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Good Ideals in Artinian Gorenstein Local Rings
Obtained by Idealization
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Meiji University

1. Introduction.

The purpose of this note is to prove the following, which gives a structure theorem of
certain ideals in Artinian Gorenstein local rings obtained by idealization.

THEOREM 1.1. Let R be an Artinian local ring with the maximal ideal n and let E =
ER(R/n) denote the injective envelope of R/n. Let A = R � E be the idealization of E over
R and let I be an ideal in A. Then the following two conditions are equivalent.

(1) I = (0) : I.
(2) There exists a pair (a, h), where a is an ideal in R with a2 = (0) and h : L :=

(0) :E a → R/a is a homomorphism of R/a-modules, satisfying the following four condi-
tions:

(a) h(x)h(y) = 0 and h(x)y + h(y)x = 0 for all x, y ∈ L.

(b) Let a, b ∈ R. Then ab = 0 if ā, b̄ ∈ h(L). (Here ∗̄ denotes the reduction mod a.)

(c) Let a ∈ R with ā ∈ h(L). Then ax ∈ L and h(ax) = 0 for all x ∈ E.
(d) I = {(a, x) | a ∈ R, x ∈ L such that ā = h(x)}.

When this is the case, the pair (a, h) is uniquely determined by I and a = f −1(I), where
f : R → A, f (a) = (a, 0) denotes the structure map.

Let A be a Gorenstein local ring with the maximal ideal m and let I be an m-primary
ideal inA. Then, following [GIW], we say that I is a good ideal inA, if I contains a parameter

ideal Q in A as a reduction and the associated graded ring G(I) = ⊕
n≥0 I

n/In+1 of I is a
Gorenstein ring with a(G(I)) = 1 − dimA, where a(G(I)) denotes the a-invariant of G(I)

([GW, Definition 3.1.4]). This is a condition equivalent to saying that I 2 = QI and I = Q : I ,

that is I 2 = QI and the equality �A(A/I) = 1
2�A(A/Q) holds true ([GIW, Propositon 2.2]),

where �A(∗) stands for the length. Therefore, the first condition (1) in Theorem 1.1 is just
equivalent to saying that I is a good ideal in A = R � E. In [GIW] the first author, Iai,
and Watanabe intensively studied general Gorenstein local rings of arbitrary dimension and
established many interesting results on good ideals. Nevertheless, in our very special situation
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where A = R � E is an Artinian ring obtained by idealization, the structure of good ideals
remains mysterious and no effective classification theorem is known. Our theorem 1.1 might
have some significance from this viewpoint. Also, it has influenced a further development
[GIK] of the theory of good ideals in higher-dimensional Gorenstein local rings obtained by
idealization.

The proof of Theorem 1.1 will be given in Section 3. In Section 4 we shall analyze a
concrete example. Let R and E be as are in Theorem 1.1 and let a be an ideal in R with

a2 = (0). We put L = (0) :E a. Then, letting h = 0 in condition (2) of Theorem 1.1, we get
that a × L is a good ideal in A, whence so is the ideal α(a × L) for all α ∈ AutR-algA, where
AutR-algA denotes the group of automorphisms of the R-algebraA. Therefore, it seems rather
natural to expect that the set XA of good ideals in A consists of those ideals I of the form
I = α(a × L). However, this is not the case in general, which we will show in Section 4. For
that purpose we need some basic facts on the structure of the group AutR-algA, which we shall
briefly summarize in Section 2.

2. The structure of the group AutR-algA.

In what follows, let R be an Artinian local ring with the maximal ieal n and let E =
ER(R/n) be the injective envelope of R/n. Let A = R � E denote the idealization of E
over R. Hence A = R ⊕ E as R-modules and the multiplication in A is given by (a, x) ·
(b, y) = (ab, ay + bx). The ring A is actually an Artinian Gorenstein local ring with the

maximal ideal m = n × E ([R]) and I = (0) × E is an ideal in A with I 2 = (0). Let
f : R → A, f (a) = (a, 0) denote the R-algebra structure of A.

The purpose of this section is to summarize some results on the structure of the group
AutR-algA of automorphisms. Let p1 : A → R and p2 : A → E be the maps defined by
p1(a, x) = a and p2(a, x) = x. Let α : A → A be an endmorphism of R-algebras. We put
θ = p1αi and τ = p2αi, where i : E → A denotes the map defined by i(x) = (0, x). Then
we have that θ ∈ HomR(E,R), τ ∈ HomR(E,E), and α(a, x) = (a + θ(x), τ (x)) for all
(a, x) ∈ A. Because (0, x)(0, y) = 0, we furthermore have that

(1) θ(x)θ(y) = 0 and
(2) θ(x)τ (y)+ θ(y)τ (x) = 0

for all x, y ∈ E. Let M be the set of pairs (θ, τ ) where θ ∈ HomR(E,R) and τ ∈
HomR(E,E) satisfying the above conditions (1) and (2). Then M forms a monoid under
the operation (θ, τ ) · (θ1, τ1) = (θ1 + θτ1, ττ1) with e = (0, 1E) the identity. Let GLRE
denote the group of automorphisms of the R-module E. Then (θ, τ ) ∈ M is invertible if

and only if τ ∈ GLRE. When this is the case, we have that (θ, τ )−1 = (−θτ−1, τ−1). Let
G denote the group of invertible elements in M and let Φ : EndR-algA → M be the map
defined by Φ(α) = (p1αi, p2αi). Then Φ is an isomorphism of monoids and gives rise to an
isomorphism

(2.1) ϕ : AutR-algA
∼→G
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of groups as well. Let H denote the R-submodule of HomR(E,R) consisting of the elements
θ satisfying the conditions θ(x)θ(y) = 0 and θ(x)y + θ(y)x = 0 for all x, y ∈ E. We put
N = {(θ, 1E} | θ ∈ H} and K = {(0, τ ) | τ ∈ GLRE}. Then H ∼= N and N � G, since
(θ1, τ1)

−1(θ, 1E)(θ1, τ1) = (θτ1, 1E). Therefore, the group G is a semidirect product of the

subgroups N and K, because N ∩ K = {e} and (θ, τ ) = (θ, τ−1, 1E)(0, τ ). Let R× denote
the group of units in R. Then R× ∼= K since R× ∼= GLRE (cf. [BH, Proposition 3.2.12 (e)]),
so that we have by (2.1) the following.

PROPOSITION 2.2. The group AutR-algA is a semidirect product of H and R×.

3. Proof of Theorem 1.1.

Let XA denote the set of good ideals in A = R � E. The purpose of this section is to
prove Theorem 1.1. We begin with the following lemma 3.1. Notice that �A(M) = �R(M) for
any A-module M , since R/n = A/m. We have �A(A) = 2�R(R), because �R(E) = �R(R)

(cf. [BH, Proposition 3.2.12 (b)]). Hence an ideal I in A is good if and only if I 2 = (0) and
�R(I) = �R(R) (cf. [GIW, Proposition 2.2]).

LEMMA 3.1. Let a be an ideal in R with a2 = (0) and put L = (0) :E a. Then
a × L ∈ XA.

PROOF. It is routine to check that a × L is an ideal in A with (a × L)2 = (0). Be-
cause �R(L) = �R(HomR(R/a, E)) = �R(R/a) ([BH, Proposition 3.2.12 (b)]), we have that
�R(a × L) = �R(a)+ �R(L) = �R(a)+ �R(R/a) = �R(R), whence a × L ∈ XA. �

For each θ ∈ HomR(E,R) we put Iθ = {(θ(x), x) | x ∈ E}. Then Iθ is an R-submodule
of A. We have that θ = θ ′, once Iθ ⊆ Iθ ′ .

LEMMA 3.2. Let θ ∈ HomR(E,R). Then the following conditions are equivalent.
(1) θ ∈ H.
(2) vw = 0 for all v,w ∈ Iθ .
(3) Iθ ∈ XA.
(4) Iθ = α((0)×E) for some α ∈ AutR-algA.

PROOF. (1) ⇒ (4) By (2.1) we may choose α ∈ AutR-algA so that ϕ(α) = (θ, 1E).
Then α((0)× E) = {(θ(x), x) | x ∈ E} = Iθ .

(4) ⇒ (3) This is clear, since (0)× E ∈ XA by (3.1).

(3) ⇒ (2) This is clear, since I 2
θ = (0).

(2) ⇒ (1) Let x, y ∈ E. Then because (θ(x), x)(θ(y), y) = 0 by assumption (2), we
get that θ(x)θ(y) = 0 and θ(x)y + θ(y)x = 0, whence θ ∈ H. �

COROLLARY 3.3. The set XA is infinite, if so is H.

COROLLARY 3.4. Suppose that R is a Gorenstein ring containing an infinite field k of
ch k = 2. Then XA is infinite, if R is not a field.
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PROOF. We take E = R and put Z = {z ∈ R | z2 = 0}. Then H ∼= Z as R-modules.
Therefore the set H is infinite, because Z �= (0) and the field k is infinite. Hence XA is infinite
by (3.3). �

PROPOSITION 3.5. Let I be an ideal in A. Then the following conditions are equiva-
lent.

(1) I ∈ XA and f−1(I) = (0).
(2) I = Iθ for some θ ∈ H.
(3) I = α((0)× E) for some α ∈ AutR-algA.

PROOF. (1) ⇒ (2) Since f−1(I) = (0), we get the monomorphism g : I j−→A
p2−→

E (here j denotes the embedding). Since �R(I) = �R(E), the map g is an isomorphism and

so, letting θ : E g−1

−−→ I
j−→A

p1−→ R, we have I = Iθ . Hence θ ∈ H by (3.2).
(2) ⇒ (3) See (3.2).
(3) ⇒ (1) Since (0)×E ∈ XA by (3.1), we have I ∈ XA, while f−1(I) = (0) because

f−1((0)×E) = (0). �

We are now in a position to prove Theorem 1.1.

PROOF OF THEOREM 1.1. (1) ⇒ (2) Let a = f−1(I) and put L = (0) :E a.

Then a2 = (0) because I 2 = (0). We have that x ∈ L if (a, x) ∈ I , since aI = (0). Let
R̄ = R/a and B = R̄ � L. Then B is a Gorenstein ring, since L = ER̄(R/n). We denote by
σ : I → B the homomorphism of R-modules defined by σ(a, x) = (ā, x) and put J = σ(I).

Then J is an ideal in B with J 2 = (0). We have �R(J ) = �R(I)− �R(a) = �R(R/a) because
Ker σ = a and �R(I) = �R(R), whence J ∈ XB . Consequently, because f̄−1(J ) = (0)

where f̄ : R̄ → B denotes the map defined by f̄ (ā) = (ā, 0), by (3.5) we may write

J = {(h(x), x) | x ∈ L} with a homomorphism h : L → R̄ of R̄-modules that satisfies the
conditions h(x)h(y) = 0 and h(x)y + h(y)x = 0 for all x, y ∈ L. Let (a, x) ∈ A with
(ā, x) ∈ J and choose (b, x) ∈ I so that ā = b̄. Then (a, x) = (b, x) + (a − b, 0) ∈ I

because a − b ∈ a. Consequently I = {(a, x) |a ∈ R, x ∈ L such that ā = h(x)}. Let

a, b ∈ R and x, y ∈ L and assume that ā = h(x) and b̄ = h(y). Let z ∈ E. Then because
(a, x), (b, y) ∈ I , we have (a, x)(b, y) = (ab, ay + bx) = 0 and (0, z)(a, x) = (0, az) ∈ I .
Hence ab = 0 and az ∈ L with h(az) = 0.

(2) ⇒ (1) It is routine to check that I is an ideal in A with I 2 = (0). Thanks to the

exact sequence 0 → a
f ′
−→ I

g−→ L → of R-modules (here f ′ and g respectively denote the
homomorphisms induced from f and p2), we have that �R(I) = �R(a) + �R(L) = �R(R).
Hence I ∈ XA.

Let us check the uniqueness of the pair (a, h). Let I ∈ XA and assume that (a, h) and
(a′, h′) satisfy the conditions (a), (b), (c), and (d) for the ideal I . Let a ∈ R. Then by condition

(d), we have that (a, 0) ∈ I if and only if a ≡ 0 mod a, whence a = f −1(I) = a′. Let x ∈ L
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and choose a ∈ R so that h(x) = ā. Then since (a, x) ∈ I , again by condition (d) we get
h(x) = ā = h′(x). Hence h = h′. �

Let I ∈ XA and take the pair (a, h) for I as is in Theorem 1.1. Let �1, �2, · · · , �n be a
system of generators for the R-module L = (0) :E a and choose the elements {fi}1≤i≤n in R

so that f̄i = h(�i) for all 1 ≤ i ≤ n. Then I = ∑n
i=1 R · (fi , �i)+ a × (0). We furthermore

have the following.

COROLLARY 3.6. Let I ∈ XA and choose the pair (a, h) for I as is in Theorem 1.1.
Then the following conditions are equivalent.

(1) There exists θ ∈ H satisfying the condition h(x) = θ(x) for all x ∈ L.
(2) I = α(a′ × [(0) :E a′]) for some α ∈ AutR-algA and some ideal a′ in R with

a′2 = (0).

PROOF. (1) ⇒ (2) Choose α ∈ AutR-algA so that ϕ(α) = (θ, 1E) (cf. (2.1)). Then
α(a × L) = {(a + θ(x), x) | a ∈ a, x ∈ L}. Hence we get I = α(a × L) by (1.1), because

θ(x) = h(x) for all x ∈ L.
(2) ⇒ (1) Because a′ = f−1(I), we have a′ = a by (1.1) whence (0) :E a′ = L. Let

x ∈ L and choose a ∈ R so that ā = h(x). Let ϕ(α) = (ρ, τ ) with ρ ∈ H and τ ∈ GLRE
(cf. (2.1)). Then since (a, x) ∈ I by (1.1), we have that (a, x) = (b + ρ(y), τ (y)) for some

b ∈ a and y ∈ L. Hence ā = ρ(y) and y = τ−1(x), so that h(x) = ā = θ(x) where
θ = ρτ−1 ∈ H.

4. Example.

Thanks to Theorem 1.1, in certain cases we are able to describe all the good ideals in
A = R � E. Here let us explore one example.

Let k[X,Y ] be the polynomial ring in two variables over a field k and let

R = k[X,Y ]/(X3 − Y 3,XY ). We denote by x, y the reduction of X,Y mod(X3 − Y 3,XY )

and by n the maximal ideal in R. Let A = R � R. Then the ideals a in R with a2 = (0) are

(0), (x2), (x3), (λx2 + y2) (λ ∈ k), and (x2, y2).

EXAMPLE 4.1. Assume that ch k �= 2. Then the set XA consists of the following
ideals:

a I ∈ XA with a = f−1(I)

(0) (0)× R

(x2) (x2)× (x2, y)

(x3) R · (λy2, x)+ R · (−λx2, y)+ R · (x3, 0)

(λ ∈ k)
(λx2 + y2) (λx2 + y2)× (x − λy) (λ �= 0)

(λ ∈ k) (y2)× (x, y2) (λ = 0)

(x2, y2) (x2, y2)× (x2, y2)
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Hence 
XA = 2 · 
k + 3 and so the set XA is infinite, if so is k. If λ �= 0, the ideal
Iλ = R · (λy2, x) + R · (−λx2, y) + R · (x3, 0) cannot be of the form α(a × L) for any

α ∈ AutR-algA and any ideal a in R with a2 = (0), where L = (0) :E a. In fact, the pair

(aλ, hλ) corresponding to the ideal Iλ is as follows: aλ = (x3), Lλ = (0) :R aλ = n, and

hλ(x) = λy2, hλ(y) = −λx2 in R/aλ. Therefore if λ �= 0, then by (3.6) Iλ �= α(a × L) for

any α ∈ AutR-algA and for any ideal a in R with a2 = (0), because H = (0) for this example.

PROOF. The ring R contains {1, x, y, x2, y2, x3 = y3} as k-basis. Let F denote the set

of ideals a in R such that a2 = (0). Then F = {(0), (x2), (x3), (λx2 + y2) (λ ∈ k), (x2, y2)},
since a2 = (0) if and only if a ⊆ (x2, y2). Let L = (0) : a for a ∈ F . Then

L =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

R if a = (0) ,
(x2, y) if a = (x2) ,

n if a = (x3) ,

(x − λy) if a = (λx2 + y2) and λ �= 0 ,
(x, y2) if a = (y2) ,

(x2, y2) if a = (x2, y2) .

For each a ∈ F we denote by V the set of R/a-linear maps h : L → R/a satisfying the
conditions h(u)h(v) = 0 and h(u)v + h(v)u = 0 for all u, v ∈ L. Let W = {h ∈ V | h
satisfies conditions (2)(b) and (2)(c) in Theorem 1.1}. We want to find all the elements in
W . Here let us focus our attention on the case where a = (x3). The other cases are similarly
proved and left to the reader.

We now look at the ideal a = (x3). Then L = n and it has the presentation

R3 ϕ−−−−−−→[
x2 0 y

−y2 x 0

] R2 π−−−−→ L −−−→ 0 ,

where π denotes the homomorphism defined by π([ ab ]) = ax + by. Hence every homomor-

phism h : L → R/a is represented by a homomorphism ψ = [α β] : R2 → R such that

Im(ψϕ) ⊆ a. As [α β][ x2 0 y
−y2 x 0

] = [ax2 − βy2 βx αy], the condition that Im(ψϕ) ⊆ a

is equivalent to saying that α ∈ (x, y2) and β ∈ (x2, y). Since h(x) = ᾱ and h(y) = β̄ in

R/a, the homomorphism h : L → R/a is an element of V if and only if α2, αβ, β2 ∈ a and
αx = βy = αy + βx = 0 in R (here we use the assumption that ch k �= 2). Let us write

α = ax+ bx2 + cy2 + dx3 and β = a1y+ b1x
2 + c1y

2 + d1x
3 with a, b, c, d, a1, b1, c1, and

d1 ∈ k. Then α2, β2 ∈ a if and only if a = a1 = 0. When this is the case, we have αβ ∈ a,

αx = bx3, βy = c1y
3, and αy + βx = cy3 + b1x

3. Hence h ∈ V if and only if α ≡ λy2

and β ≡ −λx2 mod a for some λ ∈ k. Let us check that V = W , that is every h ∈ V satis-

fies conditions (2)(b) and (2)(c) stated in Theorem 1.1. Since a2 = (0), we may assume that

λ �= 0. Hence h(L) = (x2, y2)/a. We have (x2, y2) ⊆ Ker(h), because h(x2) = x̄ · λy2 = 0
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and h(y2) = ȳ · −λx2 = 0 in R/a. Therefore ab = 0 in R for all a, b ∈ R with ā, b̄ ∈ h(L),
since (x2, y2)2 = (0). Let a ∈ R with ā ∈ h(L). Then a ∈ (x2, y2) so that for all b ∈ R we
see ab ∈ L = n and h(ab) = 0, since (x2, y2) ⊆ Ker(h). Thus by Theorem 1.1 the good

ideals I in A with f−1(I) = (x3) are Iλ = R · (λy2, x)+R · (−λx2, y)+R · (x3, 0) (λ ∈ k).
We have that Iλ = R · (λy2, x)+ R · (−λx2, y) if λ �= 0. �

EXAMPLE 4.2. Assume that ch k = 2. Then the set XA consists of the following
ideals:

a I ∈ XA with a = f−1(I)

(0) R · (ax2 + by2 + cx3, 1) (a, b, c ∈ k)
(x2) R · (0, x2)+ R · (ay2, y)+ R · (x2, 0) (a ∈ k)
(x3) R · (ax2 + by2, x)+ R · (bx2 + cy2, y)+ R · (x3, 0) (a, b, c ∈ k)

(λx2 + y2) R · (ax2 + by2, x + λy)+ R · (λx2 + y2, 0) (a, b ∈ k) if λ �= 0

(λ ∈ k) R · (ax2, x)+ R · (0, y2)+ R · (y2, 0) (a ∈ k) if λ = 0

(x2, y2) (x2, y2)× (x2, y2)

Let I ∈ XA and let (a, h) be the pair corresponding to I . Then, because H ∼= (x2, y2)

and every nonzero ideal in R contains (x3), we have that I �= α(a × [(0) :E a]) for any
α ∈ AutR-algA unless a = (0) or h = 0.
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