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1. Introduction

In 1956, JeSmanowicz [J] conjectured that if a, b, ¢ are Pythagorean numbers, i.e., posi-
tive integers satisfying a? + b? = c2, then the Diophantine equation

a* +b’ =t

has only the positive integral solution (x,y, z) = (2,2, 2). It has been verified that. this
conjecture holds for many Pythagorean numbers (cf. Sierpinski [S1], [S2], [TA1], [TA2],
[Tal], [Ta2], [GL] and [Le]). This conjecture, however, is still open.

If a, b, c are positive integers satisfying a2 + ab + b* = c?, we call a, b, ¢ Eisenstein
numbers. Eisenstein numbers have some properties similar to those of Pythagorean numbers.
As shown in Lemma 1 below, Eisenstein numbers a, b, c can be expressed in terms of positive
integers u, v by factoring a? + ab + b? = ¢? in Q(w), where w = i3 = (=14 /-3)/2.
It is worth noting that, geometrically, Pythagorean numbers a, b, ¢ are the sides of a right
triangle, and that Eisenstein numbers a, b, ¢ are the sides of a triangle with an interior angle
2m /3. See the figures below.

]

a a
Pythagorean numbers a, b, c. Eisenstein numbers a, b, c.

As an analogue to JeSmanowicz’ conjecture, we propose the following (cf. Terai [Tel],
(Te2)):
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CONJECTURE. Ifa, b, c are fixed positive integers satisfying a* + ab + b® = ¢2 with
(a, b) = 1, then the Diophantine equation

a** +a*b’ +b¥ = (1)
has only the positive integral solution (x, y,z) = (1,1, 2).

In Sections 3, 4, we show that when a or b is a power of a prime, the Conjecture above
holds under some conditions. The proof is based on the results concerning the Diophantine
equations of second degree established by using properties of Q(+/—3). In Section 5, we also
deduce that for Eisenstein numbers a, b, ¢ witha = pqf or b = p®q”, an upper bound of
y or x of equation (1) is derived by applying a result due to Bugeaud [B], which is proved by
means of estimates for linear forms in two logarithms.

In Section 6, we verify that the Conjecture holds for all Eisenstein numbers a, b, ¢ with
3<a, bp<100and (a,b) = 1.

2. Lemmas.

LEMMA 1. Eisenstein numbers a, b, c with (a,b) = 1 anda — b = 1 (mod 3) are
given as follows:

a=u®—1v?, b=vQ2u+v), c=u?+uv + 2, )

where u, v are positive integers such that (u,v) = 1, u > v and u # v (mod 3).

PROOF. We have ¢2 = (a — bw)(a — bw?). Note that ¢ # 0 (mod 3), since (2a + b)? +
3b? = 4c? and (a, b) = 1. We claim that @ = a —bw and @ = a — bw? are relatively prime in
Z[w]. Indeed, let & be a prime in Z[w] suchthat 7 |¢ and 7 |@. Then 7 | — @ = bw (1 —w),
which implies that 7 | 1 — w, since (a,b) = 1. In view of 3 = —0?(1 — w)?, we see that
¢ = 0 (mod 3), which is a contradiction. Hence there are rational integers u, v such that

a-—bw:s(u—vw)z,

where ¢ = +1, +w, +w?, and ¢ = u? + uv + v2. We may suppose that ¢ = +1, because
w = w*. Thena — bw = +{ (u? — v?) — Quv + v?)w }. Therefore it is easy to see that

a=u2—v2, b=vQ2u+v), c=u2+uv+v2,

where u, v are positive integers such that (u, v) = 1, ¥ > v and 4 # v (mod 3).
We note that

a=u®—v?, b=vQRu+v) © a—b=1(mod3).

Indeed, ifa = u? —v?, b = v(Ru+v),thena—b = u?2 —v2—vQRu+v) = U—v)2-3v2 =
1 (mod 3), since 4 # v (mod 3). O

REMARK. In the table below, we give all Eisenstein numbers a, b, ¢ with (a, b) =1,
a—b=1(mod3)and3 <a, b < 100.



DIOPHANTINE EQUATION 431

TABLE.

a b c a b c
3 5 7135113 43
5116 19 || 40 | 51 79
7
8

33| 3714532 67
7 13115557 97
9(56] 61| 63 )17 73

11 | 8] 91 || 65| 88| 133

16 | 39| 49 || 77 | 40 | 103

24 | 11 318 (19| 91

24 195109 {| 91 | 69 | 139

LEMMA 2. (1) (Nagell [N1]). The Diophantine equation
Z+x+1=y"

has only the positive integral solution (x, y, n) = (18, 7, 3) withn > 2.
(2) (Nagell [N2]). The Diophantine equation

x243=y"
has only the positive integral solution (x, y, n) = (1, 2, 2) withn > 2.
(3) (Nagell [N3]). The Diophantine equation

3x2+1=y"
has no positive integral solutions x, y, n withn > 3.
(4) (Ljunggren [Lj]). The Diophantine equation

3x2 +1=4y"
has no positive integral solutions x, y, n withy > 1 andn > 3.

For any prime number p, we denote by v, the standard p-adic valuation over Qp, nor-
malized by v,(p) = 1.

LEMMA 3 (Bugeaud [B]). Let p be a prime number. Let a = aj/a; and b =
b1/by be two irreducible rational numbers satisfying vp(a) = vp(b) = 0 and put A =
max {ai, a2, by, bz, 3}). If the diophantine equation

pm — axn + byn
has positive integral solutions x, y, n with gcd (x, y) = 1 andn > 2, then we have

n < 34000 plog plogA.

3. Thecasea = p’ or b = p’ (p : odd prime).

To begin with, we consider the Conjecture when b(= v(2u + v)) is a power of an odd
prime. Then Eisenstein numbers a, b, ¢ can be expressed as follows:

a=m?>—1, b=2m+1, c=m’+m+1, 3)
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where m is a positive integer with m % 1 (mod 3). (Putu = m, v =11in (2).)
We first prove the following:

PROPOSITION 1. Letm be a positive integer withm # 1 (mod 3). Let a, b, c be fixed
positive integers satisfying (3). If equation (1) has positive integral solutions x, y, z, then z is
even.

PROOF. Letm = 2. Then we have (a, b, c) = (3,5, 7). It follows from (1) that z is
even. Hence we may suppose that m > 3. Then we see that x is odd. Indeed, taking (1)
modulo m yields 1 4+ (—1)* - 1+ 1 =1 (mod m), so (—1)* = —1 (mod m). Since m > 3, x
must be odd.

When m is even, let 2° || m, where s is a positive integer. Then it follows from (3) that

m =2 (mod2**t!), a=—1(@mod2’*!), b=1(@mod2°*), ¢ =2°+1 (mod2°*!).
Since x is odd, equation (1) implies that
1+ (=1)-14+1=2 +1)* (mod 2°*!), so 1=1+z2° (mod2°*!).
Hence Z is even.

When m is odd, let 2° || m + 1, where s is a positive integer. Then it follows from (3)
that

m=2"—1@mod2**"), a =0 (mod 2"y, b= —1(@mod 2°*!), ¢ =2+ 1 (mod 2°*1).
Equation (1) implies that 1 = 1 + z25 (mod 25*1). Hence z is even. (]

THEOREM 1. Let m be a positive integer with m # 1 (mod 3). Let a, b, c be fixed
positive integers satisfying (3). Suppose that b is a power of an odd prime. Then equation (1)
has only the positive integral solution (x, y,z) = (1, 1, 2).

PROOF. Let (x, y, z) be a solution of (1). Then it follows from Proposition 1 that z is
even, say z = 2Z. By Lemma 1, we have
a=U2-V2, P=VQU+V), cZ=U?+UV + V2, (Ep)
or
ac=VQRU+V), b =U?-V2, ¢Z=U?4+UV +V?, (E2)

where U, V are positive integers such that (U, V) =1,U > V and U # V (mod 3).
First consider (E,). Since b is a power of an odd prime and (U, V) = 1, we have
2U4+V =b"and V =1, s0

U2+U+1=c%.

Now Lemma 2, (1) implies that Z = 1. Thenc =m?4+m+1=U?*+U +1andso U = m.
Therefore we obtainx =1, y=1, z=2.

Next consider (E3). Since b is an odd prime power and (U, V) = 1, wehave U+V = bY
andU —V =1,s0

32V +1)2+1=4c%.
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Now Lemma 2, (4) implies that Z = 1, 2. We show that the cases Z = 1, 2 do not occur.
IfZ=1,thenc =m2+m+1=3V2+3V+1landsoV < m. Hence b’ = U2 —-V? =
2V + 1 < 2m + 1 = b, which is impossible.
If Z = 2, then it follows from Lemma 1 that

u, Vv =r2 — 52, sQ2r +s); c=r2—|—rs+s2,
where r, s are positive integers such that (7, s) = 1,7 > s and r # s (mod 3). Thus we have
U+V=rQ2s+r)=>b".
Since b is a power of an odd prime and (r, s) = 1, we have 2s +r = b” and r = 1, which is
impossible. O

We next consider the Conjecture when a(= u? — v?) is a power of an odd prime. Then
Eisenstein numbers a, b, ¢ can be expressed as follows:

a=2m+1, b=3m*>+2m, c=3m*>+3m+1, 4)

where m is a positive integer. (Putu =m + 1, v = m in (2).)

THEOREM 2. Letm be a positive integer. Let a, b, ¢ be fixed positive integers satisfy-
ing (4). Suppose that a is a power of an odd prime. Then equation (1) has only the positive
integral solution (x, y, 2) = (1, 1, 2).

PROOF. The proof of Theorem 2 is similar to that of Theorem 1. O

4. Thecasea =2'or b =2'.

To begin with, we consider the Conjecture when b(= v(2u + v)) = 2’. Then Eisenstein
numbers a, b, ¢ can be expressed as follows:

a=24"%_2t"1_3 p=2, c=2""*43, (5)
where ¢ is a positive integer with z > 4. (Put u = 212 _ 1, v =2in(2).)
We first show the following:

PROPOSITION 2. Lett be a positive integer witht > 4. Let a, b, c be fixed positive
integers satisfying (5). If equation (1) has positive integral solutions x, y, z, then z is even.

PROOF. Sincet > 4, we have a = 1 (mod 4), b = 0 (mod 4), ¢ = —1 (mod 4).
Taking (1) modulo 4 yields 1 = (—1)? (mod 4), so z is even. O

THEOREM 3. Let t be a positive integer with t > 4. Let a, b, ¢ be fixed positive
integers satisfying (5). Then equation (1) has only the positive integral solution (x,y, z) =
(1,1,2).

PROOF. Let (x, y, z) be a solution of (1). Then it follows from Proposition 2 that z is
even, say z = 2Z. By Lemma 1, we have two cases (E1), (E2) as in the proof of Theorem 1.
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First consider (E1). Then from (5), we have V =2 and 2U + V = 2~! 5o
U +1)2+3=c%.

Now Lemma 2, (2) implies that Z = 1. Then from (1), we have x = y = 1.
Next consider (E3). Then from (5), wehave U + V =27"land U — V = 2, s0

3(V+1)2+1=c?.

Now Lemma 2, (3) implies that Z = 1, 2. We show that the cases Z = 1, 2 do not occur.
If Z = 1, then we have ¢ = —1 (mod 4) from (5). On the other hand, since U =
1 (mod 4) and V = —1 (mod 4), we have ¢ = ¢Z = 1 (mod 4) from (E). This is impossible.
If Z = 2, then it follows from Lemma 1 that

U+V=rQ2s+r), c=r’+rs+s?,

where r, s are positive integers such that (r, s) = 1, r > s and r # s (mod 3). Since
r@2s+r) =271 wehaver =2, 2s+r = 27 2andsos = 1, t+ = 4. But this is
impossible, since ¢ = 2%#~* + 3 =r2 4 rs + s2. O

We next consider the Conjecture when a(= u? — v?) = 2!. Then Eisenstein numbers
a, b, c can be expressed as follows:

a=2", b=3.2"4_2"1_1 =3.22%%,41, (6)

where ¢ is a positive integer with 7 > 3. (Putu + v =2'"}, u —v =2in(2).)

THEOREM 4. Lett be a positive integer such thatt > 3 andt # 3 (mod 4). Let a,
b, ¢ be fixed positive integers satisfying (6). Then equation (1) has only the positive integral
solution (x,y,z) = (1, 1,2).

PROOF. Taking (1) modulo 5 implies that z is even. The proof of Theorem 4 is similar
to that of Theorem 3. O

5. Thecasea = p?q/ or b = peq/.

In this section, we consider the Conjecture when a = p®q/ or b = p¢qf. Then we apply
the theory of linear forms in two logarithms to derive an upper bound of y or x of equation
(D).

We first prove the following:

PROPOSITION 3. (i) Let a, b, c be fixed positive integers satisfying (2). Suppose
that a = p®qf, where e, f are positive integers, and p, q are odd primes such that p¢ > qf
and q = 5, 7 (mod 12). If equation (1) has positive integral solutions x, y, z, then z is even.

(ii) Let a, b, ¢ be fixed positive integers satisfying (2). Suppose that b = p¢q/,
where e, f are positive integers, and p, q are odd primes such that p¢ > g/ and p =
5, 7 (mod 12). If equation (1) has positive integral solutions x, y, z, then z is even.
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PROOF. (i) Sincea = peqf =u?—v?in(2),wehaveu —v=1loru —v=gqg/. If

u — v = 1, then z is even, as in Proposition 1.

3
Ifu—v= qf, then u = v (mod q) and so (5) = (—) = —1 from (2). Now equation
q q
(1) implies that z is even.

(i) Since b = p¢qf = v(2u +v)in(2), wehavev =1orv =gq/. Ifv =1, thenzis
even, as in Proposition 1.

Ifv= qf, then u = (p¢ — qf)/2 and so (2) = (i> = —1 from (2). Now equation
(1) implies that z is even. P d O

We use Lemma 3 to show the following:

THEOREM 5. Put Q = max{p, q}.
(i) Leta, b, c be fixed positive integers as in Proposition 3, (i). Suppose that b is even.
Then the solution y of equation (1) satisfies

y < 47135 Qlog Q.

(ii) Let a, b, c be fixed positive integers as in Proposition 3, (i). Suppose that b is odd.
Then the solution y of equation (1) satisfies

y < 23568 Qlog Q.

(iii) Let a, b, c be fixed positive integers as in Proposition 3, (ii). Suppose that a is
even. Then the solution x of equation (1) satisfies

x <47135Qlog Q.

(iv) Let a, b, c be fixed positive integers as in Proposition 3, (ii). Suppose that a is
odd. Then the solution x of equation (1) satisfies

x <23568 Qlog Q.

PROOF. (i) Let(x, y, z) be a solution of (1). Then it follows from Proposition 3 that z
is even, say z = 2Z. By Lemma 1, we have two cases (E1), (E7) as in the proof of Theorem
1.

First consider (E;). Then since a = p¢q/ and p® > ¢/, we have U — V = 1 or ¢/*.

If U — V = 1, then we obtain Z = 1, 2, as in Theorem 1. Since ¢ < b? from Lemma 1,
we have

b < a® 1 @%b + b =22 <t < b8,

soy < 4.
IfU —V = ¢qf*, then we have U + V = p®*. The assumption that b is even implies that

V=2b,20+V =291 or V=2V"1p, 2U0+V=2b),
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where b = 2°bg with by odd and b9 = b1b; with (b1, b2) = 1. Let (X, Y) = (b1, b)) or
(b2, b1). Then 2XY +259~1yY = 2(U + V) = 2. p** and so
X + %(ZSY)y = p*.
Hence it follows from Lemma 3 that
y < 34000 plog plog4 < 47135 plogp.

Next consider (E5). Then since a = p?q/ and p¢ > ¢, we have V = 1 or g/*.
If V = 1, then we obtain (x, y, z) = (1, 1, 2), as in Theorem 2.
Let V = g/*. The assumption that b is even implies that

U-Vv=2b, U+V=27""0) or U-V=2""p), U+V=2b],
where b = 25by with bg odd and by = b1by with (b1, b2) = 1. Let (X, Y) = (b1, b) or
(ba, b1). Then2XY — 25Y~1yY = 42V = 42 - ¢/* and so

+XY ¥ i(zsmy =qf*.
Hence it follows from Lemma 3 that
y <34000 g logglog4 <47135qloggqg .

(ii), (iii), (iv) Similarly, we obtain the desired assertions. O

6. Examples.

Using the preceding Theorems, we verify that when a and b satisfy a* + ab + b% = ¢,
3 < a, b <100 and (a, b) = 1, the Conjecture holds. In fact, we show the following (cf.
Table in Section 2):

THEOREM 6. Leta, b, c be fixed positive integers satisfying
a’+ab+b>=c*, 3<a,b<100 and (a,b)=1.
Then equation (1) has only the positive integral solution (x, y, z) = (1, 1, 2).

PROOF. We may suppose that a — b = 1 (mod 3). We have to consider the cases
(a, b) = (24, 95), (40, 51), (55, 57), (65, 88), (77, 40), (91, 69), since all the other cases are
covered by Theorems 1, 2, 3, 4.

e (i): (a, b) = (24, 95). Proposition 3 implies that z is even, say z = 2Z.

Case (E}): 24* = U2 —-V2, 95 =VQU +V), 1092 =U2+4+UV + V2.

IfV = 1, then we have Z = x = y = 1 as in the proof of Theorem 1. But this is
impossible. Thus V = 5% and 2U + V = 197, which imply that yisoddand U + V =
0 (mod 4). Since U # V (mod 3), wehave U — V =2and U +V = 23x=13x Hence as in
the proof of Theorem 3, we obtain Z =landsoU =7, V=35, x =y = 1.

Case (Ey): 24* =VQU +V), 95 =U%?-V2, 1092 =U%?+UV + V2.
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IfU—-V =1,thenwehave Z = x = y = 1 or Z = 2 as in the proof of Theorem 1.
But this is impossible. Thus U — V = 5 and U + V = 197, which imply that y is even,
V =0 (mod 3) and V = 0 (mod 4). Hence we obtain have V = 23*~13* and 2U + V = 2.
But this is impossible.

e (ii): (a, b) = (40, 51). Proposition 3 implies that z is even, say z = 2Z.

Case (E1): 40* =U?—V2, 519 =VQU+V), 7192=U2+UV + V2.

If V =1, then we have Z = x = y = 1 as before. But this is impossible. Thus V = 3
and 2U +V = 177, which imply that y is odd and U —V = 0 (mod 4). Hence U —V = 23*~!
andU + V =2 -.5% Therefore weobtainx = landsoU =7, V=3, y=Z=1.

Case (E2): 40*=VQU +V), 51>=U%?-V?, 792 =U%4+UV + V2.

IfU -V =1,then wehave Z = x = y = 1 or Z = 2 as before. But this is impossible.
Thus U — V = 3%, which is also impossible, since U # V (mod 3).

e (iii): (a, b) = (55, 57). Proposition 3 implies that z is even, say z = 2Z.

Case (E1): 55 =U%-V2, 57 =VQU+V), 97?=U?+UV + V2.

fU—-—V =10rV =1,thenwehave Z = x = y = 1 or Z = 2 as before. But this
is impossible. Thus wehave U — V =55, U+ V = 11*, V =3Yand 2U + V = 19.
Eliminating U and V yields

11* =55 =2.37.

Taking the equation modulo 4 implies that x is odd. Suppose that x > 1. Then x =
0 (mod 3). Indeed, since x is odd, we have

P 1112 5 4o 11 .55 2 5L =l px-l 0 %l = 5 (mod 3).

Hence 2 - 3” is divisible by 113 — 53 = 2. 32. 67, which is a contradiction. Therefore we
obtainx = landsolU =8, V=3, y=2Z=1.
Case (Ep): 555 =VQU+V), 577 =U?-V2, 972 =U?+UV + V2,
IfU—-V =1o0orV =1,thenwe have Z = x = y = 1 or Z = 2 as before. But this
is impossible. Thus we have U — V =3, U+ V =197,V = 5 and 2U + V = 11".
Eliminating U and V yields

197 +3Y =11* - 5.

Taking the equation modulo 3 leads to a contradiction.

e (iv): (a, b) = (65, 88). Proposition 3 implies that z is even, say z = 2Z.

Case (Ey): 655 =U?2-V?2, 88 =VQU+V), 1332 =U2+UV + V2.

IfU—-V =1,thenwehave Z =x = y = 1 or Z = 2 as before. But this is impossible.
Thus U — V = 5f and U + V = 13*, which imply that V = 0 (mod 4). Hence we have
V =2%"land2U + V =2 117. Eliminating U and V yields

23y=2 4 117 = 13*.

Since (—1)>72 4 (=1)” =1 (mod 3), y is odd. Then 2°’~2 = 2 (mod 4). Therefore we
obtainy=1landsoV =4, U=9, x=2Z=1.
Case (E3): 65 =VQU+V), 88 =U2-V2, 1332 =U24+UV + V2,
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If V = 1, then we have Z = x = y = 1 as before. But this is impossible. Thus V = 5*
and 2U + V = 13*. Taking the equations above modulo 4 leads to a contradiction, since U is
odd.

e (v): (a, b) = (77, 40). Proposition 3 implies that z is even, say z = 2Z.

Case (E1): 77" =U?-V2, 40’ =VQU+V), 1032 =U?+UV + V2.

IfU—-V =1,thenwehave Z = x = y = 1 or Z = 2 as before. But this is impossible.
Thus U — V = 7* and U + V = 11*, which imply that x is odd and V = 2 (mod 4). Since
x is odd, we have V = 2 and 2U + V = 23Y~15¥_ Hence as before, we obtain Z = 1 and so
U=9, x=y=1.

Case (Ez): 77" =VQU +V), 40 =U?2-V2, 1032 =U?4+UV + V2.

If V = 1, then we have Z = x = y = 1 as before. But this is impossible. Thus V = 7*
and 2U + V = 11*. Hence we have 0 = 2(U + V) = 11* + 7* = 2 (mod 4), which is also
impossible.

e (vi): (a, b) = (91, 69). Proposition 3 implies that z is even, say z = 2Z.

Case (E1): 91" =U?-V2, 699 =VQU+V), 1392 =U?+UV + V2.

IfU—-V =1o0orV =1,thenwe have Z = x = y = 1 or Z = 2 as before. But this
is impossible. Thus we have V = 3Y,2U +V =237, U -V =7 and U + V = 13*.
Eliminating U and V yields

13* — 7 =2.3Y,

Taking the equation modulo 4 implies that x is odd. Suppose that x > 1. Then x
0 (mod 3). Indeed, since x is odd, we have

P =13"14132.74+...+13. 7724 77! = x (mod 3).

Hence 2 - 37 is divisible by 133 — 73 = 2. 32. 103, which is a contradiction. Therefore we
obtainx =landsoU =10, V=3, y=2Z=1.
Case (Ez): 91X =VQU +V), 69 =U?-V2, 1392 =U2+UV + V2.
IfU—-V=1orV =1,thenwehave Z = x = y = 1 or Z = 2 as before. But this is
impossible. Thus we have U — V =3Y, U + V =237,V = 7* and 2U + V = 13*. Taking
the equations above modulo 3 leads to a contradiction. O
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