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Abstract. In this note Hurwitzian numbers are defined for the nearest integer, and backward continued fraction
expansions, and Nakada’s α-expansions. It is shown that the set of Hurwitzian numbers for these continued fractions
coincides with the classical set of such numbers.

1. Introduction.

It is well-known that every real irrational number x has a unique regular continued frac-
tion expansion of the form

x = [a0; a1, · · · , an, · · · ] ,(1)

where a0 ∈ Z is such that x − a0 ∈ [0, 1), and an ∈ N for n ≥ 1. The number x is called
Hurwitzian if (1) can be written as

x = [a0; a1, · · · , an, an+1(k), · · · , an+p(k)]∞k=0 ,(2)

where an+1(k), · · · , an+p(k) (the so-called quasi period of x) are polynomials with rational
coefficients which take positive integral values for k = 0, 1, 2, · · · , and at least one of them
is not constant. By the bar we mean that an+i+kp = an+i(k), where 1 ≤ i ≤ p and k ≥ 0. A
well-known example of such numbers is e = [2; 1, 2k + 2, 1]∞k=0; see [P] for more examples.
Hurwitzian numbers are generalizations of numbers with an eventually periodic continued
fraction expansion. An old and classical result states, that a number x is a quadratic irrational
(that is, an irrational root of a polynomial of degree 2 with integer coefficients) if and only if
x has a continued fraction expansion which is eventually periodic, i.e., if x is of the form

x = [a0; a1, · · · , ap, ap+1, · · · , ap+�] , p ≥ 0, � ≥ 1 ,(3)

where the bar indicates the period, see [HW], [O] or [P] for various classical proofs of this
result.

Apart from the regular continued fraction (RCF) expansion of x there are very many
other—classical—continued fraction expansions of x, such as the nearest integer continued
fraction (NICF) expansion, the ‘backward’ continued fraction expansion, and Nakada’s α-
expansions. In this note we will define what Hurwitzian numbers are for such continued
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fraction expansions and show that their set of Hurwitzian numbers coincides with the classical
set of Hurwitzian numbers. As a by-product quadratic irrationals will have an eventually
period expansion for each of these expansions.

2. Hurwitzian numbers for the NICF.

Every x ∈ R \ Q can be expanded in a unique continued fraction expansion

x = b0 + e1

b1 + e2

b2 + . . . + en

bn + . . .

=: [ b0; e1/b1, e2/b2, · · · , en/bn, · · · ] ,

satisfying b0 ∈ Z, x − b0 ∈ [−1/2, 1/2), en = ±1, bn ∈ N and en+1 + bn ≥ 2 for n ≥ 1.
This continued fraction expansion is known as the nearest integer continued fraction (NICF)
expansion of x.

In [K] it is shown that the NICF expansion can be obtained from the RCF by singularizing
the first, the third, etc. 1’s in every block of consecutive 1’s preceded by either a partial
quotient different from 1 or preceded by a0. This singularization process is based upon the
identity

A + e

1 + 1

B + ξ

= A + e + − e

B + 1 + ξ
.

EXAMPLE 1. The NICF expansion of e is given by

[3; −1/4, −1/2, 1/(2k + 5)]∞k=0 .

In view of this example we have the following definition.

DEFINITION 1. Let x ∈ R \ Q. Then x has an NICF-Hurwitzian expansion if

x = [b0; e1/b1, · · · , en/bn, en+1/bn+1(k), · · · , en+p/bn+p(k)]∞k=0

where b0 ∈ Z, x − b0 ∈ [−1/2, 1/2), en = ±1, bn ∈ N and en+1 + bn ≥ 2 for n ≥ 1.
Moreover, for i = 1, · · · , p we have that bn+i(k) are polynomials with rational coefficients
which take positive integral values for k = 0, 1, 2, · · · , and at least one of them is non-
constant.

The following result gives the necessary and sufficient condition for an irrational number
to have an NICF-Hurwitzian expansion.

THEOREM 1. Let x ∈ R \ Q. Then x is Hurwitzian if and only if x has an NICF-
Hurwitzian expansion.
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PROOF. Let x be a Hurwitzian number with RCF expansion given by (1) and (2). Let
m0 ∈ N, m0 ≥ n, be such that am0 > 1. Note that (2) can also be written as

x = [a0; a1, · · · , am0, ãm0+1(k), · · · , ãm0+p(k)]∞k=0 ,(4)

where a1, · · · , am0 are positive integers, and where ãm0+1(k), · · · , ãm0+p(k) are polynomials
with rational coefficients which take positive integral values for k = 0, 1, 2, · · · , and at least
one of them is not constant. Suppose moreover that m0 is chosen in such a way, that for all
k ≥ 0 all the non-constant polynomials in the quasi-period ãm0+1(k), · · · , ãm0+p(k) have
values greater than 1.

For i ∈ {1, · · · , p − 1} we consider 2 cases:

Case (i): am0+i = 1. By definition of a Hurwitzian number there exist numbers j1 ∈
{0, 1, · · · , i − 1} and j2 ∈ {i + 1, · · · , p} for which am0+j1 > 1, am0+j2 > 1, and

am0+j1+1 = · · · = am0+i = · · · = am0+j2−1 = 1 .

In case i − j1 is odd the digit am0+i = 1 will be singularized, and in case i − j1 is even it
will not be singularized, but it will either change into −1/2 if j2 = i + 1, or into −1/3 if
j2 ≥ i + 2. Due to the quasi-periodicity and by definition of m0 we have for each k ∈ N that

am0+j1+kp+1 = · · · = am0+i+kp = · · · = am0+j2+kp−1 = 1 ,

and each of these blocks is singularized in the same way as the block am0+j1+1 = · · · =
am0+i = · · · = am0+j2−1 was singularized, which means the same thing will happen to
am0+i+(k−1)p = 1 for all k ∈ N.

Case (ii): am0+i > 1 (am0+i is either a constant or a polynomial). We have 4 possible
cases:

(a) am0+i−1 = 1 = am0+i+1. In this case, am0+i−1 = 1 belongs to a block of 1’s and
will be singularized if and only if this block has odd length. On the other hand, am0+i+1 = 1
will always be singularized, so that am0+i will either become −1/(am0+i + 2) (if the block of
1’s ‘before’ am0+i has odd length), or become 1/(am0+i + 1).

(b) am0+i−1 �= 1 = am0+i+1. In this case, am0+i becomes 1/(am0+i + 1), due to the
singularization of am0+i+1 = 1.

(c) am0+i−1 = 1 �= am0+i+1. In this case, am0+i becomes either −1/(am0+i + 1), or
remains unchanged, depending on whether am0+i−1 = 1 is singularized or not.

(d) am0+i−1 �= 1 �= am0+i+1. In this case am0+i will remain unchanged.
Due to the periodicity the same thing will happen to am0+i+(k−1)p > 1 for all k ∈ N.
To conclude, from (i) and (ii) we see that for each i ∈ {1, · · · , p} and for all k ∈ N one

has exactly one of the following possibilities:
— am0+i+(k−1)p = 1 always disappears due to a singularization;
— am0+i+(k−1)p > 1 always remains unchanged;
— am0+i+(k−1)p > 1 always becomes −1/(am0+i+(k−1)p + 1) due to the singulariza-

tion of a digit 1 before it;
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— am0+i+(k−1)p = 1 always becomes 1/(am0+i+(k−1)p + 1) due to the singularization
of a digit 1 after it;

— am0+i+(k−1)p = 1 always becomes −1/(am0+i+(k−1)p + 2) due to the singulariza-
tion of a digit 1 before and after it.
Thus we obtain a quasi-period for the NICF expansion of x.

Conversely, since the singularization process can be reversed in a unique way, we see
that a NICF-Hurwitzian number x is also Hurwitzian. �

Applying the procedure given in the proof of Theorem 1 yields that the NICF-expansion
of e is given by e = [3; −1/4, −1/2, 1/(2k + 5),−1/2]∞k=0, which is another way of writing
e in Example 1.

From the proof of Theorem 1 it is at once clear that x is a quadratic irrational if and only
if the NICF-expansion of x is eventually periodic.

3. Hurwitzian numbers for the backward continued fraction.

Every x ∈ R \ Q can be expanded in a unique continued fraction expansion

c0 − 1

c1 − 1

c2 − . . . − 1

cn − . . .

=: [ c0; −1/c1, −1/c2, · · · , −1/cn, · · · ] ,

where c0 ∈ Z such that x−c0 ∈ [−1, 0) and ci ’s are all integers greater than 1. This continued
fraction is known as the backward continued fraction expansion of x; see [DK] for details.

Proposition 2 in [DK] gives an algorithm yielding the backward continued fraction ex-
pansion from the regular one using singularizations and insertions. The latter is based on the
following identity.

A + 1

B + ξ
= A + 1 + − 1

1 + 1

B − 1 + ξ

.

From this algorithm it follows that x = [a0; a1, a2, · · · ] has as backward expansion

[a0 + 1; (−1/2)a1−1, −1/(a2 + 2), (−1/2)a3−1, −1/(a4 + 2), · · · ](5)

where (−1/2)t is an abbreviation of −1/2, · · · ,−1/2︸ ︷︷ ︸
t -times

for t ≥ 1. In case t = 0, the term

(1/2)t should be omitted.

EXAMPLE 2. The backward expansion of e is given by

[3; −1/(4k + 4), −1/3, (−1/2)4k+3, −1/3 ]∞k=0 .

This example leads to the following definition.
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DEFINITION 2. Let x ∈ R \ Q. Then x has a backward-Hurwitzian expansion if

x = [c0; (−1/c1)
r1, · · · , (−1/cn)

rn,

(−1/cn+1(k))rn+1(k), · · · , (−1/cn+p(k))rn+p(k) ]∞k=0

where c0 ∈ Z such that x − c0 ∈ [−1, 0); (ci , ri ) = (c, 1) or (2, r) for i = 1, · · · , n, where c

is an integer greater than 2 and r a positive integer. We call p the ‘length’ of the quasi-period.
Moreover,

(cn+i (k), rn+i (k)) = (fi(k), 1) or (2, g i (k))

for i = 1, · · · , p where fi(k) and g i (k) are polynomials with rational coefficients which take
positive integral values for k = 0, 1, 2, · · · and at least one of them is not constant. Here
(−1/c)r is an abbreviation of −1/c, · · · ,−1/c︸ ︷︷ ︸

r-times

.

The following result gives the necessary and sufficient condition for an irrational number
to have a backward-Hurwitzian expansion.

THEOREM 2. Let x ∈ R \ Q. Then x is Hurwitzian if and only if x has a backward-
Hurwitzian expansion.

PROOF. Let x be a Hurwitzian number, with RCF-expansion (1). We first note that (5)
yields that an in the RCF-expansion of x becomes (−1/2)an−1 in the backward expansion of
x if n is odd, and becomes −1/(an + 2) if n is even. Let m0 be defined as in the proof of
Theorem 1. Then for all i > m0 we observe the following:

(i) If ai = 1, then it either disappears in case i is odd, or becomes −1/3 in case i is
even.

(ii) If ai > 1, then it either becomes (−1/2)ai−1 in case i is odd, or −1/(ai + 2) in
case i is even.
Let p be the length of the quasi-period of the RCF-expansion of x. We see that for all k ∈ N
the same thing will happen to each ai+(k−1)p if p is even or to each ai+2(k−1)p if p is odd,
which yields a quasi-periodicity for the backward expansion of x.

Conversely, since the singularization and insertion processes can be reversed in a unique
way, we see that a backward-Hurwitzian number x is also Hurwitzian. �

Clearly x is a quadratic irrational if and only if the backward-expansion of x is eventually
periodic. The next section gives a generalization of Section 2.

4. Hurwitzian numbers for α-expansions.

In this section we will define Hurwitzian numbers for the so-called α-expansions, of
which the nearest interger continued fraction expansion is an example. These α-expansions
were introduced and studied by H. Nakada in 1981 ([N]). We will show that Hurwitzian
numbers for these α-expansions also coincide with the classical Hurwitzian numbers.
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For α ∈ [1/2, 1], let x ∈ [α − 1, α] and define

f1 = f1(x) := �|1/x| + 1 − α� , x �= 0 ,

fn = fn(x) := f1(T
n−1
α (x)) , n ≥ 2 , T n−1

α (x) �= 0 ,
(6)

where Tα : [α − 1, α] → [α − 1, α] is defined by

Tα = |1/x| − �|1/x| + 1 − α�
and �ξ� denotes the largest integer not exceeding ξ .

Every x ∈ R \ Q can be expanded in a continued fraction expansion

x = [f0; e1/f1, e2/f2, · · · , en/fn, · · · ] ,

where f0 ∈ Z, x − f0 ∈ [α − 1, α), en = ±1, fn ∈ N, n ≥ 1, are given by (6). We call this
continued fraction the α-expansion of x.

REMARK. Note that for α = 1/2 one has the NICF-expansion, while α = 1 is the RCF
case.

In [K] it is shown that α-expansions can be viewed as S-expansions, with singularization
areas

Sα = [α, 1] × [0, 1] , if g < α ≤ 1

and

Sα = [α, g ) × [0, g ) ∪ [g , (1 − α)/α] × [0, g ] ∪ ((1 − α)/α, 1] × [0, 1]
in case 1/2 ≤ α ≤ g , where g = (

√
5 − 1)/2; see Figure 1.
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(i) g < α ≤ 1 (ii) 1/2 ≤ α ≤ g

FIGURE 1. Singularization areas for α-expansions.
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In general a singularization area S is a subset of the so-called natural extension [0, 1) ×
[0, 1] of the RCF-expansion, which satisfies the following three conditions:

(i): S ⊂ [1/2, 1) × [0, 1]; (ii): T (S) ∩ S = ∅ and (iii): λ(∂S) = 0.
Here λ is Lebesgue measure on [0, 1) × [0, 1], and T : [0, 1) × [0, 1] → [0, 1) × [0, 1] is the
natural extension map of the RCF-expansion, given by

T (x, y) =
(

1

x
−
⌊

1

x

⌋
,

1

� 1
x
� + y

)
, (x, y) ∈ (0, 1) × [0, 1]; T (0, y) = (0, 0), y ∈ [0, 1] .

Let x ∈ [0, 1), with RCF-expansion [a0; a1, a2, · · · ]. Then the S-expansion of x is obtained
via the following algorithm:

singularize an+1 = 1 if and only if (Tn, Vn) ∈ Sα ,

where Tn = [0; an+1, an+2, · · · ] and Vn = [0; an, · · · , a1], i.e., (Tn, Vn) = T n(x, 0), for
more details, see [K].

The following lemma is very handy.

LEMMA 1. Let x, y ∈ [0, 1), with RCF-expansions

x = [0; a1(x), a2(x), · · · ] , y = [0; a1(y), a2(y), · · · ] .

Let x �= y and k ∈ N ∪ {0} be such that

a1(x) = a1(y), · · · , ak−1(x) = ak−1(y) , and ak(x) �= ak(y) .

Then one has

x > y if and only if

{
ak(x) < ak(y) if k is odd ,

ak(x) > ak(y) if k is even .

PROOF. For n ∈ N, a1, · · · , an ∈ N, define cylinders ∆n(a1, · · · , an) by

∆n(a1, · · · , an) = {x ∈ [0, 1) ; a1(x) = a1, · · · , an(x) = an} .

For x, y ∈ ∆k−1(a1, · · · , ak−1), x < y, one has by definition of the RCF-map T = T1 that
T (x), T (y) ∈ ∆k−2(a2, · · · , ak−1), and T (x) > T (y). Repeating this argument k − 2-times,
we find that T k−2(x), T k−2(y) ∈ ∆1(ak−1), and that T k−2(x) < T k−2(y) if and only if
k is even. Since T (∆1(ak−1)) = [0, 1) and ak(x) �= ak(y), it follows from the definition
of T that T k−1(x) > T k−1(y) if and only if k is even. Since T k−1(x) ∈ ∆1(ak(x)) =
(1/(ak + 1), 1/ak], and T k−1(y) ∈ ∆1(ak(y)), it follows that ak(x) < ak(y) if and only if k

is even. �

We now define Hurwitzian numbers for α-expansions.

DEFINITION 3. Let x ∈ R \ Q. Then, for a fixed α ∈ [1/2, 1], x has an α-Hurwitzian
expansion if

x = [f0; e1/f1, · · · , en/fn, en+1/fn+1(k), · · · , en+p/fn+p(k)]∞k=0(7)

is the α-expansion of x, where f0 ∈ Z, x − f0 ∈ [α − 1, α), en = ±1, fn ∈ N, n ≥ 1, are
given by (6). Moreover, for i = 1, · · · , p we have that fn+i are polynomials with rational



360 Y. HARTONO AND C. KRAAIKAMP

coefficients which take positive integral values for k = 0, 1, 2, · · · , and at least one of them is
non-constant.

We have the following theorem.

THEOREM 3. Let x ∈ R\Q. Then x is Hurwitzian if and only if x has an α-Hurwitzian
expansion.

PROOF. As in the proof of Theorem 1, let m0 ∈ N be such that am0 > 1, and for all
m ≥ m0 all the non-constant polynomials in the quasi-period ãn+1(k), · · · , ãn+p(k) of the
RCF-expansion (4) of x have values greater than 1. Let k ∈ {m0 + 1, · · · , m0 + p} be such
that ak = 1. Then

T k−1(x) = [0; 1, ak+1, · · · ] .

CASE 1: g < α ≤ 1. In this case ak = 1 must be singularized if and only if
T k−1(x) ≥ α.

Clearly there exists a minimal i ∈ {1, · · · , p} such that ak+i is a value of a non-constant
polynomial. Further, let j ∈ N ∪ {∞} be the first index such that

ak+j �= aj+1(α)

where α = [0; 1, a2(α), · · · ] is the RCF expansion of α.
In case j ≥ i, there exists an �0 ≥ 0 such that, by Lemma 1 for all � ≥ �0

T k+�p−1(x) > α ⇔ i is odd ,

implying that ak+�p = 1 must be singularized for all � ≥ �0 if and only if i is odd. Otherwise,
they are never singularized for all � ≥ �0.

If 1 ≤ j � i, then ak+j is a constant different from aj+1(α), so

T k+�p−1(x) ≥ α ⇔ j is odd and ak+j > aj+1(α),

and we see that ak+�p = 1 must be singularized for all � ≥ 0 if and only if j is odd and
ak+j > aj+1(α) (or equivalently, if and only if j is even and ak+j < aj+1(α)).

CASE 2: 1/2 ≤ α ≤ g . In this case we have to consider (Tk−1, Vk−1). It is clear
that there exists a minimal h ∈ {1, · · · , p} such that ak+�p−h > 1 for all � ≥ 0. If h is odd
implying Vk−1 < g , then ak = 1 must be singularized if and only if Tk−1 > α. In this case,
let i and j be defined as in Case 1. If j ≥ i, then there exists an �2 ≥ 0 such that for all � ≥ �2

one has

Tk+�p−1(x) > α ⇔ i is odd .

If 1 ≤ j � i, one has

Tk+�p−1 ≥ α ⇔ j is odd and ak+j > aj+1(α) .

On the other hand, if h is even implying Vk−1 > g , then ak = 1 must be singularized if
and only if Tk−1 > (1 − α)/α. Again let i be defined as in Case 1, but j be such that

ak+j �= aj+1((1 − α)/α) ,
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where [0; 1, a2(
1−α
α

), a2(
1−α
α

), · · · ] denotes the RCF expansion of (1 − α)/α.
If j ≥ i, then there exists an �3 ≥ 0 such that for all � ≥ �3 one has

Tk+�p−1 > (1 − α)/α ⇔ i is odd .

If 1 ≤ j � i, one has

Tk+�p−1 ≥ (1−α)/α ⇔ j is odd and ak+j > aj+1((1−α)/α). �

EXAMPLE 3. Here we give α-expansions of e for some values of α.
(i) For α = 0.7,

e = [3; −1/3, 1/2, −1/(2k + 5), 1/2]∞k=0 .

(ii) For α = 0.52,

e = [3; −1/4, −1/2, 1/5,

−1/2, 1/7, −1/2, 1/9, −1/2, 1/10, 1/2, −1/(2k + 13), 1/2]∞k=0 .

(iii) For α = 0.53,

e = [3; −1/4, −1/2, 1/5, −1/2, 1/6, 1/2, −1/(2k + 9), 1/2]∞k=0 .

REMARKS. 1. From the proof of Theorem 3 it is at once clear that x is a quadratic
irrational if and only if the α-expansion of x is eventually periodic.

2. Analogous to Definitions 1 and 3 we can define S-Hurwitzian number for any S-
expansion. In case the singularization-area is ‘nice’ (such as the singularization-areas for
Nakada’s α-expansion, or for Minkowski’s diagonal continued fraction expansion, see [H]),
one can show that being S-Hurwitzian is equivalent to being Hurwitzian. However, it is
possible to find singularization-areas S and numbers x such that x is Hurwitzian, but not
S-Hurwitzian. Consider for example the following singularization-area S:

S =
⋃

p prime

(2p + 2, 2p + 1] ×
(

1

2
, 1

)
.

One easily convinces oneself that e does not have an S-expansion which is S-Hurwitzian.
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