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Multiplicity and Hilbert-Kunz Multiplicity of Monoid Rings
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In this paper, we will give a method to compute the multiplicity and the Hilbert-Kunz
multiplicity of monoid rings. The multiplicity and the Hilbert-Kunz multiplicity are funda-
mental invariants of rings. For example, the multiplicity (resp. the Hilbert-Kunz multiplicity)
of a regular local ring equals to one. Monoid rings are defined by lattice ideals, which are
binomial ideals I in a polynomial ring R over a field such that any monomial is a non zero
divisor on R/I . Affine semigroup rings are monoid rings. Hence we want to extend the thoery
of affine semigroup rings to that of monoid rings.

1. Main Result.

Let N > 0 be an integer and Z the ring of integers. For α ∈ ZN , we denote the i-th entry
of α by αi . We say α > 0 if α �= 0 and αi ≥ 0 for each i. And α > α′ if α − α′ > 0. Let
R = k[X1, · · · ,XN ] be a polynomial ring over a field k. For α > 0, we simply write Xα in
place of

∏N
i=1 X

αi

i .
For a positive submodule V of ZN of rank r , we define an ideal I (V ) of R, which is

generated by all binomials Xα −Xβ with α−β ∈ V (we say that V is positive if it is contained
in the kernel of a map ZN → Z which is defined by positive integers). Put d = N − r . Then
R/I (V ) is naturally a Zd -graded ring, which is called a monoid ring. Further, there is a
positive submodule V ′ of ZN of rank r containing V such that ZN/V ′ is torsion free. That is,
ZN/V ∼= ZN/V ′ ⊕ T , where ZN/V ′ ∼= Zd and T is a torsion module. Hence we can see an
element of ZN/V as a pair (α, β) where α ∈ Zd is a degree element and β ∈ T is a torsion
element. Put t = |T |(if T = {0}, put t = 1). Let A = R/I (V ) and A′ = R/I (V ′). For each
α ∈ Zd , we denote the degree α component of the Zd -graded ring A (resp. A′) by Aα (resp.
A′

α). It is clear dimk Aα ≤ t and dimk A′
α ≤ 1 for α ∈ Zd and dimk Aα ≥ dimk Aα′ if α > α′

and if there is a monomial of A of the degree α − α′.

EXAMPLE. Let V be a submodule of Z3 generated by −e1 +2e2 − e3, −2e1 − e2 +3e3

and −3e1 + e2 + 2e3. Then Z3/V ∼= Z ⊕ Z/5Z. And there is an isomorphism which
corresponds e1, e2 and e3 to (1, 0), (1, 1) and (1, 2), respectively.
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LEMMA 1.1. Let A = R/I (V ) be as above. Then there is α > 0 with dimk Aα = t .

PROOF. Let e1, · · · , eN form a canonical basis of ZN . Since V is positive, αi > 0 for
each i where (αi , βi) is the image of ei . For each (0, β) ∈ Zd ⊕ T , there is γ ∈ ZN whose
image is (0, β). Let T = {β1, · · · , βt } and γi ∈ ZN whose image in ZN/V is (0, βi). Then
there is δi ∈ ZN with δi > 0 and γi + δi > 0. Further, there is δ ∈ ZN with δ > 0 and
γi + δ > 0 for each i. Then the degree part α of the image of δ in ZN/V is also positive and
dimk Aα = t . Q.E.D.

DEFINITION. Let R be a graded k-algebra of dimension d , m its maximal ideal, M

a finite R-module and q = (x1, · · · , xs) a homogeneous m-primary ideal of R. We denote
the multiplicity of q by e(q,M) i.e. e(q,M) = limn→∞ d! lR(M/�nM)

nd where lR is the length.
Similarly, Conca defined the generalized Hilbert-Kunz multiplicity eHK(x1, · · · , xs,M) =
limn→∞ lR(M/�[n]M)

nd where q[n] = (xn
1 , · · · , xn

s ) ([3]). Generally, it is not clear that

eHK(x1, · · · , xs,M) is always defined. But Monsky proved that lime→∞ lR(M/�[pe]M)

ped is well
defined if char R = p > 0, which is called the Hilbert-Kunz multiplicity ([6]). In this case,
it does not depend on a generating system of q. Note that the generalized Hilbert-Kunz mul-
tiplicity coincides with the Hilbert-Kunz multiplicity if char R = p > 0 and if it is defined.
We also denote eHK(x1, · · · , xs,M) by eHK(q,M). We write e(R) (resp. eHK(R)) in place of
e(m, R) (resp. eHK(m, R)).

When R is a monoid ring over a field k and both q and M are monomial ideal, the length
lR(M/q[n]M) is equal to the number of monomials in M − q[n]M . Since eHK(x1, · · · , xs,M)

is defined if char k > 0 and since lR(M/q[n]M) does not depend on the base field k,
eHK(x1, · · · , xs,M) is defined for any k.

NOTE. The following properties are known about the multiplicity;

• if 0 → M ′ → M → M ′′ → 0 is a exact sequence,

e(q,M) = e(q,M ′) + e(q,M ′′) .

• e(q,M) = ∑t
i=1 e(qi , R/pi )l(M�i ) where {p1, · · · , pt } is a set of a minimal prime

ideals and q̄ is the image of q in R/pi .
• e(q,M) = e(q, R) rank M .

In turn, Monsky showed eHK(q,M) = eHK(q,M ′) + eHK(q,M ′′), if 0 → M ′ → M →
M ′′ −→ 0 is a exact sequence ([6, Theorem 1.8]). Hence another two formulas are also valid
for the Hilbert-Kunz multiplicity.

THEOREM 1.2. Let A,A′ be monoid rings defined in this section and q an m-primary
monomial ideal of A. Then e(q, A) = t · e(qA′, A′) and eHK(q, A) = t · eHK(qA′, A′).

NOTE. In general, A is not A′-module. In section two, we will prove that the general-
ized Hilbert-Kunz multiplicity for affine semigroup rings and m-primary monomial ideals is
rational. Hence this theorem says that it is also rational in this case.
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PROOF. By Lemma 1.1, there is α > 0 with dimk Aα = t . Put M = ⊕
α′≥α Aα′ . Then

it is not only an A-module but also an A′-module. Note that rank AM = 1 and rank A′M = t .
Hence

e(q, A) = e(q,M) = e(qA′,M) = t · e(qA′, A′) ,

eHK(q, A) = eHK(q,M) = eHK(qA′,M) = t · eHK(qA′, A′) . Q.E.D.

2. Hilbert-Kunz multiplicity of semigroup rings.

In this section, we treat the case of affine semigroup rings. Watanabe gives a method to
compute the Hilbert-Kunz multiplicity for normal semigroup rings([10]). We will extend them
to the generalized Hilbert-Kunz multiplicity for affine semigroup rings. We always assume
that all semigroups are finitely generated.

Let S be a semigroup contained in ZN , q = (xa1, xa2, · · · , xav ) ⊂ k[S] such that k[S]/q
is finite length and S̄ = {p ∈ ZN | ap ∈ S for ∃a > 0}. Then k[S̄] is finite as k[S]-module.
By applying [11, Theorem 2.7] to them, we have

eHK(q, k[S]) = eHK(qk[S̄], k[S̄]) .

Note that k[S̄] is normal. By the above lemma, we can extend Watanabe’s result ([10])
of rationality of the Hilbert-Kunz multiplicity for normal semigroup rings to that for general
semigroup rings;

COROLLARY 2.1. The Hilbert-Kunz multiplicity for semigroup rings is always ratio-
nal.

We will give a way to compute the Hilbert-Kunz multiplicity for semigroup rings.

THEOREM 2.2. Let S be a semigroup and a1, · · · , av ∈ S(⊂ ZN) elements such that
k[S]/q is finite length where q = (xa1, · · · , xav ). Let C denote the convex rational polyhedral
cone spanned by S in RN and P = {p ∈ C | p /∈ aj + C for each j }. Then

eHK(q, k[S]) = vol P̄ ,

where P̄ is the closure of P and vol denote the relative volume ([8, p. 239]).

PROOF. We may assume S is normal. Let d = dim k[S] and nP = {p ∈ C | p /∈
naj + C for each j }. Since C ∩ ZN = S,

nP ∩ ZN = {p ∈ S | p in not of the form naj + b for ∃b ∈ S} .

Thus lk[S](k[S]/q[n]) = |nP ∩ ZN |. If limn→∞ |nP∩ZN |
nd = vol P̄ , we finish the proof.

We will prove the above equality. Let P be a rational polytope of dimension d containing
the origin as a vertex. Put i(P, n) = |nP ∩ ZN |. Then limn→∞ i(P ,n)

nd exists ([7, Theorem
2.8], [8, p. 273, Ex. 33]). Further, there is c > 0 such that cP is integral. Since cP is integral,
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limn→∞ i(cP ,n)

nd is equal to vol cP ([8, Proposition 4.6.30]). Hence

vol P = 1

cd
vol cP = lim

n→∞
| ncP ∩ ZN |

(nc)d

= lim
n→∞

| nP ∩ ZN |
nd

= lim
n→∞

i(P, n)

nd
.

Let b1, b2, · · · , bu be generators of C i.e. C = {∑ djbj | dj ≥ 0 for each j }. Let
F1, F2, · · · , Fw are cones divided by all hyperplanes spanned by ai and bj with ai �= bj . Then
the closure of the complement of ai +C is a finite union of convex sets Fj − (ai + C). Hence
P = C ∩ (

⋂
i (ai + C)c) is a finite union of rational polytopes P1, P2, · · · , Ps containing the

origin such that Pj ∩ Pj ′ is rational polytope of dimension < d if j �= j ′. We will prove

limn→∞ i(P̄,n)

nd = ∑
j limn→∞

i(Pj ,n)

nd . Let P≤j = P1 ∪ · · · ∪ Pj for each j . Since

i(P≤j0, n) = i(P≤j0−1, n) + i(Pj0 , n) − i(P≤j0−1 ∩ Pj0, n)

and limn→∞
i(P≤j0−1∩Pj0 ,n)

nd−1 is finite, we have

lim
n→∞

i(P≤j0, n)

nd
= lim

n→∞
i(P≤j0−1, n)

nd
+ lim

n→∞
i(Pj0 , n)

nd
.

The claim follows from this. Further, we have vol P̄ = ∑
j vol Pj . Therefore, we conclude

vol P̄ = limn→∞ i(P ,n)

nd . Q.E.D.

EXAMPLE. Let A = k[X,Y,Z,W ]/(XW−YZ). Then A ∼= k[X,Y,Z]⊕W k[Y,Z,W ]
as k-vector space. Hence e(A) = 2. There is a grading with

deg X = (1, 0, 0) , deg Y = (0, 1, 0) , deg Z = (0, 0, 1) and deg W = (−1, 1, 1) .

Thus, by considering P , we have eHK(A) = 4/3.

By the following corollary, we can easily compute the Hilbert-Kunz multiplicity of the
semigroup rings in special case. It also directly follows from [11, Theorem 2.7]. And it also
can follow from the above theorem, by putting C = Nd

0 and by noting vol P̄ = 1
δ
lR(R/J ).

COROLLARY 2.3. Let S ⊂ Nd
0 = ⊕d

i=1 N0ei be an affine semigroup such that there
is ci > 0 with ciei ∈ S for each i and δ = |Zd/ZS| < ∞ and J = (xα | α ∈ S) the ideal of
R = k[X1, · · · ,Xd ], where N0 = {0, 1, 2, · · · }. Then eHK(k[S]) = 1

δ
lR(R/J ).

EXAMPLE. Let A = k[s4, s3t, st3, t4]. Then

eHK(A) = 1

4
lk[s,t ](k[s, t]/(s4, s3t, st3, t4)) = 11

4
.

EXAMPLE (Veronese subrings cf [11, Example 2.8]). Let R = k[X1, · · · ,Xd ], mR =
(X1, · · · ,Xd), and A = R(c) the Veronese subring of R, which is generated by all monomials
of degree c > 0. Put A0 = A and Ai ⊂ R be an A-module generated by all monomials
of degree i for i = 1, 2, · · · , c − 1. Further, let W ⊂ Zd ⊕ Z/cZ generated by (ei, 1) for
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i = 1, 2, · · · , d . Then W ∼= Zd and the monoid ring defined by W is isomorphic to R and
equal to

⊕c−1
i=0 Ai as A0-module. Hence, for the maximal ideal mA of A, we have

e(ma
A,A) = 1

c
e(mac

R ,R) = adcd−1 ,

eHK(ma
A,A) = 1

c
eHK(mac

R ,R) = 1

c
lR(R/mac

R ) = 1

c

(
d + ac − 1

d

)
.
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