On a Diophantine Equation Concerning Eisenstein Numbers

Nobuhiro TERAI and Kei TAKAKUWA

Ashikaga Institute of Technology and Gakushuin University

(Communicated by T. Kawasaki)

1. Introduction

In 1956, Jeśmanowicz [J] conjectured that if a, b, c are Pythagorean numbers, i.e., positive integers satisfying $a^2 + b^2 = c^2$, then the Diophantine equation

$$a^x + b^y = c^z$$

has only the positive integral solution (x, y, z) = (2, 2, 2). It has been verified that this conjecture holds for many Pythagorean numbers (cf. Sierpiński [S1], [S2], [TA1], [TA2], [Ta1], [Ta2], [GL] and [Le]). This conjecture, however, is still open.

If a, b, c are positive integers satisfying $a^2 + ab + b^2 = c^2$, we call a, b, c Eisenstein numbers. Eisenstein numbers have some properties similar to those of Pythagorean numbers. As shown in Lemma 1 below, Eisenstein numbers a, b, c can be expressed in terms of positive integers u, v by factoring $a^2 + ab + b^2 = c^2$ in $\mathbf{Q}(\omega)$, where $\omega = e^{2\pi i/3} = (-1 + \sqrt{-3})/2$. It is worth noting that, geometrically, Pythagorean numbers a, b, c are the sides of a right triangle, and that Eisenstein numbers a, b, c are the sides of a triangle with an interior angle $2\pi/3$. See the figures below.

Pythagorean numbers a, b, c.

Eisenstein numbers a, b, c.

As an analogue to Jeśmanowicz' conjecture, we propose the following (cf. Terai [Te1], [Te2]):

CONJECTURE. If a, b, c are fixed positive integers satisfying $a^2 + ab + b^2 = c^2$ with (a, b) = 1, then the Diophantine equation

$$a^{2x} + a^x b^y + b^{2y} = c^z (1)$$

has only the positive integral solution (x, y, z) = (1, 1, 2).

In Sections 3, 4, we show that when a or b is a power of a prime, the Conjecture above holds under some conditions. The proof is based on the results concerning the Diophantine equations of second degree established by using properties of $\mathbb{Q}(\sqrt{-3})$. In Section 5, we also deduce that for Eisenstein numbers a, b, c with $a = p^e q^f$ or $b = p^e q^f$, an upper bound of y or x of equation (1) is derived by applying a result due to Bugeaud [B], which is proved by means of estimates for linear forms in two logarithms.

In Section 6, we verify that the Conjecture holds for all Eisenstein numbers a, b, c with $3 \le a, b \le 100$ and (a, b) = 1.

2. Lemmas.

LEMMA 1. Eisenstein numbers a, b, c with (a, b) = 1 and $a - b \equiv 1 \pmod{3}$ are given as follows:

$$a = u^2 - v^2$$
, $b = v(2u + v)$, $c = u^2 + uv + v^2$, (2)

where u, v are positive integers such that (u, v) = 1, u > v and $u \not\equiv v \pmod{3}$.

PROOF. We have $c^2 = (a - b\omega)(a - b\omega^2)$. Note that $c \not\equiv 0 \pmod{3}$, since $(2a + b)^2 + 3b^2 = 4c^2$ and (a, b) = 1. We claim that $\alpha = a - b\omega$ and $\bar{\alpha} = a - b\omega^2$ are relatively prime in $\mathbb{Z}[\omega]$. Indeed, let π be a prime in $\mathbb{Z}[\omega]$ such that $\pi \mid \alpha$ and $\pi \mid \bar{\alpha}$. Then $\pi \mid \bar{\alpha} - \alpha = b\omega(1 - \omega)$, which implies that $\pi \mid 1 - \omega$, since (a, b) = 1. In view of $3 = -\omega^2(1 - \omega)^2$, we see that $c \equiv 0 \pmod{3}$, which is a contradiction. Hence there are rational integers u, v such that

$$a - b\omega = \varepsilon (u - v\omega)^2,$$

where $\varepsilon = \pm 1$, $\pm \omega$, $\pm \omega^2$, and $c = u^2 + uv + v^2$. We may suppose that $\varepsilon = \pm 1$, because $\omega = \omega^4$. Then $a - b\omega = \pm \{ (u^2 - v^2) - (2uv + v^2)\omega \}$. Therefore it is easy to see that

$$a = u^2 - v^2$$
, $b = v(2u + v)$, $c = u^2 + uv + v^2$,

where u, v are positive integers such that (u, v) = 1, u > v and $u \not\equiv v \pmod{3}$.

We note that

$$a = u^2 - v^2$$
, $b = v(2u + v) \Leftrightarrow a - b \equiv 1 \pmod{3}$.

Indeed, if $a = u^2 - v^2$, b = v(2u + v), then $a - b = u^2 - v^2 - v(2u + v) = (u - v)^2 - 3v^2 \equiv 1 \pmod{3}$, since $u \not\equiv v \pmod{3}$.

REMARK. In the table below, we give all Eisenstein numbers a, b, c with (a, b) = 1, $a - b \equiv 1 \pmod{3}$ and $3 \le a$, $b \le 100$.

TABLE.

a	b	c	a	b	с
3	5	7	35	13	43
5	16	19	40	51	79
7	33	37	45	32	67
8	7	13	55	57	97
9	56	61	63	17	73
11	85	91	65	88	133
16	39	49	77	40	103
24	11	31	80	19	91
24	95	109	91	69	139

LEMMA 2. (1) (Nagell [N1]). The Diophantine equation

$$x^2 + x + 1 = y^n$$

has only the positive integral solution (x, y, n) = (18, 7, 3) with $n \ge 2$.

(2) (Nagell [N2]). The Diophantine equation

$$x^2 + 3 = y^n$$

has only the positive integral solution (x, y, n) = (1, 2, 2) with $n \ge 2$.

(3) (Nagell [N3]). The Diophantine equation

$$3x^2 + 1 = y^n$$

has no positive integral solutions x, y, n with $n \ge 3$.

(4) (Ljunggren [Lj]). The Diophantine equation

$$3x^2 + 1 = 4y^n$$

has no positive integral solutions x, y, n with y > 1 and $n \ge 3$.

For any prime number p, we denote by v_p the standard p-adic valuation over \mathbf{Q}_p , normalized by $v_p(p) = 1$.

LEMMA 3 (Bugeaud [B]). Let p be a prime number. Let $a = a_1/a_2$ and $b = b_1/b_2$ be two irreducible rational numbers satisfying $v_p(a) = v_p(b) = 0$ and put $A = \max\{a_1, a_2, b_1, b_2, 3\}$. If the diophantine equation

$$p^m = ax^n + by^n$$

has positive integral solutions x, y, n with gcd(x, y) = 1 and $n \ge 2$, then we have $n \le 34000 \ p \log p \log A$.

3. The case $a = p^t$ or $b = p^t$ (p: odd prime).

To begin with, we consider the Conjecture when b = v(2u + v) is a power of an odd prime. Then Eisenstein numbers a, b, c can be expressed as follows:

$$a = m^2 - 1$$
, $b = 2m + 1$, $c = m^2 + m + 1$, (3)

where m is a positive integer with $m \not\equiv 1 \pmod{3}$. (Put u = m, v = 1 in (2).) We first prove the following:

PROPOSITION 1. Let m be a positive integer with $m \not\equiv 1 \pmod{3}$. Let a, b, c be fixed positive integers satisfying (3). If equation (1) has positive integral solutions x, y, z, then z is even.

PROOF. Let m = 2. Then we have (a, b, c) = (3, 5, 7). It follows from (1) that z is even. Hence we may suppose that $m \ge 3$. Then we see that x is odd. Indeed, taking (1) modulo m yields $1 + (-1)^x \cdot 1 + 1 \equiv 1 \pmod{m}$, so $(-1)^x \equiv -1 \pmod{m}$. Since $m \ge 3$, x must be odd.

When m is even, let $2^s \parallel m$, where s is a positive integer. Then it follows from (3) that $m \equiv 2^s \pmod{2^{s+1}}$, $a \equiv -1 \pmod{2^{s+1}}$, $b \equiv 1 \pmod{2^{s+1}}$, $c \equiv 2^s + 1 \pmod{2^{s+1}}$. Since x is odd, equation (1) implies that

$$1 + (-1) \cdot 1 + 1 \equiv (2^s + 1)^z \pmod{2^{s+1}}$$
, so $1 \equiv 1 + z2^s \pmod{2^{s+1}}$.

Hence z is even.

When m is odd, let $2^s \parallel m + 1$, where s is a positive integer. Then it follows from (3) that

$$m \equiv 2^{s} - 1 \pmod{2^{s+1}}, \ a \equiv 0 \pmod{2^{s+1}}, \ b \equiv -1 \pmod{2^{s+1}}, \ c \equiv 2^{s} + 1 \pmod{2^{s+1}}.$$
 Equation (1) implies that $1 \equiv 1 + z2^{s} \pmod{2^{s+1}}$. Hence z is even.

THEOREM 1. Let m be a positive integer with $m \not\equiv 1 \pmod{3}$. Let a, b, c be fixed positive integers satisfying (3). Suppose that b is a power of an odd prime. Then equation (1) has only the positive integral solution (x, y, z) = (1, 1, 2).

PROOF. Let (x, y, z) be a solution of (1). Then it follows from Proposition 1 that z is even, say z = 2Z. By Lemma 1, we have

$$a^{x} = U^{2} - V^{2}, \quad b^{y} = V(2U + V), \quad c^{Z} = U^{2} + UV + V^{2},$$
 (E₁)

or

$$a^{x} = V(2U + V), \quad b^{y} = U^{2} - V^{2}, \quad c^{Z} = U^{2} + UV + V^{2},$$
 (E₂)

where U, V are positive integers such that (U, V) = 1, U > V and $U \not\equiv V \pmod{3}$.

First consider (E_1) . Since b is a power of an odd prime and (U, V) = 1, we have $2U + V = b^y$ and V = 1, so

$$U^2 + U + 1 = c^Z$$
.

Now Lemma 2, (1) implies that Z = 1. Then $c = m^2 + m + 1 = U^2 + U + 1$ and so U = m. Therefore we obtain x = 1, y = 1, z = 2.

Next consider (E_2) . Since b is an odd prime power and (U, V) = 1, we have $U + V = b^y$ and U - V = 1, so

$$3(2V+1)^2+1=4c^Z$$
.

Now Lemma 2, (4) implies that Z = 1, 2. We show that the cases Z = 1, 2 do not occur. If Z = 1, then $c = m^2 + m + 1 = 3V^2 + 3V + 1$ and so V < m. Hence $b^y = U^2 - V^2 = 1$

2V + 1 < 2m + 1 = b, which is impossible.

If Z = 2, then it follows from Lemma 1 that

$$U$$
, $V = r^2 - s^2$, $s(2r + s)$; $c = r^2 + rs + s^2$,

where r, s are positive integers such that (r, s) = 1, r > s and $r \not\equiv s \pmod{3}$. Thus we have

$$U+V=r(2s+r)=b^y.$$

Since b is a power of an odd prime and (r, s) = 1, we have $2s + r = b^y$ and r = 1, which is impossible.

We next consider the Conjecture when $a = u^2 - v^2$ is a power of an odd prime. Then Eisenstein numbers a, b, c can be expressed as follows:

$$a = 2m + 1$$
, $b = 3m^2 + 2m$, $c = 3m^2 + 3m + 1$, (4)

where m is a positive integer. (Put u = m + 1, v = m in (2).)

THEOREM 2. Let m be a positive integer. Let a, b, c be fixed positive integers satisfying (4). Suppose that a is a power of an odd prime. Then equation (1) has only the positive integral solution (x, y, z) = (1, 1, 2).

PROOF. The proof of Theorem 2 is similar to that of Theorem 1. \Box

4. The case $a = 2^t$ or $b = 2^t$.

To begin with, we consider the Conjecture when $b(=v(2u+v))=2^t$. Then Eisenstein numbers a, b, c can be expressed as follows:

$$a = 2^{2t-4} - 2^{t-1} - 3$$
, $b = 2^t$, $c = 2^{2t-4} + 3$, (5)

where t is a positive integer with $t \ge 4$. (Put $u = 2^{t-2} - 1$, v = 2 in (2).)

We first show the following:

PROPOSITION 2. Let t be a positive integer with $t \ge 4$. Let a, b, c be fixed positive integers satisfying (5). If equation (1) has positive integral solutions x, y, z, then z is even.

PROOF. Since $t \ge 4$, we have $a \equiv 1 \pmod{4}$, $b \equiv 0 \pmod{4}$, $c \equiv -1 \pmod{4}$. Taking (1) modulo 4 yields $1 \equiv (-1)^z \pmod{4}$, so z is even.

THEOREM 3. Let t be a positive integer with $t \ge 4$. Let a, b, c be fixed positive integers satisfying (5). Then equation (1) has only the positive integral solution (x, y, z) = (1, 1, 2).

PROOF. Let (x, y, z) be a solution of (1). Then it follows from Proposition 2 that z is even, say z = 2Z. By Lemma 1, we have two cases (E_1) , (E_2) as in the proof of Theorem 1.

First consider (E_1) . Then from (5), we have V=2 and $2U+V=2^{ty-1}$, so

$$(U+1)^2+3=c^Z$$
.

Now Lemma 2, (2) implies that Z = 1. Then from (1), we have x = y = 1.

Next consider (E_2) . Then from (5), we have $U + V = 2^{ty-1}$ and U - V = 2, so

$$3(V+1)^2+1=c^Z$$
.

Now Lemma 2, (3) implies that Z = 1, 2. We show that the cases Z = 1, 2 do not occur.

If Z=1, then we have $c\equiv -1\pmod 4$ from (5). On the other hand, since $U\equiv 1\pmod 4$ and $V\equiv -1\pmod 4$, we have $c=c^Z\equiv 1\pmod 4$ from (E_2) . This is impossible. If Z=2, then it follows from Lemma 1 that

$$U + V = r(2s + r)$$
, $c = r^2 + rs + s^2$,

where r, s are positive integers such that (r, s) = 1, r > s and $r \not\equiv s \pmod{3}$. Since $r(2s+r) = 2^{ty-1}$, we have r = 2, $2s+r = 2^{ty-2}$ and so s = 1, t = 4. But this is impossible, since $c = 2^{2t-4} + 3 = r^2 + rs + s^2$.

We next consider the Conjecture when $a = u^2 - v^2 = 2^t$. Then Eisenstein numbers a, b, c can be expressed as follows:

$$a = 2^{t}$$
, $b = 3 \cdot 2^{2t-4} - 2^{t-1} - 1$, $c = 3 \cdot 2^{2t-4} + 1$, (6)

where t is a positive integer with $t \ge 3$. (Put $u + v = 2^{t-1}$, u - v = 2 in (2).)

THEOREM 4. Let t be a positive integer such that $t \ge 3$ and $t \not\equiv 3 \pmod{4}$. Let a, b, c be fixed positive integers satisfying (6). Then equation (1) has only the positive integral solution (x, y, z) = (1, 1, 2).

PROOF. Taking (1) modulo 5 implies that z is even. The proof of Theorem 4 is similar to that of Theorem 3.

5. The case $a = p^e q^f$ or $b = p^e q^f$.

In this section, we consider the Conjecture when $a = p^e q^f$ or $b = p^e q^f$. Then we apply the theory of linear forms in two logarithms to derive an upper bound of y or x of equation (1).

We first prove the following:

PROPOSITION 3. (i) Let a, b, c be fixed positive integers satisfying (2). Suppose that $a = p^e q^f$, where e, f are positive integers, and p, q are odd primes such that $p^e > q^f$ and $q \equiv 5$, 7 (mod 12). If equation (1) has positive integral solutions x, y, z, then z is even.

(ii) Let a, b, c be fixed positive integers satisfying (2). Suppose that $b = p^e q^f$, where e, f are positive integers, and p, q are odd primes such that $p^e > q^f$ and $p \equiv 5$, 7 (mod 12). If equation (1) has positive integral solutions x, y, z, then z is even.

PROOF. (i) Since $a = p^e q^f = u^2 - v^2$ in (2), we have u - v = 1 or $u - v = q^f$. If u - v = 1, then z is even, as in Proposition 1.

If $u - v = q^f$, then $u \equiv v \pmod{q}$ and so $\left(\frac{c}{q}\right) = \left(\frac{3}{q}\right) = -1$ from (2). Now equation (1) implies that z is even.

(ii) Since $b = p^e q^f = v(2u + v)$ in (2), we have v = 1 or $v = q^f$. If v = 1, then z is even, as in Proposition 1.

If $v = q^f$, then $u = (p^e - q^f)/2$ and so $\left(\frac{c}{p}\right) = \left(\frac{3}{p}\right) = -1$ from (2). Now equation (1) implies that z is even.

We use Lemma 3 to show the following:

THEOREM 5. Put $Q = \max\{p, q\}$.

(i) Let a, b, c be fixed positive integers as in Proposition 3, (i). Suppose that b is even. Then the solution y of equation (1) satisfies

$$y \le 47135 \ Q \log Q.$$

(ii) Let a, b, c be fixed positive integers as in Proposition 3, (i). Suppose that b is odd. Then the solution y of equation (1) satisfies

$$y \le 23568 \ Q \log Q.$$

(iii) Let a, b, c be fixed positive integers as in Proposition 3, (ii). Suppose that a is even. Then the solution x of equation (1) satisfies

$$x \le 47135 \ Q \log Q.$$

(iv) Let a, b, c be fixed positive integers as in Proposition 3, (ii). Suppose that a is odd. Then the solution x of equation (1) satisfies

$$x \le 23568 Q \log Q$$
.

PROOF. (i) Let (x, y, z) be a solution of (1). Then it follows from Proposition 3 that z is even, say z = 2Z. By Lemma 1, we have two cases (E_1) , (E_2) as in the proof of Theorem 1.

First consider (E_1) . Then since $a = p^e q^f$ and $p^e > q^f$, we have U - V = 1 or q^{fx} . If U - V = 1, then we obtain Z = 1, 2, as in Theorem 1. Since $c < b^2$ from Lemma 1, we have

$$b^{2y} < a^{2x} + a^x b^y + b^{2y} = c^{2Z} \le c^4 < b^8$$
,

so y < 4.

If $U-V=q^{fx}$, then we have $U+V=p^{ex}$. The assumption that b is even implies that $V=2b_1^y$, $2U+V=2^{sy-1}b_2^y$ or $V=2^{sy-1}b_1^y$, $2U+V=2b_2^y$,

where $b = 2^s b_0$ with b_0 odd and $b_0 = b_1 b_2$ with $(b_1, b_2) = 1$. Let $(X, Y) = (b_1, b_2)$ or (b_2, b_1) . Then $2X^y + 2^{sy-1}Y^y = 2(U + V) = 2 \cdot p^{ex}$ and so

$$X^{y} + \frac{1}{4}(2^{s}Y)^{y} = p^{ex}.$$

Hence it follows from Lemma 3 that

$$y \le 34000 \ p \log p \log 4 \le 47135 \ p \log p$$
.

Next consider (E_2) . Then since $a = p^e q^f$ and $p^e > q^f$, we have V = 1 or q^{fx} . If V = 1, then we obtain (x, y, z) = (1, 1, 2), as in Theorem 2.

Let $V = q^{fx}$. The assumption that b is even implies that

$$U - V = 2b_1^y$$
, $U + V = 2^{sy-1}b_2^y$ or $U - V = 2^{sy-1}b_1^y$, $U + V = 2b_2^y$,

where $b = 2^s b_0$ with b_0 odd and $b_0 = b_1 b_2$ with $(b_1, b_2) = 1$. Let $(X, Y) = (b_1, b_2)$ or (b_2, b_1) . Then $2X^y - 2^{sy-1}Y^y = \pm 2V = \pm 2 \cdot q^{fx}$ and so

$$\pm X^y \mp \frac{1}{4} (2^s Y)^y = q^{fx} .$$

Hence it follows from Lemma 3 that

$$y \le 34000 \ q \log q \log 4 \le 47135 \ q \log q$$
.

(ii), (iii), (iv) Similarly, we obtain the desired assertions.

6. Examples.

Using the preceding Theorems, we verify that when a and b satisfy $a^2 + ab + b^2 = c^2$, $3 \le a$, $b \le 100$ and (a, b) = 1, the Conjecture holds. In fact, we show the following (cf. Table in Section 2):

THEOREM 6. Let a, b, c be fixed positive integers satisfying

$$a^2 + ab + b^2 = c^2$$
, $3 < a, b < 100$ and $(a, b) = 1$.

Then equation (1) has only the positive integral solution (x, y, z) = (1, 1, 2).

PROOF. We may suppose that $a - b \equiv 1 \pmod{3}$. We have to consider the cases (a, b) = (24, 95), (40, 51), (55, 57), (65, 88), (77, 40), (91, 69), since all the other cases are covered by Theorems 1, 2, 3, 4.

• (i): (a, b) = (24, 95). Proposition 3 implies that z is even, say z = 2Z.

Case
$$(E_1)$$
: $24^x = U^2 - V^2$, $95^y = V(2U + V)$, $109^Z = U^2 + UV + V^2$.

If V=1, then we have Z=x=y=1 as in the proof of Theorem 1. But this is impossible. Thus $V=5^y$ and $2U+V=19^y$, which imply that y is odd and $U+V\equiv 0 \pmod 4$. Since $U\not\equiv V \pmod 3$, we have U-V=2 and $U+V=2^{3x-1}3^x$. Hence as in the proof of Theorem 3, we obtain Z=1 and so U=7, V=5, x=y=1.

Case
$$(E_2)$$
: $24^x = V(2U + V)$, $95^y = U^2 - V^2$, $109^Z = U^2 + UV + V^2$.

If U - V = 1, then we have Z = x = y = 1 or Z = 2 as in the proof of Theorem 1. But this is impossible. Thus $U - V = 5^y$ and $U + V = 19^y$, which imply that y is even, $V \equiv 0 \pmod{3}$ and $V \equiv 0 \pmod{4}$. Hence we obtain have $V = 2^{3x-1}3^x$ and 2U + V = 2. But this is impossible.

• (ii): (a, b) = (40, 51). Proposition 3 implies that z is even, say z = 2Z.

Case
$$(E_1)$$
: $40^x = U^2 - V^2$, $51^y = V(2U + V)$, $79^Z = U^2 + UV + V^2$.

If V=1, then we have Z=x=y=1 as before. But this is impossible. Thus $V=3^y$ and $2U+V=17^y$, which imply that y is odd and $U-V\equiv 0 \pmod 4$. Hence $U-V=2^{3x-1}$ and $U+V=2\cdot 5^x$. Therefore we obtain x=1 and so U=7, V=3, y=Z=1.

Case
$$(E_2)$$
: $40^x = V(2U + V)$, $51^y = U^2 - V^2$, $79^z = U^2 + UV + V^2$.

If U - V = 1, then we have Z = x = y = 1 or Z = 2 as before. But this is impossible. Thus $U - V = 3^y$, which is also impossible, since $U \not\equiv V \pmod{3}$.

• (iii): (a, b) = (55, 57). Proposition 3 implies that z is even, say z = 2Z.

Case
$$(E_1)$$
: $55^x = U^2 - V^2$, $57^y = V(2U + V)$, $97^Z = U^2 + UV + V^2$.

If U - V = 1 or V = 1, then we have Z = x = y = 1 or Z = 2 as before. But this is impossible. Thus we have $U - V = 5^x$, $U + V = 11^x$, $V = 3^y$ and $2U + V = 19^y$. Eliminating U and V yields

$$11^x - 5^x = 2 \cdot 3^y$$

Taking the equation modulo 4 implies that x is odd. Suppose that x > 1. Then $x \equiv 0 \pmod{3}$. Indeed, since x is odd, we have

$$3^{y-1} = 11^{x-1} + 11^{x-2} \cdot 5 + \dots + 11 \cdot 5^{x-2} + 5^{x-1} \equiv 2^{x-1} + 2^{x-1} + \dots + 2^{x-1} \equiv x \pmod{3}.$$

Hence $2 \cdot 3^y$ is divisible by $11^3 - 5^3 = 2 \cdot 3^2 \cdot 67$, which is a contradiction. Therefore we obtain x = 1 and so U = 8, V = 3, y = Z = 1.

Case
$$(E_2)$$
: $55^x = V(2U + V)$, $57^y = U^2 - V^2$, $97^Z = U^2 + UV + V^2$.

If U - V = 1 or V = 1, then we have Z = x = y = 1 or Z = 2 as before. But this is impossible. Thus we have $U - V = 3^y$, $U + V = 19^y$, $V = 5^x$ and $2U + V = 11^x$. Eliminating U and V yields

$$19^y + 3^y = 11^x - 5^x$$
.

Taking the equation modulo 3 leads to a contradiction.

• (iv): (a, b) = (65, 88). Proposition 3 implies that z is even, say z = 2Z.

Case
$$(E_1)$$
: $65^x = U^2 - V^2$, $88^y = V(2U + V)$, $133^Z = U^2 + UV + V^2$.

If U - V = 1, then we have Z = x = y = 1 or Z = 2 as before. But this is impossible. Thus $U - V = 5^x$ and $U + V = 13^x$, which imply that $V \equiv 0 \pmod{4}$. Hence we have $V = 2^{3y-1}$ and $2U + V = 2 \cdot 11^y$. Eliminating U and V yields

$$2^{3y-2} + 11^y = 13^x$$

Since $(-1)^{3y-2} + (-1)^y \equiv 1 \pmod{3}$, y is odd. Then $2^{3y-2} \equiv 2 \pmod{4}$. Therefore we obtain y = 1 and so V = 4, U = 9, x = Z = 1.

Case
$$(E_2)$$
: $65^x = V(2U + V)$, $88^y = U^2 - V^2$, $133^Z = U^2 + UV + V^2$.

If V = 1, then we have Z = x = y = 1 as before. But this is impossible. Thus $V = 5^x$ and $2U + V = 13^x$. Taking the equations above modulo 4 leads to a contradiction, since U is odd.

• (v): (a, b) = (77, 40). Proposition 3 implies that z is even, say z = 2Z. Case (E_1) : $77^x = U^2 - V^2$, $40^y = V(2U + V)$, $103^Z = U^2 + UV + V^2$.

If U - V = 1, then we have Z = x = y = 1 or Z = 2 as before. But this is impossible. Thus $U - V = 7^x$ and $U + V = 11^x$, which imply that x is odd and $V \equiv 2 \pmod{4}$. Since x is odd, we have V = 2 and $2U + V = 2^{3y-1}5^y$. Hence as before, we obtain Z = 1 and so U = 9, x = y = 1.

Case (E_2) : $77^x = V(2U + V)$, $40^y = U^2 - V^2$, $103^Z = U^2 + UV + V^2$.

If V=1, then we have Z=x=y=1 as before. But this is impossible. Thus $V=7^x$ and $2U+V=11^x$. Hence we have $0\equiv 2(U+V)=11^x+7^x\equiv 2\pmod 4$, which is also impossible.

• (vi): (a, b) = (91, 69). Proposition 3 implies that z is even, say z = 2Z.

Case (E_1) : $91^x = U^2 - V^2$, $69^y = V(2U + V)$, $139^Z = U^2 + UV + V^2$.

If U - V = 1 or V = 1, then we have Z = x = y = 1 or Z = 2 as before. But this is impossible. Thus we have $V = 3^y$, $2U + V = 23^y$, $U - V = 7^x$ and $U + V = 13^x$. Eliminating U and V yields

$$13^x - 7^x = 2 \cdot 3^y$$
.

Taking the equation modulo 4 implies that x is odd. Suppose that x > 1. Then $x \equiv 0 \pmod{3}$. Indeed, since x is odd, we have

$$3^{y-1} = 13^{x-1} + 13^{x-2} \cdot 7 + \dots + 13 \cdot 7^{x-2} + 7^{x-1} \equiv x \pmod{3}.$$

Hence $2 \cdot 3^y$ is divisible by $13^3 - 7^3 = 2 \cdot 3^2 \cdot 103$, which is a contradiction. Therefore we obtain x = 1 and so U = 10, V = 3, y = Z = 1.

Case
$$(E_2)$$
: $91^x = V(2U + V)$, $69^y = U^2 - V^2$, $139^Z = U^2 + UV + V^2$.

If U - V = 1 or V = 1, then we have Z = x = y = 1 or Z = 2 as before. But this is impossible. Thus we have $U - V = 3^y$, $U + V = 23^y$, $V = 7^x$ and $2U + V = 13^x$. Taking the equations above modulo 3 leads to a contradiction.

References

- [B] Y. BUGEAUD, On the diophantine equation $x^2 p^m = \pm y^n$, Acta Arith. 80 (1997), 213–223.
- [GL] Y.-D. Guo and M.-H. LE, A note on Jesmanowicz' conjecture concerning Pythagorean numbers, Comment. Math. Univ. St. Paul. 44 (1995), 225–228.
- [J] L. JEŚMANOWICZ, Some remarks on Pythagorean numbers (in Polish), Wiadom. Mat. 1(1955/1956), 196–202.
- [Le] M.-H. LE, On Jeśmanowicz' conjecture concerning Pythagorean numbers, Proc. Japan Acad. **72**A (1996), 97–98.
- [Lj] W. LJUNGGREN, Über die Gleichungen $1 + Dx^2 = 2y^n$ und $1 + Dx^2 = 4y^n$, Norske Vid. Selsk. Forh. Trondheim Bd. 15, Nr. 30, (1942).

- [N1] T. NAGELL, Des équations indéterminées $x^2 + x + 1 = y^n$ et $x^2 + x + 1 = 3y^n$, Norsk. Mat. Forenings Skrifter 2 (1921), 12–14.
- [N2] T. NAGELL, Sur l'impossibilité de quelques équations à deux indéterminées, Norsk. Mat. Forenings Skrifter 13 (1923), 65–82.
- [N3] T. NAGELL, Contributions to the theory of a category of diophantine equations of the second degree with two unknowns, Nova Acta Soc. Sci. Upsal. Ser IV, 16 (1955), 1–38.
- [S1] W. SIERPIŃSKI, On the equation $3^x + 4^y = 5^z$ (in Polish), Wiadom. Mat. 1(1955/1956), 194–195.
- [S2] W. SIERPIŃSKI, Elementary Theory of Numbers, PWN-Polish Scientific Publishers (1988).
- [TA1] K. TAKAKUWA and Y. ASAEDA, On a Conjecture on Pythagorean numbers, Proc. Japan Acad. **69**A (1993), 252–255.
- [TA2] K. TAKAKUWA and Y. ASAEDA, On a Conjecture on Pythagorean numbers II, Proc. Japan Acad. **69**A (1993), 287–290.
- [Ta1] K. TAKAKUWA, On a Conjecture on Pythagorean numbers III, Proc. Japan Acad. 69A (1993), 345-349.
- [Ta2] K. TAKAKUWA, A remark on Jeśmanowicz' conjecture, Proc. Japan Acad. 72A (1996), 109-110.
- [Te1] N. TERAI, The Diophantine equation $x^2 + q^m = p^n$, Acta Arith. 63 (1993), 351–358.
- [Te2] N. TERAI, Applications of a lower bound for linear forms in two logarithms to exponential Diophantine equations, Acta Aith. 90 (1999), 17–35.

Present Addresses:

NOBUHIRO TERAI

DIVISION OF GENERAL EDUCATION, ASHIKAGA INSTITUTE OF TECHNOLOGY,

OMAE, ASHIKAGA, TOCHIGI, 326-8558 JAPAN.

e-mail: terai@ashitech.ac.jp

KEI TAKAKUWA

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE, GAKUSHUIN UNIVERSITY,

MEJIRO, TOSHIMA-KU, TOKYO, 171–8588 JAPAN. *e-mail*: Takakuwa@math.gakushuin.ac.jp