions are equivalent.

(i) $f'(t) = \mu f(t)$ holds for every $t \in I$.

(ii) There exists an $h \in A$ such that $f(t) = e^{\mu t}h$ $(t \in I)$.

PROOF. (ii) \Rightarrow (i) By definition, it is clear and a proof is omitted.

(i) \Rightarrow (ii) We define $h(t) = e^{-\mu t} f(t)$ for every $t \in I$. Then h is differentiable and the equality

$$h'(t) = \{-\mu f(t) + f'(t)\}e^{-\mu t} = 0$$

holds for every $t \in I$, by hypothesis. We show that *h* is a constant map. In fact, fix any $t_0 \in I$ and put

$$h_0(t) = h(t) - h(t_0) \quad (t \in I).$$

Let A^* be the dual space of A. For every $\Lambda \in A^*$ the composed function $\Lambda \circ h_0$ from I to \mathbb{C} is differentiable and the equality

$$(\Lambda \circ h_0)'(t) = \Lambda(h'_0(t)) = 0$$

holds for every $t \in I$, since Λ is bounded linear and since $h'_0(t) = 0$. Therefore, for every $\Lambda \in A^*$ there exists a $c_\Lambda \in \mathbb{C}$ such that $\Lambda(h_0(t)) = c_\Lambda$ holds for every $t \in I$. We have $c_\Lambda = \Lambda(h_0(t_0)) = 0$, since $h_0(t_0) = 0$. By the Hahn-Banach theorem, $h_0(t) = 0$ holds for every $t \in I$. Hence h is a constant map. If we write h(t) = h, we have $f(t) = e^{\mu t}h$. This completes the proof.

NOTE 2.1. Let f be a differentiable map from I to $C(X, \mathbf{R})$ (resp. $C_0(X, \mathbf{R})$) with

$$\|f'(t) - \lambda f(t)\|_{\infty} \le \varepsilon \quad (t \in I).$$

If we consider the case where $\varepsilon = 0$, then g coincides with the function h in Proposition 2.1 in case where $A = C(X, \mathbb{R})$ (resp. $C_0(X, \mathbb{R})$). In fact, suppose that the inequality above holds for $\varepsilon = 0$. On one hand, there exists an $h \in C(X, \mathbb{R})$ (resp. $C_0(X, \mathbb{R})$) such that $f(t) = e^{\lambda t} h$ for every $t \in I$, by Proposition 2.1. On the other hand, we can write

$$f(t)(x) = \theta_x(e^{-\lambda t})e^{\lambda t}$$

for every $t \in I$ and every $x \in X$. Therefore, we have

$$h(x) = \theta_x(e^{-\lambda t}) \quad (x \in X, t \in I).$$

By the definition of the function g,

$$g(x) = \lim_{u \searrow \inf J} \theta_x(u) = h(x)$$

holds for every $x \in X$. Hence, g = h holds if $\varepsilon = 0$. In particular, g is an element of $C(X, \mathbb{R})$ (resp. $C_0(X, \mathbb{R})$), if $\varepsilon = 0$.

LEMMA 2.2. Let f be a differentiable map from I to $C(X, \mathbf{R})$ with the inequality

$$\|f'(t) - \lambda f(t)\|_{\infty} \leq \varepsilon \quad (t \in I).$$

Then g is continuous on X.

PROOF. By Note 2.1, it is enough to consider the case where $\varepsilon > 0$. Suppose that g is not continuous on X. Then there exist an $x_0 \in X$ and an $\eta_0 > 0$ such that for every open neighbourhood V of x_0 there corresponds a $z \in V$ with

$$|g(x_0)-g(z)|\geq \eta_0.$$

Since $g(x_0) = \lim_{u \to \inf J} \theta_{x_0}(u)$, there exists a $u_0 \in J$ such that

$$|g(x_0) - \theta_{x_0}(u)| < \frac{\eta_0}{4} \quad (u \in J : u < u_0).$$

Put $\alpha = \inf J$, and choose $u_1 \in J$ with $u_1 < \min\{u_0, \alpha + |\lambda|\eta_0/8\varepsilon\}$. Then we have

(1)
$$|g(x_0) - \theta_{x_0}(u_1)| < \frac{\eta_0}{4}$$
,

(2)
$$u_1 < \alpha + \frac{|\lambda|\eta_0}{8\varepsilon}$$

Since $x \mapsto \theta_x(u_1)$ is continuous function on X, there exists an open neighbourhood W_0 of x_0 such that

(3)
$$|\theta_{x_0}(u_1) - \theta_y(u_1)| < \frac{\eta_0}{4} \quad (y \in W_0).$$

By hypothesis, there corresponds a $z \in W_0$ with

(4)
$$|g(x_0) - g(z)| \ge \eta_0$$
.

In a way similar to the inequality (1), we obtain

$$|g(z) - \theta_z(u_2)| < \frac{\eta_0}{4}$$

for some $u_2 \in J$ with $u_2 < u_1$. By (1), (3), (4) and (5), we have

$$\begin{aligned} \eta_0 &\leq |g(z) - g(x_0)| \\ &\leq |g(z) - \theta_z(u_2)| + |\theta_z(u_2) - \theta_z(u_1)| \\ &+ |\theta_z(u_1) - \theta_{x_0}(u_1)| + |\theta_{x_0}(u_1) - g(x_0)| \\ &\leq |\theta_z(u_2) - \theta_z(u_1)| + \frac{3}{4}\eta_0 \,. \end{aligned}$$

That is, we obtain the inequality

(6)

$$|\theta_z(u_2) - \theta_z(u_1)| \geq \frac{\eta_0}{4}.$$

By the mean value theorem, there exists a $v \in (u_2, u_1)$ such that

$$\theta_z'(v) = \frac{\theta_z(u_2) - \theta_z(u_1)}{u_2 - u_1}$$

On one hand, we have

$$-\lambda \theta_z'(v) \geq -\frac{|\lambda|\eta_0}{4(u_2-u_1)} > \frac{|\lambda|\eta_0}{4(u_1-\alpha)},$$

by the inequality (6), whether λ is positive or negative. On the other hand, the inequality

$$\frac{|\lambda|\eta_0}{u_1-\alpha}>8\varepsilon$$

holds by (2). Therefore, we have the inequality

$$-\lambda \theta_{z}'(v) > 2\varepsilon$$
.

This contradicts with $0 \le -\lambda \theta'_z(v) \le 2\varepsilon$. Thus we proved that g is continuous on X.

We obtain the Hyers-Ulam stability of a differentiable map from I to $C(X, \mathbf{R})$.

THEOREM 2.3. Let f be a differentiable map from I to $C(X, \mathbf{R})$ with the inequality

$$\|f'(t) - \lambda f(t)\|_{\infty} \le \varepsilon \quad (t \in I).$$

Then g is an element of $C(X, \mathbf{R})$ with

$$\|f(t)-e^{\lambda t}g\|_{\infty}\leq \frac{3\varepsilon}{|\lambda|}$$
 $(t\in I)$.

PROOF. By Lemma 2.2, g is continuous. Therefore, it is enough to show that g is bounded on X. In fact, fix any element $u_0 \in J$. Since θ_x is $2\varepsilon/|\lambda|$ -lipschitz,

$$|\theta_x(u) - \theta_x(u_0)| \le \frac{2\varepsilon}{|\lambda|}|u - u_0|$$

holds for every $x \in X$ and every $u \in J$. Therefore, we have the inequality

$$|g(x) - \theta_x(u_0)| = \lim_{u \searrow \inf J} |\theta_x(u) - \theta_x(u_0)|$$

$$\leq \frac{2\varepsilon}{|\lambda|} u_0 \quad (x \in X).$$

Put $t_0 = -\lambda^{-1} \log u_0 \in I$. Since $f(t_0)$ is bounded on X, there exists an M > 0 such that $|f(t_0)(x)| \le M$ holds for every $x \in X$. By the definition of the function θ_x ,

$$\begin{aligned} |\theta_x(e^{-\lambda t_0})| &= \left| \left\{ f(t_0)(x) - \frac{\varepsilon}{\lambda} \right\} e^{-\lambda t_0} \right| \\ &\leq \left\{ M + \frac{\varepsilon}{|\lambda|} \right\} e^{-\lambda t_0} \end{aligned}$$

holds for every $x \in X$. Therefore, we have

$$|g(x)| \leq \frac{2\varepsilon}{|\lambda|}u_0 + |\theta_x(u_0)|$$
$$\leq \left\{\frac{3\varepsilon}{|\lambda|} + M\right\}u_0$$

for every $x \in X$. That is, g is bounded on X and this completes the proof.

Next we consider a differentiable map from I to $C_0(X, \mathbb{R})$. The function g need not vanish at infinity, but for a suitable constant c we have $g + c \in C_0(X, \mathbb{R})$.

LEMMA 2.4. Let f be a differentiable map from I to $C_0(X, \mathbf{R})$ with the inequality

$$\|f'(t) - \lambda f(t)\|_{\infty} \le \varepsilon \quad (t \in I).$$

Then $g_0 = g + \alpha \varepsilon / \lambda$ vanishes at infinity, where $\alpha = \inf J$.

PROOF. By Note 2.1, it is enough to consider the case where $\varepsilon > 0$. In this case, assume to the contrary that g_0 does not vanish at infinity. That is, there exists a $\delta_0 > 0$ with the following property:

For every compact subset K in X, there exists a $y \in X \setminus K$ such that $|g_0(y)| \ge \delta_0$.

Since $\alpha = \inf J$, we can choose a $u_0 \in J$ with

(7)
$$u_0 < \alpha + \frac{|\lambda|\delta_0}{8\varepsilon}.$$

Let $t_0 = -\lambda^{-1} \log u_0 \in I$. Since $f(t_0) \in C_0(X, \mathbb{R})$, there corresponds a compact subset K_0 in X such that

$$|f(t_0)(x)| < \frac{\delta_0}{4} e^{\lambda t_0}$$

holds for every $x \in X \setminus K_0$. Hence,

(8)
$$|\theta_x(u_0) + \frac{\varepsilon}{\lambda} u_0| < \frac{\delta_0}{4} \quad (x \in X \setminus K_0).$$

By hypothesis, there exists a $y \in X \setminus K_0$ such that

$$|g_0(y)| \ge \delta_0.$$

That is,

(9)
$$\left|g(y) + \frac{\alpha \varepsilon}{\lambda}\right| \ge \delta_0.$$

By the definition of the function g, we have

(10)
$$|g(y) - \theta_y(v_0)| < \frac{\delta_0}{4}$$

for some $v_0 \in J$ with $v_0 < u_0$. By the inequalities (7), (8), (9) and (10), we have

$$\begin{split} \delta_0 &\leq \left| g(y) + \frac{\alpha \varepsilon}{\lambda} \right| \\ &\leq \left| g(y) - \theta_y(v_0) \right| + \left| \theta_y(v_0) - \theta_y(u_0) \right| \\ &+ \left| \theta_y(u_0) + \frac{\varepsilon}{\lambda} u_0 \right| + \frac{\varepsilon}{|\lambda|} |\alpha - u_0| \\ &< \left| \theta_y(v_0) - \theta_y(u_0) \right| + \frac{3}{4} \delta_0 \,. \end{split}$$

Therefore, we obtain the following inequality.

(11)
$$|\theta_y(v_0) - \theta_y(u_0)| > \frac{\delta_0}{4}.$$

By the mean value theorem, there exists a $w \in (v_0, u_0)$ such that

$$\theta_y'(w) = \frac{\theta_y(v_0) - \theta_y(u_0)}{v_0 - u_0}.$$

Then we have the following inequality

$$-\lambda \theta_y'(w) > -\frac{|\lambda|\delta_0}{4(v_0-u_0)} > \frac{|\lambda|\delta_0}{4(u_0-\alpha)},$$

by (11), whether λ is positive or negative. On the other hand, we have

$$\frac{|\lambda|\delta_0}{u_0-\alpha}>8\varepsilon$$

by the inequality (7). Therefore, we obtain the inequality $-\lambda \theta'_y(w) > 2\varepsilon$. We arrived at a contradiction, since $0 \le -\lambda \theta'_y(w) \le 2\varepsilon$. We have proved that g_0 vanishes at infinity. \Box

THEOREM 2.5. Let f be a differentiable map from I to $C_0(X, \mathbf{R})$ with the inequality

$$\|f'(t) - \lambda f(t)\|_{\infty} \le \varepsilon \quad (t \in I).$$

Then $g_0 = g + \alpha \varepsilon / \lambda$ is an element of $C_0(X, \mathbf{R})$ with

$$\|f(t)-e^{\lambda t}g_0\|_{\infty}\leq \frac{4\varepsilon}{|\lambda|}\quad (t\in I),$$

where $\alpha = \inf J$.

PROOF. By Lemma 2.2 and Lemma 2.4, g_0 is an element of $C_0(X, \mathbf{R})$. Since $\alpha = \inf J \leq e^{-\lambda t}$ holds for every $t \in I$, we have

$$\begin{split} \|f(t) - e^{\lambda t} g_0\|_{\infty} &\leq \|f(t) - e^{\lambda t} g\|_{\infty} + \frac{\varepsilon}{|\lambda|} \alpha e^{\lambda t} \\ &\leq \frac{\varepsilon}{|\lambda|} (3 + \alpha e^{\lambda t}) \\ &\leq \frac{4\varepsilon}{|\lambda|} \quad (t \in I) \,. \end{split}$$

This completes the proof.

COROLLARY 2.6. Let f be a differentiable map from **R** to $C(X, \mathbf{R})$ with the inequality

$$\|f'(t) - \lambda f(t)\|_{\infty} \leq \varepsilon \quad (t \in \mathbf{R}).$$

Suppose that the inequality

$$\|f(t) - e^{\lambda t}h\|_{\infty} \le k\varepsilon \quad (t \in \mathbf{R})$$

holds for some $h \in C(X, \mathbb{R})$ and some $k \ge 0$, then g = h holds. In particular, if f is a map from \mathbb{R} to $C_0(X, \mathbb{R})$ then g itself is an element of $C_0(X, \mathbb{R})$ and g = h holds, if h belongs to $C(X, \mathbb{R})$ which satisfies the inequality above.

PROOF. By Theorem 2.3, g belongs to $C(X, \mathbf{R})$ and the inequality

$$\|f(t) - e^{\lambda t}g\|_{\infty} \le \frac{3\varepsilon}{|\lambda|} \quad (t \in \mathbf{R})$$

holds. We show that g = h, if

$$\|f(t) - e^{\lambda t}h\|_{\infty} \leq k\varepsilon \quad (t \in \mathbf{R}).$$

In fact,

$$\|g - h\|_{\infty} \leq \|g - e^{-\lambda t} f(t)\|_{\infty} + \|e^{-\lambda t} f(t) - h\|_{\infty}$$
$$\leq \left\{\frac{3}{|\lambda|} + k\right\} \varepsilon e^{-\lambda t} \quad (t \in \mathbf{R}).$$

Note that $e^{-\lambda t} \to 0$ as $t \to \infty$ if $\lambda > 0$, and $e^{-\lambda t} \to 0$ as $t \to -\infty$ if $\lambda < 0$. In any case g = h holds. In particular, if f is a map from **R** to $C_0(X, \mathbf{R})$, then g is an element of $C_0(X, \mathbf{R})$ since $g + \alpha \varepsilon / \lambda$ belongs to $C_0(X, \mathbf{R})$ and since $\alpha = 0$, where $\alpha = \inf J$. In a way similar to the above, we have g = h, if h is an element of $C(X, \mathbf{R})$ with $||f(t) - e^{\lambda t}h||_{\infty} \le k\varepsilon$ for some $k \ge 0$. This completes the proof.

474

Finally we consider a differentiable map f from I to $C(X, \mathbb{C})$. Since f(t) is an element of $C(X, \mathbb{C})$ for every $t \in I$, we can write

$$f(t) = \operatorname{Re}\{f(t)\} + i\operatorname{Im}\{f(t)\},\$$

where $\operatorname{Re}\{f(t)\}\$ and $\operatorname{Im}\{f(t)\}\$ denote the real part of f(t) and the imaginary part of f(t), respectively. Let $\operatorname{Re} f$ and $\operatorname{Im} f$ be the maps from I to $C(X, \mathbb{R})$ defined by

$$(\operatorname{Re} f)(t) = \operatorname{Re}\{f(t)\}, \quad (\operatorname{Im} f)(t) = \operatorname{Im}\{f(t)\} \mid (t \in I).$$

If we apply Theorem 2.3, Theorem 2.5 and Corollary 2.6 to Re f and Im f, then we obtain the following Corollaries.

COROLLARY 2.7. Let f be a differentiable map from I to $C(X, \mathbb{C})$ with the inequality

$$\|f'(t) - \lambda f(t)\|_{\infty} \le \varepsilon \quad (t \in I).$$

Then there exists a $\tilde{g} \in C(X, \mathbb{C})$ such that

$$\|f(t) - e^{\lambda t} \tilde{g}\|_{\infty} \le \frac{3\sqrt{2\varepsilon}}{|\lambda|} \quad (t \in I).$$

COROLLARY 2.8. Let f be a differentiable map from I to $C_0(X, \mathbb{C})$ with the inequality

 $\|f'(t) - \lambda f(t)\|_{\infty} \le \varepsilon \quad (t \in I).$

Then there exists a $\tilde{g}_0 \in C_0(X, \mathbb{C})$ such that

$$\|f(t) - e^{\lambda t} \tilde{g}_0\|_{\infty} \le \frac{4\sqrt{2}\varepsilon}{|\lambda|} \quad (t \in I) \,.$$

COROLLARY 2.9. Let f be a differentiable map from **R** to $C(X, \mathbb{C})$ with the inequality

$$\|f'(t) - \lambda f(t)\|_{\infty} \leq \varepsilon \quad (t \in \mathbf{R}).$$

Then there exists a unique function $\tilde{g} \in C_0(X, \mathbb{C})$ such that

$$\|f(t) - e^{\lambda t} \tilde{g}\|_{\infty} \leq \frac{4\sqrt{2}\varepsilon}{|\lambda|} \quad (t \in \mathbf{R}).$$

ACKNOWLEDGEMENT. This paper owes much to the thoughtful and helpful comments of Professors Osamu Hatori and Keiichi Watanabe. The second author is partly supported by the Grants-in-Aid for Scientific Research, The Ministry of Education, Science, Sports and Culture, Japan (10640150).

References

[1] C. ALSINA and R. GER, On some inequalities and stability results related to the exponential function, J. of Inequal. & Appl. 2 (1998), 373-380.

Present Addresses: TAKESHI MIURA DEPARTMENT OF BASIC TECHNOLOGY, APPLIED MATHEMATICS AND PHYSICS, YAMAGATA UNIVERSITY, YONEZAWA, 992–8510 JAPAN. *e-mail*: miura@dip.yz.yamagata-u.ac.jp

SIN-EI TAKAHASI DEPARTMENT OF BASIC TECHNOLOGY, APPLIED MATHEMATICS AND PHYSICS, YAMAGATA UNIVERSITY, YONEZAWA, 992–8510 JAPAN. *e-mail*: sin-ei@emperor.yz.yamagata-u.ac.jp

HISASHI CHODA DIVISION OF MATHEMATICAL SCIENCES, OSAKA KYOIKU UNIVERSITY, KASHIWARA, OSAKA, 582–8582 JAPAN. *e-mail*: choda@cc.osaka-kyoiku.ac.jp