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Abstract. We consider Fourier ultra-hyperfunctions and characterize them as boundary values of smooth solu-
tions of the heat equation. Namely we show that the convolution of the heat kernel and a Fourier ultra-hyperfunction
is a smooth solution of the heat equation with some exponential growth condition and, conversely that such smooth
solution can be represented by the convolution of the heat kernel and a Fourier ultra-hyperfunction.

1. Introduction.

T. Matsuzawa characterized the spaces of distributions, ultradistributions and hyperfunc-
tions by means of the boundary value of C∞-solutions of the heat equation with appropriate
growth rate condition [7], [8]. K. W. Kim, S.-Y. Chung and D. Kim characterized Fourier
hyperfunctions [5] and M. Budinče-vić, Z. Lozanov-Crvenković and D. Perošić characterized
tempered ultradistributions of Beurling and Roumieu type by similar idea [1].

In this paper we shall treat the space Q′0 of Fourier ultra-hyperfunctions. In §3 we intro-
duce analytic functionals with unbounded carrier. In §4 we show that the convolution of the
heat kernel and a Fourier ultra-hyperfunction is a smooth solution of the heat equation with
some exponential growth condition (Lemma 4.3). In §5 we show that such smooth solution
can be represented by the convolution of the heat kernel and a Fourier ultra-hyperfunction
(Theorem 5.1) and in the middle of the proof we see that Fourier ultra-hyperfunction T (z)

has the form T (z) = P(−�)g (z) + h(z), where P is an ultradifferential operator, g (z) and
h(z) are entire functions with some exponential growth. Thus we can characterize a space of
analytic functionals by the same way.

REMARK 1.1. After completed the paper, the author recognized the almost same re-
sults had been obtained in [3]. Our space Q′0 of Fourier ultra-hyperfunctions was called in [2]

and [3] the space G′ of extended Fourier hyperfunctions. Our argument goes on in the com-
plex space. For example in our main theorem (Theorem 5.1) the growth condition of U(z, t)

is given on Cn × {t; t > 0} while in Theorem 2.5 of [3] it was given on Rn × {t; 0 < t < ε}.
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2. Notations.

First we define some notation used in this paper.

Cn = Rn + ıRn .

z = x + ıy , ζ = ξ + ıη .

z = (z1, z2, · · · , zn) , zj = xj + ıyj , j = 1, 2, · · · , n .

ζ = (ζ1, ζ2, · · · , ζn) , ζj = ξj + ıηj , j = 1, 2, · · · , n .

We denote by Cj = Rj + ıRj the zj -plane, j = 1, 2, · · · , n. We put

〈ζ, z〉 =
n∑

j=1

ζj zj , z2 = 〈z, z〉 and |x|2 =
n∑

j=1

|xj |2 .

For R ≥ 0 , BR = {x ∈ Rn : |xj | ≤ R, j = 1, 2, · · · , n} .
Let K be a convex compact set in Rn. Then we define the supporting function hK(x) by

hK(x) = sup
ξ∈K
〈ξ, x〉 .

We denote the “complex Laplacian” by

� =
n∑

j=1

∂2

∂z2
j

.

We use the multi-index notations: for m = (m1,m2, · · · ,mn) ∈ Nn,

|m| = m1 + · · · +mn ,

m! = m1!m2! · · ·mn! .

Let L be a closed set in Cn and let
◦
L be the interior of L. We denote by H(

◦
L) the space of

holomorphic functions on
◦
L and by C(L) the space of continuous functions on L.

3. Analytic functionals with unbounded carrier.

Now we shall recall some definitions and facts about analytic functionals with unbounded
carrier. For the details of this section, we refer the reader to [9] and [10].
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DEFINITION 3.1. Let K and K ′ be convex compact sets in Rn. Then we define
Qb(Rn + ıK,K ′) as follows:

Qb(Rn + ıK,K ′)

:= {f ∈ H(Rn + ı
◦
K) ∩ C(Rn + ıK) : sup

z∈Rn+ıK

|f (z)ehK′ (x)| < +∞} .

Qb(Rn + ıK,K ′) is a Banach space. If K1 ⊂ K2 and K ′1 ⊂ K ′2, we can define the canonical
mapping

Qb(Rn + ıK2,K
′
2) ↪→ Qb(Rn + ıK1,K

′
1) .

DEFINITION 3.2. We define the space Q0 as follows:

Q0 := lim←−
K,K′⊂⊂Rn

Qb(Rn + ıK,K ′) ,

where lim←− means the projective limit with respect to the canonical mappings.

DEFINITION 3.3. We denote by Q′0 the dual space of Q0. An element of Q′0 is called
a Fourier ultra-hyperfunction.

DEFINITION 3.4. We define the space Q(Rn + ıK,K ′) as follows:

Q(Rn + ıK,K ′) := lim−→
ε>0,ε′>0

Qb(Rn + ıKε,K
′
ε′) .

where Kε = K + Bε , K ′
ε′ = K ′ + Bε′ and lim−→ means the inductive limit with respect to the

canonical mappings.

DEFINITION 3.5. We denote by Q′(Rn + ıK,K ′) the dual space of Q(Rn + ıK,K ′).
An element of Q′(Rn + ıK,K ′) is called an analytic functional with carrier Rn + ıK and of
type K ′.

REMARK 3.6. The following fact is known:

Q′0 =
⋃

K,K ′⊂⊂Rn

Q′(Rn + ıK,K ′) .

LEMMA 3.7 ([10]). Let T ∈ Q′0. Then there exist convex compact sets K and K ′ and
a Radon measure µ such that

〈T , ϕ〉 =
∫

Rn+ıK

ϕ(ζ )ehK′(ξ)dµ(ζ ) , for ϕ ∈ Q0 ,

and |µ(Rn + ıK)| <∞.
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4. Preparations for Main theorem.

In this section, we shall prepare some lemmas for the main theorem.

LEMMA 4.1. For t > 0 and z ∈ Cn, we put

E(z, t) = 1

(4πt)
n
2
e−

z2
4t (heat kernel) .

Then E(z, t) satisfies
(

∂

∂t
−�

)
E(z, t) = 0 , (1)

∫
Rn

E(x, t)dx = 1, (2)

E(z, t) ∈ Q0 for fixed t > 0 . (3)

LEMMA 4.2. For ϕ(z) ∈ Q0, we put

ϕt(ζ ) =
∫

Rn

E(ζ − x, t)ϕ(x)dx , ζ ∈ Cn, t > 0 .

(i) ϕt(ζ ) belongs to Q0.
(ii) lim

t→0+
ϕt(ζ ) = ϕ(ζ ) in Q0.

PROOF. (i) is obvious. Let us prove (ii): for t > 0 we have

ϕt(ζ ) =
∫

R+ıηn

· · ·
∫

R+ıη1

E(ζ − z, t)ϕ(z)dz1 · · · dzn .

Then

ϕt(ζ )− ϕ(ζ )=
∫

Rn

E(ζ − x, t)ϕ(x)dx − ϕ(ζ )

=
∫

R+ıηn

· · ·
∫

R+ıη1

E(ζ − z, t)ϕ(z)dz1 · · · dzn − ϕ(ζ )

=
∫

R
· · ·

∫
R

E(ξ − x, t)ϕ(x + ıη)dx1 · · · dxn − ϕ(ζ )

=
∫

Rn

E(u, t)(ϕ(ζ − u)− ϕ(ζ ))du . (4)

By the definition of the projective limit topology, we have to prove

sup
ζ∈Rn+ıK

|ϕt(ζ )− ϕ(ζ )|ehK′ (ξ)→ 0 (as t → 0+)
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for any convex compact sets K and K ′ in Rn. Take R > 0 such that K ′ ⊂ BR . Since

ϕ(ζ ) ∈ Q0, there exists a constant C ≥ 0 such that |ϕ(ζ )| ≤ Ce
−R

∑n
j=1 |ξj |. On the other

hand, by Cauchy’s integral formula, we have | ∂
∂ζj

ϕ(ζ )| ≤ Ce
−R

∑n
j=1 |ξj |. Therefore,

|ϕ(ζ − u)− ϕ(ζ )|=
∣∣∣∣∣
∫ 1

0

d

dt
ϕ(t (ζ − u)+ (1− t)ζ )dt

∣∣∣∣∣
≤

∫ 1

0

n∑
j=1

| ∂

∂ζj

ϕ(ζ − tu)||uj |dt

≤ C

∫ 1

0

n∑
j=1

e
−R

∑n
j=1 |ξj |+tR

∑n
j=1 |uj ||uj |dt

≤ Ce
−R

∑n
j=1 |ξj |+R

∑n
j=1 |uj | ×

n∑
j=1

|uj | . (5)

If |uj | ≤ 1, then |ϕ(ζ − u)− ϕ(ζ )| ≤ Ce
−R

∑n
j=1 |ξj | ×∑n

j=1 |uj |; that is,

|ϕ(ζ − u)− ϕ(ζ )|eR
∑n

j=1 |ξj | ≤ CenR
n∑

j=1

|uj | .

Therefore, for any ε > 0 there exists δ > 0 such that

|u| < δ ⇒ |ϕ(ζ − u)− ϕ(ζ )|eR
∑n

j=1 |ξj | < ε .

For δ1 with 0 < δ1 < δ,

(4)=
∫
|u|≤δ1

E(u, t)(ϕ(ζ − u)− ϕ(ζ ))du

+
∫
|u|≥δ1

E(u, t)ϕ(ζ − u)du−
∫
|u|≥δ1

E(u, t)ϕ(ζ )du

= I1 + I2 + I3 .

|I1|ehK′ (ξ) ≤ |I1|eR
∑n

j=1 |ξj |

≤
∫
|u|≤δ1

E(u, t)|ϕ(ζ − u)− ϕ(ζ )|eR
∑n

j=1 |ξj |du

< ε

∫
Rn

E(u, t)du = ε .
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|I2|ehK′ (ξ) ≤ |I2|eR
∑n

j=1 |ξj |

≤ 1

(4πt)
n
2
e−

δ2
1

8t e
R

∑n
j=1 |ξj |

∫
|u|≥δ1

e−
|u|2
8t |ϕ(ζ − u)|du

≤ C

(4πt)
n
2
e−

δ2
1

8t e
R

∑n
j=1 |ξj |

∫
|u|≥δ1

e−
|u|2
8t e
−R

∑n
j=1 |ξj−uj |du

≤ C

(4πt)
n
2
e−

δ2
1

8t

∫
Rn

e
− |u|28t +R

∑n
j=1 |uj |du

≤ Ce−
δ2
1

8t → 0, (t → 0+) .

|I3|ehK′ (ξ) ≤ |I3|eR
∑n

j=1 |ξj |

≤ 1

(4πt)
n
2
e−

δ2
1

8t e
R

∑n
j=1 |ξj |

∫
|u|≥δ1

e−
|u|2
8t |ϕ(ζ )|du

≤ C

(4πt)
n
2
e−

δ2
1

8t e
R

∑n
j=1 |ξj |

∫
|u|≥δ1

e−
|u|2
8t e
−R

∑n
j=1 |ξj |du

≤ Ce−
δ2
1

8t → 0 , (t → 0+) .

Therefore, we can conclude that ϕt(ζ ) tends to ϕ(ζ ) in Q0 as t → 0+. �

LEMMA 4.3. Let T ∈ Q′0 and t > 0. We define U(z, t) by the convolution of T and
E(z, t):

U(z, t) := 〈Tζ ,E(z− ζ, t)〉 .
Then U(z, t) satisfies the following conditions:

U(z, t) is an entire function of z, (t > 0 fixed) . (6)(
∂

∂t
−�

)
U(z, t) = 0 . (7)

There exist R ≥ 0, b > 0 and C ≥ 0 such that

|U(z, t)| ≤ Ce
1
4t

∑n
j=1(b+|yj |)2+R

∑n
j=1 |xj |+nR2t

. (8)

PROOF. By Lemma 3.7, there exist convex compact sets K1, K ′1 such that

〈T , ϕ〉 =
∫

Rn+ıK1

ϕ(ζ )e
hK′1 (ξ)

dµ(ζ ) .

Therefore,

U(z, t) =
∫

Rn+ıK1

E(z− ζ, t)e
hK′1 (ξ)

dµ(ζ ) . (9)
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We set K ′2 = B2R. By |E(z− ζ, t)| ≤ Ce
−hK′2 (x−ξ) � Ce

2R
∑n

j=1(|xj |−|ξj |), we have

|E(z− ζ, t)e
hK′1

(ξ)| ≤ Ce
2R

∑n
j=1(|xj |−|ξj |)eR

∑n
j=1 |ξj |

≤ Ce
2R

∑n
j=1 |xj |e−R

∑n
j=1 |ξj | . (10)

By Lebesgue’s dominated convergence theorem,

lim
z→z0

U(z, t) =
∫

Rn+ıK1

lim
z→z0

E(z− ζ, t)e
hK′1 (ξ)

dµ(ζ )

= U(z0, t) .

Therefore, U(z, t) is a continuous function in Cn. Let γ be a Jordan curve in Cj . Then∫
γ

∫
Rn+ıK1

|E(z− ζ, t)e
hK′1 (ξ)||dµ(ζ )||dzj | ≤ C

∫
γ

e
2R

∑n
j=1 |xj ||dzj |

< +∞ .

By Fubini’s theorem we have∫
γ

U(z, t)dzj =
∫

Rn+ıK1

∫
γ

E(z− ζ, t)dzj e
hK′1 (ζ )

dµ(ζ ) = 0 .

Therefore, by Morera’s theorem U(z, t) is an entire function of zj . By Hartogs’ theorem
U(z, t) is an entire function in Cn.

Let K ′1 ⊂ BR , R > 0, K ′2 = B2R . By E(z − ζ, t) ∈ Q0 and Cauchy’s integral formula
there exists a constant C ≥ 0 such that∣∣∣∣ ∂2

∂zj
2 E(z− ζ, t)

∣∣∣∣ ≤ Ce
−hK′2 (x−ξ)

≤ Ce
2R

∑n
j=1(|xj |−|ξj |) .

Therefore,
∣∣∣∣ ∂2

∂zj
2 E(z− ζ, t)e

hK′1 (ξ)
∣∣∣∣ ≤ Ce

2R
∑n

j=1 |xj |−R
∑n

j=1 |ξj | . (11)

We can exchange the integration and the differentiation in (9):

�U(z, t) =
∫

Rn+ıK1

�E(z− ζ, t)e
hK′1

(ξ)
dµ(ζ ) .

Let 0 < a0 < t < a1. Then

∣∣∣∣ ∂

∂t
E(ζ, t)

∣∣∣∣ ≤
(4πa1)

n
2
|ζ 2 + · · · + ζ 2|

4a0
2

+ 2πn(4πa1)
n
2−1

(4πa0)n

∣∣∣∣e
η2

4a0
− ξ2

4a1

∣∣∣∣ , (12)
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which implies

sup
ζ∈Rn+ıK1

∣∣∣∣ ∂

∂t
E(ζ, t)e

hK′1 (ξ)
∣∣∣∣ <∞ .

Since a0 > 0, a1 > 0 are arbitrary, we can differentiate the right-hand side of (9) under the
integral for t > 0. Therefore, we have (7).

By Remark 3.6 and the continuity of T , T ∈ Q′b(Rn + ıK,K ′) for some K , K ′. There-
fore, we can find a constant C ≥ 0 such that

|U(z, t)| = | < Tζ ,E(z − ζ, t) > |
≤ C sup

ζ∈Rn+ıK

|E(z− ζ, t)ehK′ (ξ)| . (13)

Let K ⊂ ◦Bb, b > 0, K ′ ⊂ BR , R ≥ 0. Then we have

sup
ζ∈Rn+ıK

|E(z− ζ, t)ehK′ (ξ)|

≤ C

(4πt)
n
2

sup
ζ∈Rn+ıK

e
− 1

4t

∑n
j=1{(xj−ξj )2−(yj−ηj )2}+R

∑n
j=1 |ξj |

≤ C

(4πt)
n
2
e
nR2t+R

∑n
j=1 |xj | sup

ζ∈Rn+ıK

e
1
4t

∑n
j=1(yj−ηj )2

≤ C

(4πt)
n
2
e−

εn
4t e

εn
4t
+nR2t+R

∑n
j=1 |xj | sup

ζ∈Rn+ıK

e
1
4t

∑n
j=1(yj−ηj )2

≤ Ce
nR2t+ εn

4t +R
∑n

j=1 |xj | sup
ζ∈Rn+ıK

e
1
4t

∑n
j=1(yj−ηj )2

≤ Ce
1
4t

∑n
j=1(b+|yj |)2+R

∑n
j=1 |xj |+nR2t

.

So we have

|U(z, t)| ≤ Ce
1
4t

∑n
j=1(b+|yj |)2+R

∑n
j=1 |xj |+nR2t

. �

LEMMA 4.4. Let P(∂) = ∑∞
|α|=0 aα∂α be a partial differential operator of infinite

order with constant coefficients satisfying the following condition:

∃L1 ≥ 0 , ∃C > 0 , s.t . |aα| ≤ CL
|α|
1

α!2 for ∀α ∈ Nn .

Then the operators

P(∂) : Q0 → Q0 and P(∂) : Q′0 → Q′0 (14)

are continuous. For T ∈ Q′0, (14) is defined as follows:

〈P(∂)T , ϕ〉 = 〈T , P (−∂)ϕ〉 for ϕ ∈ Q0 .
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PROOF. Let ϕ ∈ Q0, K , K ′, convex compact sets, K ⊂ Bb , b > 0, K1 = Bb+2L1 . By
Cauchy’s integral theorem,

∣∣∣∣ ∂α

∂zα
ϕ(z)

∣∣∣∣ ≤ α! sup
0≤θj≤2π

|ϕ(z1 + 2L1e
ıθ1, · · · , zn + 2L1e

ıθn)| ×
(

1

2L1

)|α|
.

Therefore, for z ∈ Rn + ıK , we have∣∣∣∣
∞∑
|α|=0

aα

∂α

∂zα
ϕ(z)ehK′ (x)

∣∣∣∣ ≤ C sup
z∈Rn+ıK1

|ϕ(z)|ehK′(x)
∞∑
|α|=0

(
1

2

)|α|

≤ C sup
z∈Rn+ıK1

|ϕ(z)|ehK′(x) .

It follows that P(∂) : Q0 → Q0 is continuous. The continuity of P(∂) : Q′0 → Q′0 is
obtained by the duality. �

The following Lemma 4.5 and Lemma 4.6 are very useful later. For the details of the
proof we refer the reader to [6]:

LEMMA 4.5 ([6]). If a function f (t), defined for t > 0, satisfies the condition:

∃L > 0, ∃C > 0 , s.t. |f (t)| ≤ Ce
L
t , t > 0 ,

then there exists l > 0 such that f (t)e−N∗( 1
t
) is bounded, where

N∗(t) = sup
p

log

(
lptp

p!
)

. (15)

LEMMA 4.6 ([6]). For any l > 0 and ε1 > 0 there exists a function v(t) ∈ C∞0 (R),

an ultradifferential operator P(d/dt) and L1 ≥ 0 such that

supp v(t) ⊂ [0, ε1] ,

|v(t)| ≤ 1

2
e−N∗( 1

t
) , t > 0 ,

where N∗(t) is given by (15),

P

(
d

dt

)
=
∞∑

n=0

an

(
d

dt

)n

, |an| ≤ CLn
1

n!2 , P

(
d

dt

)
v(t) = δ + w(t) ,

w(t) ∈ C∞0 (R) , supp w(t) ⊂
[ε1

2
, ε1

]
.

LEMMA 4.7. Let f (x) be a measurable function on Rn satisfying the following con-
dition:

∃R ≥ 0 , ∃C ≥ 0 s.t. |f (x)| ≤ Ce
R

∑n
j=1 |xj | .
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Then we can consider f (x) as an element of Q′0 in the following manner:

〈
Tf , ϕ

〉 =
∫

R
f (x)ϕ(x)dx , ϕ ∈ Q0 .

PROOF. The linearity of Tf is trivial. We prove only the continuity. Let K and

K ′ be convex compact sets in Rn such that
◦
K ′ ⊃ BR . Since ϕ ∈ Q0, we have

supz∈Rn+ıK |ϕ(z)ehK′ (x)| <∞. Therefore,

|〈Tf , ϕ〉| ≤
∫

Rn

|f (x)||ϕ(x)|dx

≤ C sup
z∈Rn+ıK

|ϕ(z)ehK′(x)|
∫

Rn

e
R

∑n
j=1 |xj |−hK′ (x)

dx

≤ C sup
z∈Rn+ıK

|ϕ(z)ehK′(x)| .

The proof is complete. �

5. Main Theorem.

THEOREM 5.1. Let T ∈ Q′0 and U(z, t) = 〈Tζ ,E(z−ζ, t)〉. Then U(z, t) is an entire
function of z and C∞-function of t, t > 0 satisfying the following conditions:

(
∂

∂t
−�

)
U(z, t) = 0 , (16)

U(z, t)→ T in Q′0 (t → 0+) . (17)

There exist R ≥ 0, b ≥ 0 and C ≥ 0 such that

|U(z, t)| ≤ Ce
1
4t

∑n
j=1(b+|yj |)2+R

∑n
j=1 |xj |+nR2t for z ∈ Cn , t > 0 . (18)

Conversely, for a function U(z, t), t > 0, entire in z, C∞ in t > 0, satisfying (16) and
(18), there exists a unique T ∈ Q′0 such that

〈Tζ ,E(z− ζ, t)〉 >= U(z, t) .

PROOF. By Lemma 4.3, we have (16) and (18).
Let ϕ ∈ Q0. By Lemma 3.7,∫

Rn

U(z, t)ϕ(x)dz =
∫

Rn

〈Tζ ,E(z− ζ, t)〉ϕ(z)dz

=
∫

Rn

∫
Rn+ıK

E(z− ζ, t)ehK′ (ξ)dµ(ζ )ϕ(z)dz .
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Take R > 0 such that K ′ ⊂ BR , and put K ′2 = B2R and K ′3 = B3R. By E(z− ζ, t) ∈ Q0 and
ϕ(z) ∈ Q0, there exist C2 ≥ 0 and C3 ≥ 0 such that

|E(z− ζ, t)| ≤ C2e
−hK′2 (x−ξ) = C2e

−2R
∑n

j=1 |xj−ξj | ,

|ϕ(z)| ≤ C3e
−hK′3

(x) = C3e
−3R

∑n
j=1 |xj | .

Since we have∫
Rn

∫
Rn+ıK

|E(z− ζ, t)|ehK′ (ξ)|dµ(ζ )||ϕ(z)||dz|

≤ C2C3

∫
Rn

∫
Rn+ıK

e
−2R

∑n
j=1 |xj−ξj |+R

∑n
j=1 |ξj ||dµ(ζ )|e−3R

∑n
j=1 |xj |dx

≤ C

∫
Rn

e
−R

∑n
j=1 |xj |dx

∫
Rn+ıK

e
−2R

∑n
j=1 |ξj ||dµ(ζ )| < +∞ .

By Fubini’s theorem, we have∫
Rn

U(z, t)ϕ(z)dz =
∫

Rn+ıK

{∫
R

E(z− ζ, t)ϕ(z)dz

}
ehK′(ξ)dµ(ζ )

= 〈Tζ , ϕt (ζ )〉 .
By Lemma 4.2, ϕt(ζ )→ ϕ(ζ ) in Q0 (t → 0+), we have

〈Tζ , ϕt (ζ )〉 → 〈Tζ , ϕ(ζ )〉 (t → 0+) .

It shows that

U(z, t)→ T in Q′0 (t → 0+) .

Now we shall prove the converse. Let U(z, t)|Rn+ıBb1
= c(z, t), b1 ≥ 0, and F(z, t) =

c(z, t)e
−R

∑n
j=1 |xj |−nR2t . Then we have(

∂

∂t
−�

)
c(z, t) = 0 ,

|c(z, t)| ≤ Ce
1
4t

∑n
j=1(b+b1)

2+R
∑n

j=1 |xj |+nR2t
,

|F(z, t)| ≤ Ce
1
4t

∑n
j=1(b+b1)

2
.

By Lemma 4.5, there exists l > 0 such that |F(z, t)|e−N∗( 1
t ) is bounded for t > 0. For this

l > 0, by Lemma 4.6, we construct P
(

d
dt

)
and v(t). Let

c̃(z, t) =
∫ ∞

0
c(z, t + s)v(s)ds .

We need two lemmas.
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LEMMA 5.2. c̃(z, t) satisfies the following conditions:
(

∂

∂t
−�

)
c̃(z, t) = 0 , t > 0 , (19)

there exist R ≥ 0, C ≥ 0, such that

|c̃(z, t)| ≤ Ce
R

∑n
j=1 |xj |+nR2t

, t ≥ 0 (20)

c̃(z, t) is an entire function of z for t ≥ 0 . (21)

PROOF. By assumption,

|c(z, t + s)|e−R
∑n

j=1 |xj |−nR2(t+s) = |F(z, t + s)|
≤ CeN∗( 1

t+s ) ≤ CeN∗( 1
s
) .

By the above inequality, we have

|c(z, t + s)| ≤ Ce
N∗( 1

s
)+R

∑n
j=1 |xj |+nR2(t+s)

.

Since |v(s)| ≤ 1
2e−N∗( 1

s ), s > 0,

|c(z, t + s)v(s)| ≤ CeR
∑n

j=1 |xj |+nR2(t+s) . (22)

By supp c(z, t + s)v(s) ⊂ [0, ε1],

c(z, t + s)v(s) =
{

c(z, t + s)v(s) , s > 0
0 , s = 0 .

(23)

Therefore, lim
t→0+

c(z, t + s)v(s) := c(z, s)v(s) exists for s ≥ 0 and it follows from (22) that

|c(z, t + s)v(s)| ∈ L1([0, ε1]) as function of s. By Lebesgue’s dominated theorem, we have

lim
t→0+

c̃(z, t) =
∫ ε1

0
lim

t→0+
c(z, t + s)v(s)ds

=
∫ ε1

0
c(z, s)v(s)ds .

Therefore, c̃(z, t) is a continuous function in t ≥ 0. Furthermore

lim
z→z0

c̃(z, t) =
∫ ∞

0
lim

z→z0
c(z, t + s)v(s)ds

= c̃(z0, t) ,

which proves the continuity of c̃(z, t) in z, t ≥ 0.
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It is obvious that c̃(z, t) is an entire function of z for t > 0. We see that c̃(z, t) is an
entire functions of z for t = 0. Let γ be a Jordan curve in Cj , ε2 > 0,

M := C

∫
γ

e
R

∑n
j=1 |zj ||dzj | ,

m := enR2
,

0 <δ < min
{ ε2

Mm
, ε1, 1

}
.

Then by

∫
γ

lim
t→0+

c̃(z, t)dzj =
∫

γ

∫ δ

0
c(z, s)v(s)dsdzj +

∫
γ

∫ ε1

δ

c(z, s)v(s)dsdzj

=
∫

γ

∫ δ

0
c(z, s)v(s)dsdzj ,

we have

∣∣∣∣
∫

γ

lim
t→0+

c̃(z, t)dzj

∣∣∣∣ ≤ C

∫
γ

e
R

∑n
j=1 |xj ||dzj |

∫ δ

0
enR2sds

= δMm < ε2 .

Since ε2 > 0 is arbitrary, we have
∫
γ c̃(z, 0)dzj = 0. By Morera’s theorem c̃(z, 0) is an entire

function of zj . By Hartogs’ theorem, c̃(z, 0) is an entire function in Cn.
Furthermore by Cauchy’s integral formula,

|�c(z, t + s)| ≤ C sup
0≤θ≤2π

|c(z+ eıθ , t + s)| .

By sup0≤θ≤2π |c(z+ eıθ , t + s)||v(s)| ∈ L1([0, ε1]) for s, we have

�c̃(z, t) =
∫ ∞

0
�c(z, t + s)v(s)ds ,

By
(

∂
∂t
−�)

c(z, t + s) = 0, and

∂

∂t
c̃(z, t) =

∫ ∞
0

∂

∂t
c(z, t + s)v(s)ds ,

we have (19).
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By (22), (23) and supp c(z, t + s)v(s) ⊂ [0, ε1],

|c̃(z, t)| =
∣∣∣∣
∫ ∞

0
c(z, t + s)v(s)ds

∣∣∣∣
=

∣∣∣∣
∫ ε1

0
c(z, t + s)v(s)ds

∣∣∣∣
≤

∫ ε1

0
|c(z, t + s)v(s)|ds

≤ Ce
R

∑n
j=1 |xj |+nR2t

∫ ε1

0
enR2sds

≤ C1e
R

∑n
j=1 |xj |+nR2t for t ≥ 0 .

Therefore, we have (20). �

LEMMA 5.3. Let t > 0 and P be an ultradifferential operator given in Lemma 4.6.
Then we have

P(−�)

∫ ∞
0

c(z, t + s)v(s)ds =
∫ ∞

0
P(−�)c(z, t + s)v(s)ds .

PROOF. Since c(z, t + s) is an entire function, by Cauchy’s integral formula, we have

∂2m

∂z2m
c(z, t + s) = (2m)!

(2πı)n

∫
∂B(z,4L1)

c(ζ, t + s)

(ζ − z)2m+1 dζ ,

where L1 is of Lemma 4.6. Therefore,

∣∣∣∣ ∂2m

∂z2m
c(z, t + s)

∣∣∣∣ |v(s)| ≤ (2m)!
(4L1)2m

sup
0≤θ≤2π

|c(z+ 4L1e
ıθ , t + s)||v(s)|

≤ (2m)!
(4L1)2m

Ce
R

∑n
j=1 |xj |+nR2(t+s)

.

Since

∫ ε1

0

(2m)!
(4L1)2m

e
R

∑n
j=1 |xj |+nR2(t+s)

ds < +∞ ,

we have

∂2m

∂z2m

∫ ∞
0

c(z, t + s)v(s)ds =
∫ ∞

0

∂2m

∂z2m
c(z, t + s)v(s)ds .
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Furthermore by
∞∑

m=0

∫ ∞
0
|am|

∣∣∣∣ ∂2m

∂z2m
c(z, t + s)

∣∣∣∣ |v(s)|ds

≤ Ce
R

∑n
j=1 |xj |+nR2t

∞∑
m=0

(
1

2

)m

< +∞ ,

we have

P(−�)

∫ ∞
0

c(z, t + s)v(s)ds =
∫ ∞

0
P(−�)c(z, t + s)v(s)ds . �

Now we resume the proof of Theorem 5.1.
We notice that v(s) ∈ E ′[0, ε1] since supp v(s) ⊂ [0, ε1], where E ′[0, ε1] is the space of

Schwartz distributions with support in [0, ε1] and for t > 0, c(z, t + s) ∈ C∞((−ε3,∞)) of
s, 0 < ε3 < t . Therefore, since c(z, t + s) is a test function, for t > 0, by Lemma 5.3 and
(16), we have

P(−�)c̃(z, t) = P(−�)

∫ ∞
0

c(z, t + s)v(s)ds

=
∫ ∞

0
P(−�)c(z, t + s)v(s)ds

= 〈v(s), P (−�)c(z, t + s)〉

=
〈
v(s), P (− ∂

∂t
)c(z, t + s)

〉

=
〈
P

(
∂

∂s

)
v(s), c(z, t + s)

〉

= 〈δ(s)+w(s), c(z, t + s)〉

= c(z, t)+
∫ ∞

0
c(z, t + s)w(s)ds .

Namely we obtain

P(−�)c̃(z, t) = c(z, t)+
∫ ∞

0
c(z, t + s)w(s)ds , t > 0 .

Now, we put

H(z, t) = −
∫ ∞

0
c(z, t + s)w(s)ds , (24)

g (z) = c̃(z, 0) , h(z) = −
∫ ∞

0
c(z, s)w(s)ds , (25)

T (z) = P(−�)g (z)+ h(z) . (26)
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Then by Lemma 5.2 and supp w(s) ⊂ [ε1/2, ε1], H(z, t), g (z) and h(z) are entire functions
and (

∂

∂t
−�

)
H(z, t) = 0 , t > 0 , (27)

|H(z, t)| ≤ Ce
R

∑n
j=1 |xj |+nR2t

, (28)

|g (z)| ≤ Ce
R

∑n
j=1 |xj | , |h(z)| ≤ Ce

R
∑n

j=1 |xj | , (29)

and by Lemma 4.7 and Lemma 4.4, T (z) ∈ Q′0. We define A(z, t) and B(z, t), t > 0 by

A(z, t) = g (z) ∗E(z, t) :=
∫

Rn

g (ζ )E(z− ζ, t)dζ ,

B(z, t) = h(z) ∗ E(z, t) :=
∫

Rn

h(ζ )E(z− ζ, t)dζ .

Then we can see that (
∂

∂t
−�x

)
A(x, t) = 0 , (30)

(
∂

∂t
−�x

)
B(x, t) = 0 . (31)

By (29), we have

A(z, t) → g (z) , t → 0+, uniformly in Cn, (32)

B(z, t) → h(z) , t → 0+, uniformly in Cn . (33)

Let 0 < t < T . For δ > 0,

|A(x, t)| ≤
∫
|ξ |≤δ

|g (x − ξ)E(ξ, t)|dξ +
∫
|ξ |≥δ

|g (x − ξ)E(ξ, t)|dξ

= I1 + I2 .

Then we have

I1 ≤ Ce
R

∑n
j=1 |xj |

∫
Rn

E(ξ, t)dξ ≤ Ce
R

∑n
j=1 |xj | .

I2 ≤
∫
|ξ |≥δ

Ce
R

∑n
j=1 |xj−ξj |E(ξ, t)dξ

= Ce
R

∑n
j=1 |xj |

(4πt)
n
2

∫
|ξ |≥δ

e
R

∑n
j=1 |ξj |− ξ2

4t dξ

= Ce
R

∑n
j=1 |xj |

(4πt)
n
2

∫
|ξ |≥δ

e−
1
4t

(|ξ |−2Rt)2+R2t dξ . (34)
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For δ > 0, sufficiently large, there exists δ′ > 0 such that

Ce
R

∑n
j=1 |xj |

(4πt)
n
2

∫
|ξ |≥δ

e−
1
4t (|ξ |−2Rt)2+R2t dξ

= Ce
R

∑n
j=1 |xj |− δ′2

8t

(4πt)
n
2

∫
|ξ |≥δ

e−
1
8t (|ξ |−2Rt)2

dξ

≤ Ce
R

∑n
j=1 |xj |

∫
|ξ |≥δ

e−
1

8T (|ξ |−2Rt)2
dξ

≤ Ce
R

∑n
j=1 |xj | .

It follows from (34) that I2 ≤ Ce
R

∑n
j=1 |xj |. Therefore, we have

|A(z, t)| ≤ Ce
R

∑n
j=1 |xj | , 0 < t < T . (35)

Similarly,

|B(z, t)| ≤ CeR
∑n

j=1 |xj | , 0 < t < T . (36)

From (19), (20), (25), (30), (32) and (35), it follows that c̃(z, t) and A(z, t) satisfy the heat
equation and the same estimates and have the same initial values. So by the uniqueness
theorem for the initial value problem of the heat equation [4], it follows that

A(z, t) = c̃(z, t) . (37)

Similarly,

B(z, t) = −
∫ ∞

0
c(z, t + s)w(s)ds . (38)

By (26), (37) and (38), we have

〈Tζ ,E(z− ζ, t)〉 = T (z) ∗E(z, t)

= P(−�)g(z) ∗ E(z, t)+ h(z) ∗ E(z, t)

= P(−�)c̃(z, t)−
∫ ∞

0
c(z, t + s)w(s)ds

= U(z, t) . �
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