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Abstract. We consider a differentiable map $f$ from an open interval to a real Banach space of all bounded
continuous real-valued functions on a topological space. We show that $f$ can be approximated by the solution to the
differential equation $x^{\prime}(t)=\lambda x(t)$ , if $||f^{\prime}(t)-\lambda f(t)||\infty\leq\epsilon$ holds

1. Introduction.

In this paper, $I$ denotes an open interval of $R$, the real number field. We consider not
only bounded intervals but also unbounded one. That is,

$I=(a, b)$ , $-\infty\leq a<b\leq\infty$ .
The letters $\epsilon$ and $\lambda$ stand non-negative real number and non-zero real number, respectively.
We define $J=\{e^{-\lambda t} : t\in I\}$ .

DEFINITION 1.1. Let $A$ be a Banach space, $f$ a map from I to A. We say that $f$ is
differentiable, iffor every $t\in I$ there exists an $f^{\prime}(t)\in A$ such that

$\lim_{s\rightarrow 0}\Vert\frac{f(t+s)-f(t)}{s}-f^{\prime}(t)\Vert_{A}=0$ ,

where $\Vert\cdot||A$ denotes the norm on A. We call the map $f^{\prime}$ : $I\rightarrow A$ the derivative of $f$ .
By definition, $f$ is differentiable if and only if $f$ is Fr\’echet differentiable at each point of

I. While Fr\’echet derivative and our one differ from each other at first glance, we can identify
them since $L_{t}(1)=f^{\prime}(t)$ holds, where $L_{t}$ denotes the Fr\’echet derivative for $f$ at $t$ .

Alsina and Ger [1] proved the following results in case where $\lambda=1$ . In a way similar to
the proofs in [1], we obtain the following Propositions and the proofs are omitted.

PROPOSITION 1.1. Let $f$ be a real-valued differentiable function on I. Then the fol-
lowing conditions are equivalent.

(i) $|f^{\prime}(t)-\lambda f(t)|\leq\epsilon$ holdsfor every $t\in I$ .
(ii) There exists a real-valued differentiable function $\theta$ on $J$ such that

$ 0\leq-\lambda\theta^{\prime}(u)\leq 2\epsilon$ $(u\in J)$ ,
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$f(t)=\frac{\epsilon}{\lambda}+\theta(e^{-\lambda t})e^{\lambda t}$ $(t\in I)$ .
NOTE 1.1. By the mean value theorem, the function $\theta$ in the condition (ii) is a $2\epsilon/|\lambda|-$

lipschitz function. That is,

$|\theta(u)-\theta(v)|\leq\frac{2\epsilon}{|\lambda|}|u-v|$

holds for every $u,$ $v\in J$ .
Here and after $\lim_{u\searrow s}$ denotes the right limit.

PROPOSITION 1.2. Let $f$ be a real-valued differentiablefiunction on I. Ifthe inequal-
$ity$

$|f^{\prime}(t)-\lambda f(t)|\leq\epsilon$

holdsfor every $t\in I$ , then $\lim_{u\searrow\inf J}\theta(u)$ exists and

$|f(t)-\{\lim_{u\searrow\inf J}\theta(u)\}e^{\lambda t}|\leq\frac{3\epsilon}{|\lambda|}$

holdsfor every $t\in I$ , where $\theta$ is thefunction given in Proposition 1.1.

Proposition 1.2 states that $f$ can be approximated by the solution $ce^{\lambda t}$ to the differential
equation $x^{\prime}(t)=\lambda x(t)$ , if $|f^{\prime}(t)-\lambda f(t)|\leq\epsilon$ holds for every $t\in I$ . According to [1], we
call the stability in the sense of Proposition 1.2 the Hyers-Ulam stability.

In this paper, $X$ denotes a topological space. Let $C$ be the complex number field and
$F\in\{R, C\}$ . We write $C(X, F)$ for the Banach space of all bounded continuous F-valued
functions on $X$ and $C_{0}(X, F)$ for the Banach space of all functions of $C(X, F)$ which vanish
at infinity, in the following sense:

$f$ vanishes at infinity if and only if for every $\delta>0$ there exists a compact
subset $K$ in $X$ such that $|f(x)|<\delta$ holds for every $x\in X\backslash K$ .

We consider a differentiable map $f$ from $I$ to $C(X, R)$ (resp. $C_{0}(X,$ $R)$ ) with the in-
equality $\Vert f^{\prime}(t)-\lambda f(t)\Vert_{\infty}\leq\epsilon$ , where $\Vert\cdot\Vert_{\infty}$ denotes the supremum norm on $X$ . Then we
show that the Hyers-Ulam stability holds for $f$ . That is, $f$ can be approximated by the solu-
tion $e^{\lambda t}g$ to the differential equation $x^{\prime}(t)=\lambda x(t)$ for some $g\in C(X, R)$ (resp. $C_{0}(X,$ $R)$ ).

As a corollary, we obtain the Hyers-Ulam stability of a certain differentiable map from $I$ to
$C(X, C)$ .

To prove the Hyers-Ulam stability of the map $f$ from $I$ to $C(X, R)$ with the inequality
$\Vert f^{\prime}(t)-\lambda f(t)\Vert_{\infty}\leq\epsilon$ , let us consider for every $x\in X$ the function $f_{X}$ from $I$ to $R$ defined
by

$f_{X}(t)=f(t)(x)$ $(t\in I)$ .
Then $f_{X}$ is a real-valued differentiable function on $I$ with the equality

$f_{X}^{\prime}(t)=f^{\prime}(t)(x)$

for each $x\in X$ and each $t\in I$ . Therefore, we have the inequality

$|f_{X}^{\prime}(t)-\lambda f_{X}(t)|\leq\epsilon$ $(x\in X, t\in I)$ .
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Thus by Proposition 1.1, for every $x\in X$ there exists a real-valued differentiable function $\theta_{X}$

on $J$ such that
$ 0\leq-\lambda\theta_{x}^{\prime}(u)\leq 2\epsilon$ $(u\in J)$ , $f_{x}(t)=\frac{\epsilon}{\lambda}+\theta_{X}(e^{-\lambda t})e^{\lambda t}$ $(t\in I)$ .

By Proposition 1.2 the function

$g(x)=\lim_{u\searrow\inf J}\theta_{X}(u)$

is well-defined and the inequality

$|f_{X}(t)-e^{\lambda t}g(x)|\leq\frac{3\epsilon}{|\lambda|}$ $(t\in I)$

holds for every $x\in X$ . The function $g$ obtained above plays an important role in this paper.
From now on, $\theta_{X}$ denotes the real-valued differentiable function on $J$ with

$ 0\leq-\lambda\theta_{X}^{\prime}(u)\leq 2\epsilon$ $(u\in J)$ , $f(t)(x)=\frac{\epsilon}{\lambda}+\theta_{X}(e^{-\lambda t})e^{\lambda t}$ $(t\in I)$

for every $x\in X$ , if $f$ is a differentiable map from $I$ to $C(X, R)$ with the inequality
$||f^{\prime}(t)-\lambda f(t)||_{\infty}\leq\epsilon$

for every $t\in I$ . Moreover, $g$ stands for the function defined by

$g(x)=\lim_{u\searrow\inf J}\theta_{X}(u)$
$(x\in X)$

which satisfies the inequality

$||f(t)-e^{\lambda t}g||_{\infty}\leq\frac{3\epsilon}{|\lambda|}$ $(t\in I)$ .

2. Main results.

Before we tum to our main theorem, we consider a differential equation $x^{\prime}(t)=\lambda x(t)$

for a differentiable map $x$ from $I$ to a Banach space. While the following proposition is
well-known, we give a proof.

PROPOSITION 2.1. Let $A$ be a real (resp. complex) Banach space, $f$ a differentiable
mapfrom I to A. If $\mu\in R\backslash \{0\}$ (resp. $\mu\in C\backslash \{0\}$), the following conditions are equivalent.

(i) $f^{\prime}(t)=\mu f(t)$ holdsfor every $t\in I$ .
(ii) There exists an $h\in A$ such that $f(t)=e^{\mu t}h(t\in I)$ .
PROOF. $(ii)\Rightarrow(i)$ By definition, it is clear and a proof is omitted.
$(i)\Rightarrow(ii)$ We define $h(t)=e^{-\mu t}f(t)$ for every $t\in I$ . Then $h$ is differentiable and the

equality
$h^{\prime}(t)=\{-\mu f(t)+f^{\prime}(t)\}e^{-\mu t}=0$

holds for every $t\in I$ , by hypothesis. We show that $h$ is a constant map. In fact, fix any $t_{0}\in I$

and put
$h_{0}(t)=h(t)-h(t_{0})$ $(t\in I)$ .
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Let $A^{*}$ be the dual space of $A$ . For every $\Lambda\in A^{*}$ the composed function $\Lambda\circ h_{0}$ from $I$ to $C$

is differentiable and the equality
$(\Lambda oh_{0})^{\prime}(t)=$ A $(h_{0}^{\prime}(t))=0$

holds for every $t\in I$ , since $\Lambda$ is bounded linear and since $h_{0}^{\prime}(t)=0$ . Therefore, for every
$A\in A^{*}$ there exists a $c_{\Lambda}\in C$ such that $\Lambda(h_{0}(t))=c_{\Lambda}$ holds for every $t\in I$ . We have
$c_{\Lambda}=\Lambda(h_{0}(t_{0}))=0$ , since $h_{0}(t_{0})=0$ . By the Hahn-Banach theorem, $h_{0}(t)=0$ holds for
every $t\in I$ . Hence $h$ is a constant map. If we write $h(t)=h$ , we have $f(t)=e^{\mu t}h$ . This
completes the proof. $\square $

NOTE 2.1. Let $f$ be a differentiable map from $I$ to $C(X, R)$ (resp. $C_{0}(X,$ $R)$ ) with

$||f^{\prime}(t)-\lambda f(t)\Vert_{\infty}\leq\epsilon$ $(t\in I)$ .
If we consider the case where $\epsilon=0$ , then $g$ coincides with the function $h$ in Proposition 2.1
in case where $A=C(X, R)$ (resp. $C_{0}(X,$ $R)$ ). In fact, suppose that the inequality above holds
for $\epsilon=0$ . On one hand, there exists an $h\in C(X, R)$ (resp. $C_{0}(X,$ $R)$ ) such that $f(t)=e^{\lambda t}h$

for every $t\in I$ , by Proposition 2.1. On the other hand, we can write
$f(t)(x)=\theta_{X}(e^{-\lambda t})e^{\lambda t}$

for every $t\in I$ and every $x\in X$ . Therefore, we have
$h(x)=\theta_{X}(e^{-\lambda t})$ $(x\in X, t\in I)$ .

By the definition of the function $g$ ,

$g(x)=\lim_{u\searrow\inf J}\theta_{X}(u)=h(x)$

holds for every $x\in X$ . Hence, $g=h$ holds if $\epsilon=0$ . In particular, $g$ is an element of $C(X, R)$

(resp. $C_{0}(X,$ $R)$), if $\epsilon=0$ .
LEMMA 2.2. Let $f$ be a differentiable mapfrom I to $C(X, R)$ with the inequality

$||f^{\prime}(t)-\lambda f(t)||_{\infty}\leq\epsilon$ $(t\in I)$ .
Then $g$ is continuous on $X$ .

PROOF. By Note 2.1, it is enough to consider the case where $\epsilon>0$ . Suppose that $g$

is not continuous on $X$ . Then there exist an $x_{0}\in X$ and an $\eta_{0}>0$ such that for every open
neighbourhood $V$ of $x_{0}$ there corresponds a $z\in V$ with

$|g(x_{0})-g(z)|\geq\eta_{0}$ .
Since $g(x_{0})=\lim_{u\searrow\inf J}\theta_{x0}(u)$ , there exists a $u_{0}\in J$ such that

$|g(x_{0})-\theta_{x0}(u)|<\frac{\eta_{0}}{4}$ $(u\in J : u<u_{0})$ .

Put $\alpha=\inf J$ , and choose $u_{1}\in J$ with $u_{1}<\min\{u_{0}, \alpha+|\lambda|\eta_{0}/8\epsilon\}$ . Then we have

(1) $|g(x_{0})-\theta_{x0}(u_{1})|<\frac{\eta_{0}}{4}$
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(2) $u_{1}<\alpha+\frac{|\lambda|\eta_{0}}{8\epsilon}$ .

Since $x\vdash*\theta_{X}(u_{1})$ is continuous function on $X$ , there exists an open neighbourhood $W_{0}$ of $x_{0}$

such that

(3) $|\theta_{x0}(u_{1})-\theta_{y}(u_{1})|<\frac{\eta_{0}}{4}$ $(y\in W_{0})$ .

By hypothesis, there corresponds a $z\in W_{0}$ with

(4) $|g(x_{0})-g(z)|\geq\eta_{0}$ .
In a way similar to the inequality (1), we obtain

(5) $|g(z)-\theta_{z}(u_{2})|<\frac{\eta_{0}}{4}$

for some $u_{2}\in J$ with $u_{2}<u_{1}$ . By (1), (3), (4) and (5), we have

$\eta 0\leq|g(z)-g(x_{0})|$

$\leq|g(z)-\theta_{z}(u_{2})|+|\theta_{z}(u_{2})-\theta_{z}(u_{1})|$

$+|\theta_{z}(u_{1})-\theta_{x0}(u_{1})|+|\theta_{x0}(u_{1})-g(x_{0})|$

$\leq|\theta_{z}(u_{2})-\theta_{l}(u_{1})|+\frac{3}{4}\eta_{0}$ .

That is, we obtain the inequality

(6) $|\theta_{z}(u_{2})-\theta_{z}(u_{1})|\geq\frac{\eta 0}{4}$

By the mean value theorem, there exists a $v\in(u_{2}, u_{1})$ such that

$\theta_{z}^{\prime}(v)=\frac{\theta_{z}(u_{2})-\theta_{z}(u_{1})}{u_{2}-u_{1}}$ .

On one hand, we have

$-\lambda\theta_{z}^{\prime}(v)\geq-\frac{|\lambda|\eta_{0}}{4(u_{2}-u_{1})}>\frac{|\lambda|\eta_{0}}{4(u_{1}-\alpha)}$

by the inequality (6), whether $\lambda$ is positive or negative. On the other hand, the inequality

$\frac{|\lambda|\eta_{0}}{u_{1}-\alpha}>8\epsilon$

holds by (2). Therefore, we have the inequality

$-\lambda\theta_{z}^{\prime}(v)>2\epsilon$ .

This contradicts with $ 0\leq-\lambda\theta_{z}^{\prime}(v)\leq 2\epsilon$ . Thus we proved that $g$ is continuous on X. $\square $

We obtain the Hyers-Ulam stability of a differentiable map from $I$ to $C(X, R)$ .
THEOREM 2.3. Let $f$ be a differentiable mapfrom I to $C(X, R)$ with the inequality

$||f^{\prime}(t)-\lambda f(t)||_{\infty}\leq\epsilon$ $(t\in I)$ .
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Then $g$ is an element of $C(X, R)$ with

$||f(t)-e^{\lambda t}g||_{\infty}\leq\frac{3\epsilon}{|\lambda|}$ $(t\in I)$ .

PROOF. By Lemma 2.2, $g$ is continuous. Therefore, it is enough to show that $g$ is
bounded on $X$ . In fact, fix any element $u0\in J$ . Since $\theta_{X}$ is $2\epsilon/|\lambda|$ -lipschitz,

$|\theta_{X}(u)-\theta_{X}(u_{0})|\leq\frac{2\epsilon}{|\lambda|}|u-u_{0}|$

holds for every $x\in X$ and every $u\in J$ . Therefore, we have the inequality

$|g(x)-\theta_{X}(u_{0})|=\lim_{u\searrow\inf J}|\theta_{X}(u)-\theta_{x}(u_{0})|$

$ 2\epsilon$

$\leq\overline{|\lambda|}u_{0}$

$(x\in X)$ .

Put $t_{0}=-\lambda^{-1}\log u_{0}\in I$ . Since $f(t_{0})$ is bounded on $X$ , there exists an $M>0$ such that
$|f(t_{0})(x)|\leq M$ holds for every $x\in X$ . By the definition of the function $\theta_{X}$ ,

$|\theta_{X}(e^{-\lambda t_{0}})|=|\{f(t_{0})(x)-\frac{\epsilon}{\lambda}\}e^{-\lambda t_{0}}|$

$\leq\{M+\frac{\epsilon}{|\lambda|}\}e^{-\lambda t_{0}}$

holds for every $x\in X$ . Therefore, we have

$|g(x)|\leq\frac{2\epsilon}{|\lambda|}u_{0}+|\theta_{X}(u_{0})|$

$\leq\{\frac{3\epsilon}{|\lambda|}+M\}u_{0}$

for every $x\in X$ . That is, $g$ is bounded on $X$ and this completes the proof. $\square $

Next we consider a differentiable map from $I$ to $C_{0}(X, R)$ . The function $g$ need not

vanish at infinity, but for a suitable constant $c$ we have $g+c\in C_{0}(X, R)$ .

LEMMA 2.4. Let $f$ be a differentiable map from I to $Co(X, R)$ with the inequality

$||f^{\prime}(t)-\lambda f(t)||_{\infty}\leq\epsilon$ $(t\in I)$ .

Then $ g_{0}=g+\alpha\epsilon/\lambda$ vanishes at infinity, where $\alpha=\inf J$ .

PROOF. By Note 2.1, it is enough to consider the case where $\epsilon>0$ . In this case,

assume to the contrary that go does not vanish at infinity. That is, there exists a $\delta_{0}>0$ with

the following property:

For every compact subset $K$ in $X$ , there exists a $y\in X\backslash K$ such that $|g_{0}(y)|\geq\delta_{0}$ .

Since $\alpha=\inf J$ , we can choose a $u0\in J$ with

(7) $u_{0}<\alpha+\frac{|\lambda|\delta_{0}}{8\epsilon}$ .
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Let $t_{0}=-\lambda^{-1}\log u_{0}\in I$ . Since $f(t_{0})\in C_{0}(X, R)$ , there corresponds a compact subset $K_{0}$

in $X$ such that
$|f(t_{0})(x)|<\frac{\delta_{0}}{4}e^{\lambda t_{0}}$

holds for every $x\in X\backslash K_{0}$ . Hence,

(8) $|\theta_{X}(u_{0})+\frac{\epsilon}{\lambda}u_{0}|<\frac{\delta_{0}}{4}$ $(x\in X\backslash K_{0})$ .
By hypothesis, there exists a $y\in X\backslash K_{0}$ such that

$|g_{0}(y)|\geq\delta_{0}$ .
That is,

(9) $|g(y)+\frac{\alpha\epsilon}{\lambda}|\geq\delta_{0}$ .
By the definition of the function $g$ , we have

(10) $|g(y)-\theta_{y}(v_{0})|<\frac{\delta_{0}}{4}$

for some $v_{0}\in J$ with $v_{0}<u_{0}$ . By the inequalities (7), (8), (9) and (10), we have

$\delta_{0}\leq|g(y)+\frac{\alpha\epsilon}{\lambda}|$

$\leq|g(y)-\theta_{y}(v_{0})|+|\theta_{y}(v_{0})-\theta_{y}(u_{0})|$

$+|\theta_{y}(u_{0})+\frac{\epsilon}{\lambda}u_{0}|+\frac{\epsilon}{|\lambda|}|\alpha-u_{0}|$

$<|\theta_{y}(v_{0})-\theta_{y}(u_{0})|+\frac{3}{4}\delta_{0}$ .
Therefore, we obtain the following inequality.

(11) $|\theta_{y}(v_{0})-\theta_{y}(u_{0})|>\frac{\delta_{0}}{4}$

By the mean value theorem, there exists a $w\in(v_{0}, u_{0})$ such that

$\theta_{y}^{\prime}(w)=\frac{\theta_{y}(v_{0})-\theta_{y}(u_{0})}{v_{0}-u_{0}}$

Then we have the following inequality

$-\lambda\theta_{y}^{\prime}(w)>-\frac{|\lambda|\delta_{0}}{4(v_{0}-u_{0})}>\frac{|\lambda|\delta_{0}}{4(u_{0}-\alpha)}$

by (11), whether $\lambda$ is positive or negative. On the other hand, we have

$\frac{|\lambda|\delta_{0}}{u_{0}-\alpha}>8\epsilon$ ,

by the inequality (7). Therefore, we obtain the $inequality-\lambda\theta_{y}^{\prime}(w)>2\epsilon$ . We arnived at a
contradiction, since $ 0\leq-\lambda\theta_{y}^{\prime}(w)\leq 2\epsilon$ . We have proved that go vanishes at infinity. $\square $

THEOREM 2.5. Let $f$ be a differentiable mapfrom I to $C_{0}(X, R)$ with the inequality
$\Vert f^{\prime}(t)-\lambda f(t)\Vert_{\infty}\leq\epsilon$ $(t\in I)$ .
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Then $ go=g+\alpha\epsilon/\lambda$ is an element of $C_{0}(X, R)$ with

$\Vert f(t)-e^{\lambda t}g_{0}\Vert_{\infty}\leq\frac{4\epsilon}{|\lambda|}$ $(t\in I)$ ,

where $\alpha=\inf J$ .
PROOF. By Lemma 2.2 and Lemma 2.4, go is an element of $C_{0}(X, R)$ . Since $\alpha=$

$\inf J\leq e^{-\lambda t}$ holds for every $t\in I$ , we have

$\Vert f(t)-e^{\lambda t}g_{0}\Vert_{\infty}\leq||f(t)-e^{\lambda t}g\Vert_{\infty}+\frac{\epsilon}{|\lambda|}\alpha e^{\lambda t}$

$\leq\frac{\epsilon}{|\lambda|}(3+\alpha e^{\lambda t})$

$\leq\frac{4\epsilon}{|\lambda|}$ $(t\in I)$ .

This completes the proof.

COROLLARY 2.6. Let $f$ be a differentiable mapfrom $R$ to $C(X, R)$ with the inequality

$||f^{\prime}(t)-\lambda f(t)||_{\infty}\leq\epsilon$ $(t\in R)$ .

Suppose that the inequality

$\Vert f(t)-e^{\lambda t}h\Vert_{\infty}\leq k\epsilon$ $(t\in R)$

holds for some $h\in C(X, R)$ and some $k\geq 0$ , then $g=h$ holds. In particular, if $f$ is a map

from $R$ to $C_{0}(X, R)$ then $g$ itself is an element of $C_{0}(X, R)$ and $g=h$ holds, if $h$ belongs to

$C(X, R)$ which satisfies the inequality above.

PROOF. By Theorem 2.3, $g$ belongs to $C(X, R)$ and the inequality

$\Vert f(t)-e^{\lambda t}g\Vert_{\infty}\leq\frac{3\epsilon}{|\lambda|}$ $(t\in R)$

holds. We show that $g=h$ , if

$||f(t)-e^{\lambda t}h||_{\infty}\leq k\epsilon$ $(t\in R)$ .

In fact,

$||g-h||_{\infty}\leq||g-e^{-\lambda t}f(t)||_{\infty}+||e^{-\lambda t}f(t)-h\Vert_{\infty}$

$\leq t^{\frac{3}{|\lambda|}+k}I^{\epsilon e^{-\lambda t}}$ $(t\in R)$ .

Note that $e^{-\lambda t}\rightarrow 0$ as $ t\rightarrow\infty$ if $\lambda>0$ , and $e^{-\lambda t}\rightarrow 0$ as $ t\rightarrow-\infty$ if $\lambda<0$ . In any
case $g=h$ holds. In particular, if $f$ is a map from $R$ to $C_{0}(X, R)$ , then $g$ is an element of
$C_{0}(X, R)$ since $ g+\alpha\epsilon/\lambda$ belongs to $C_{0}(X, R)$ and since $\alpha=0$, where $\alpha=\inf J$ . In a way
similar to the above, we have $g=h$ , if $h$ is an element of $C(X, R)$ with $||f(t)-e^{\lambda t}h\Vert_{\infty}\leq k\epsilon$

for some $k\geq 0$ . This completes the proof.
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Finally we consider a differentiable map $f$ from $I$ to $C(X, C)$ . Since $f(t)$ is an element
of $C(X, C)$ for every $t\in I$ , we can write

$f(t)={\rm Re}\{f(t)\}+i{\rm Im}\{f(t)\}$ ,

where ${\rm Re}\{f(t)\}$ and ${\rm Im}\{f(t)\}$ denote the real part of $f(t)$ and the imaginary part of $f(t)$ ,

respectively. Let ${\rm Re} f$ and ${\rm Im} f$ be the maps from $I$ to $C(X, R)$ defined by

$({\rm Re} f)(t)={\rm Re}\{f(t)\}$ , $({\rm Im} f)(t)={\rm Im}\{f(t)\}$ $(t\in I)$ .

If we apply Theorem 2.3, Theorem 2.5 and Corollary 2.6 to ${\rm Re} f$ and ${\rm Im} f$ , then we obtain the
following Corollaries.

COROLLARY 2.7. Let $f$ be a differentiable mapfrom I to $C(X, C)$ with the inequality

$\Vert f^{\prime}(t)-\lambda f(t)\Vert_{\infty}\leq\epsilon$ $(t\in I)$ .

Then there exists a $\tilde{g}\in C(X, C)$ such that

$\Vert f(t)-e^{\lambda t}\tilde{g}\Vert_{\infty}\leq\frac{3\sqrt{2}\epsilon}{|\lambda|}$ $(t\in I)$ .

COROLLARY 2.8. Let $f$ be a differentiable mapfrom I to $C_{0}(X, C)$ with the inequal-
ity

$\Vert f^{\prime}(t)-\lambda f(t)\Vert_{\infty}\leq\epsilon$ $(t\in I)$ .

Then there exists a $\tilde{g}_{0}\in C_{0}(X, C)$ such that

$||f(t)-e^{\lambda t}\tilde{g}_{0}||_{\infty}\leq\frac{4\sqrt{2}\epsilon}{|\lambda|}$ $(t\in I)$ .

COROLLARY 2.9. Let $f$ be a differentiable mapfrom $R$ to $C(X, C)$ with the inequality

$\Vert f^{\prime}(t)-\lambda f(t)\Vert_{\infty}\leq\epsilon$ $(t\in R)$ .

Then there exists a uniquefunction $\tilde{g}\in C_{0}(X, C)$ such that

$\Vert f(t)-e^{\lambda t}\tilde{g}||_{\infty}\leq\frac{4\sqrt{2}\epsilon}{|\lambda|}$ $(t\in R)$ .
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