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In this paper, we will give a method to compute the multiplicity and the Hilbert-Kunz
multiplicity of monoid rings. The multiplicity and the Hilbert-Kunz multiplicity are funda-
mental invariants of rings. For example, the multiplicity (resp. the Hilbert-Kunz multiplicity)
of a regular local ring equals to one. Monoid rings are defined by lattice ideals, which are
binomial ideals / in a polynomial ring R over a field such that any monomial is a non zero
divisor on R/I. Affine semigroup rings are monoid rings. Hence we want to extend the thoery
of affine semigroup rings to that of monoid rings.

1. Main Result.

Let N > 0 be an integer and Z the ring of integers. For @ € Z", we denote the i-th entry
ofa by ;. Wesaya > Oifa # Oanda; > O foreachi. Anda > o' ifa —a’ > 0. Let
R = k[X1, -+, Xn] be a polynomial ring over a field k. For o > 0, we simply write X in
place of [TY, X

For a positive submodule V of Z" of rank r, we define an ideal (V) of R, which is
generated by all binomials X% — X# with o — 8 € V (we say that V is positive if it is contained
in the kernel of a map Z" — Z which is defined by positive integers). Putd = N — r. Then
R/I(V) is naturally a Z%-graded ring, which is called a monoid ring. Further, there is a
positive submodule V' of Z" of rank r containing V such that Z" / V' is torsion free. That is,
ZN )V =ZN/V' @ T, where ZV )V’ = Z¢ and T is a torsion module. Hence we can see an
element of Z" / V as a pair («, ) where o € Z% is a degree element and 8 € T is a torsion
element. Putr = |T|(if T = {0}, putt = 1). Let A= R/I(V)and A’ = R/I(V’). For each
a € Z%, we denote the degree o component of the YA -graded ring A (resp. A”) by A (resp.
Al). Itis clear dimg Ay < and dimg A}, < 1fora € Z% and dimy Ag > dimg Ay if @ > o
and if there is a monomial of A of the degree a — o’.

EXAMPLE. Let V be a submodule of Z> generated by —ej +2e2 — e3, —2¢1 — e+ 3e3
and —3e; + e2 + 2e3. Then Z3/V = Z ® Z/5Z. And there is an isomorphism which
corresponds e, e2 and e3 to (1, 0), (1, 1) and (1, 2), respectively.
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LEMMA 1.1. Let A= R/I(V) be as above. Then there is a > 0 with dimy A, = t.

PROOF. Leteyq, .-, ey form a canonical basis of ZVN . Since V is positive, «; > 0 for
each i where (¢;, B;) is the image of ¢;. For each (0, 8) € 7% @ T, thereis y € ZV whose
image is (0, ). Let T = {B1,--- , B} and y; € Z" whose image in Z" /V is (0, B;). Then

there is 8; € Z" with §; > 0 and y; + &; > 0. Further, there is § € Z" with § > 0 and
¥i + & > 0 for each i. Then the degree part « of the image of § in ZV / V is also positive and
dimg Ay, = t. Q.E.D.

DEFINITION. Let R be a graded k-algebra of dimension d, m its maximal ideal, M
a finite R-module and q = (x1, -- -, x5) a homogeneous m-primary ideal of R. We denote
the multiplicity of q by e(q. M) i.e. e(q, M) = lim, 0 d! MM where I is the length.
Similarly, Conca defined the generalized Hilbert-Kunz multiplicity epgg (x1, - - , x5, M) =
Wlﬂ where gl = (x}.,---,x7) ([3]). Generally, it is not clear that
e (M/qlr I M)

limy;— 00

eyk (x1, - -+ , x5, M) is always defined. But Monsky proved that lim,_, oo is well
defined if char R = p > 0, which is called the Hilbert-Kunz multiplicity ([6]). In this case,
it does not depend on a generating system of ¢. Note that the generalized Hilbert-Kunz mul-
tiplicity coincides with the Hilbert-Kunz multiplicity if char R = p > 0 and if it is defined.
We also denote ek (x1, - - - , X5, M) by egx(q, M). We write e(R) (resp. egk(R)) in place of
e(m, R) (resp. egx(m, R)).

When R is a monoid ring over a field k and both q and M are monomial ideal, the length
[r(M/q"™ M) is equal to the number of monomials in M — g M. Since egx (x1, - - - , x5, M)
is defined if chark > 0 and since Ig(M/q"!M) does not depend on the base field ,

enk (x1, -+ , x5, M) is defined for any k.

NOTE. The following properties are known about the multiplicity;

o if0 > M — M — M"” — 0is a exact sequence,
e(q, M) =e(q, M') +e(q, M").

e e(q, M) = ZL] e(qi, R/pi)l(Myp,) where {p1,---,p;} is a set of a minimal prime
ideals and q is the image of q in R/p;.
e ¢(q, M) =e(q, R) rank M.
In turn, Monsky showed eyx(q, M) = eyx(q, M') + eux(q, M), if 0 - M’ — M —
M" — 0 is a exact sequence ([6, Theorem 1.8]). Hence another two formulas are also valid
for the Hilbert-Kunz multiplicity.

THEOREM 1.2. Let A, A’ be monoid rings defined in this section and q an m-primary
monomial ideal of A. Then e(q, A) =t - e(qA’, A") and epx (q, A) =t - enx (qA’, A").

NOTE. In general, A is not A’-module. In section two, we will prove that the general-
ized Hilbert-Kunz multiplicity for affine semigroup rings and m-primary monomial ideals is
rational. Hence this theorem says that it is also rational in this case.
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PROOF. By Lemma 1.1, there is « > 0 with dimy Ay, =¢. Put M = @o/za Ay. Then
it is not only an A-module but also an A’-module. Note that rank 4M = 1 and rank 4 M = ¢.
Hence

e(q,A) =e(q, M) =e(qA', M) =t -e(qA’, A),
ey (q, A) = ey (q, M) = eﬁk(qA/, M)=t- EHK(UIA,, A'). QE.D.

2. Hilbert-Kunz multiplicity of semigroup rings.

In this section, we treat the case of affine semigroup rings. Watanabe gives a method to
compute the Hilbert-Kunz multiplicity for normal semigroup rings([10]). We will extend them
to the generalized Hilbert-Kunz multiplicity for affine semigroup rings. We always assume
that all semigroups are finitely generated.

Let S be a semigroup contained in N, q= (%, x%2, ... x%) C k[S] such that k[S]/q
is finite length and S = {p € zN |ap € S for3da > 0}. Then k[S] is finite as k[S]-module.
By applying [11, Theorem 2.7] to them, we have

enk (4, k[S1) = enx(qk[S], k[S]) .

Note that k[S] is normal. By the above lemma, we can extend Watanabe’s result ([10])
of rationality of the Hilbert-Kunz multiplicity for normal semigroup rings to that for general
semigroup rings;

COROLLARY 2.1. The Hilbert-Kunz multiplicity for semigroup rings is always ratio-
nal.

We will give a way to compute the Hilbert-Kunz multiplicity for semigroup rings.

THEOREM 2.2. Let S be a semigroup and ay, - - - , ay € S(C ZN) elements such that
k[S1/q is finite length where q = (x“1, - -+ , x®). Let C denote the convex rational polyhedral
cone spanned by S in RN and P ={p e C|p ¢ aj + C for each j}. Then

enk (q, k[S]) = vol P,

where P is the closure of P and vol denote the relative volume ([8, p. 239]).

PROOF. We may assume S is normal. Let d = dimk[S]and nP = {p € C|p ¢
na;j + C for each j}. Since C N 7N = S,

nPNZN = {p € S| p in not of the form na; + b for Ib € S}.

N -
Thus ls) (k[S1/q™) = [nP N ZN|. If limy— 00 "’PZ‘# = vol P, we finish the proof.
We will prove the above equality. Let P be a rational polytope of dimension d containing
the origin as a vertex. Puti(P,n) = |nP N ZN|. Then lim;,_, 5o ’(fc;") exists ([7, Theorem

2.8], [8, p- 273, Ex. 33]). Further, there is ¢ > 0 such that ¢ P is integral. Since c P is integral,




244 KAZUFUMI ETO

lim,— oo i(cyf;’") is equal to vol ¢ P ([8, Proposition 4.6.30]). Hence

1 . |nePNZVN
vol P = —dvolcP = lim —
c n—00 (nc)d

[nPNZN| . i(P,n)
= lim ——— = lim .

n—00 nd n—oo pd

Let by, by, - - - , b, be generators of C ie. C = {Zdjbj |dj > O foreach j}. Let
Fi, F, -+, Fy are cones divided by all hyperplanes spanned by a; and b; witha; # b;. Then
the closure of the complement of @; + C is a finite union of convex sets m Hence
P=Cn (ﬂi (a; + C)©) is a finite union of rational polytopes P, P», - - - , P; containing the
origin such that P; N Pj is rational polytope of dimension < d if j # j’. We will prove

lim;,_s oo i(fl;") = Zj lim,,— oo ’(i# Let P<; = Py U---U P; foreach j. Since

i(P<jy,n) =i(P<jo—1,n) +i(Pjy,n) —i(P<jo—1 N Pjy, 1)

i(PSj()*lmPf()’n)

and lim,,_ oo — T is finite, we have
. i(P<jy,n) . i(P<jy—1,1) . i(Pjy,n)
llm ¢ — 1m L + llm 1—0 .
n—o0o nd n—o0o nd n—0o0 I’ld

The claim follows from this. Further, we have vol P = > j vol P;j. Therefore, we conclude
vol P = lim,, oo 12 QE.D.

EXAMPLE. LetA =k[X,Y,Z, W]/(XW—YZ). Then A = k[X,Y, ZI®Wk[Y, Z, W]
as k-vector space. Hence e(A) = 2. There is a grading with

degX = (1,0,0), degY =(0,1,0), degZ=1(0,0,1) and degW = (—-1,1,1).
Thus, by considering P, we have eyg (A) = 4/3.

By the following corollary, we can easily compute the Hilbert-Kunz multiplicity of the
semigroup rings in special case. It also directly follows from [11, Theorem 2.7]. And it also
can follow from the above theorem, by putting C = Ng and by noting vol P = Hig(R/J).

COROLLARY 2.3. Let S C N& = @flzl Noe; be an affine semigroup such that there
is ¢; > Qwith ciej € S foreachi and § = |Zd/ZS| <ooand J = (x*|a € S) the ideal of

R=k[X1, -, Xq], where No = {0, 1,2, - - - }. Then eux (k[S]) = $Ir(R/J).
EXAMPLE. Let A = k[s?, 53¢, s13, t*]. Then
_ 1 4 3, .3 4y _ M
ek (A) = 4lk[s,z](k[s, t1/(s7, 878, 887, 17)) = 1
EXAMPLE (Veronese subrings cf [11, Example 2.8]). Let R = k[ X1, -+, X4], mg =
(X1, , X4),and A = R© the Veronese subring of R, which is generated by all monomials

of degree ¢ > 0. Put Ap = A and A; C R be an A-module generated by all monomials
of degree i fori = 1,2,---,c — 1. Further, let W C 74 Z./cZ generated by (e;, 1) for
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i =1,2,---,d. Then W = Z% and the monoid ring defined by W is isomorphic to R and
equal to @f;& A; as Agp-module. Hence, for the maximal ideal m4 of A, we have
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e(my, A) = —e(m%, R) = a’c?™,
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1 1 1
epk (Mm%, A) = EEHK(m?eC, R) = EZR(R/m‘}{) = —<
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