Iwasawa Theory for Extensions with Restricted p-Ramification

Yoshitaka HACHIMORI
Gakushuin University
(Communicated by T. Kawasaki)

1. Introduction

Let p be a prime number. For an algebraic number field K of finite degree, consider an (arbitrary) subset T of $P(K)$, where $P(K)$ is the set of all primes above p of K :

$$
T \subset P(K)
$$

Let K_{∞} be the cyclotomic \mathbf{Z}_{p}-extension of K and $T_{\infty} \subset P\left(K_{\infty}\right)$ the set of primes above T of K_{∞}. Then, by $\mathcal{M}_{T_{\infty}}\left(K_{\infty}\right)$, we denote the maximal abelian p-extension of K_{∞} unramified outside T_{∞}. We call such an extension "the extension with restricted p-ramification".

Since $\Gamma:=\operatorname{Gal}\left(K_{\infty} / K\right)$ acts on the Galois group

$$
\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right):=\operatorname{Gal}\left(\mathcal{M}_{T_{\infty}}\left(K_{\infty}\right) / K_{\infty}\right)
$$

by conjugation, it is regarded as a module over the power series ring $\Lambda:=\mathbf{Z}_{p}[[T]]$ in the usual manner. This is finitely generated over Λ.

In this article, we investigate the following question: What are the Λ-rank of $\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right)$ and the μ-invariant of its Λ-torsion part $\mu\left(\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right)_{\Lambda \text {-tor }}\right)$?

When $T=\varnothing$ (empty set), it is well known that $\mathcal{Y}_{\varnothing}\left(K_{\infty}\right)$ has Λ-rank zero by a result of Iwasawa and that it is conjectured that its μ-invariant vanishes. This is verified when K is an abelian field by Ferrero and Washington [FeWa]. It is also known that $\operatorname{rank}_{\Lambda}\left(\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right)\right)=r_{2}$ if $T=P(K)$, where r_{2} is the number of complex primes of K. The μ-invariant of the Λ torsion part of $\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right)$ is also conjectured to be zero and proved if K is abelian.

In case of $C M$-fields, the answer to the above question is known completely (cf. [JaMa]. See also Theorem 4.5 below).

On the other hand, for a general base field K and $T \subset P(K)$, we have a trivial lower bound of the Λ-rank (Proposition 2.3):

$$
\operatorname{rank}_{\Lambda}\left(\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right)\right) \geq r_{2}-\sum_{v \in P(K)-T}\left[K_{v}: \mathbf{Q}_{p}\right] .
$$

However, we do not know how the Λ-rank should be in general. We give the following partial result by applying the methods of Ax and Brumer.

[^0]ThEOREM 1.1 (Theorem 6.2). Assume there exists a subfield $k \subset K$ such that K / k is Galois and $K \cap k_{\infty}=k$. Let $G:=\operatorname{Gal}(K / k)$. Assume that there exists a prime $u \in P(k)$ such that

$$
T^{\prime}:=\{v \in P(K)|v| u\}
$$

is contained in T. Then we have

$$
\operatorname{rank}_{\Lambda}\left(\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right)\right) \leq\left(\sum_{v \in T}\left[K_{v}: \mathbf{Q}_{p}\right]\right)-\left(\sum_{\chi \in \Delta_{K / k}} \operatorname{deg} \chi\right)-\delta
$$

Here, $\Delta_{K / k}$ is the set of the distinct irreducible characters of G over $\overline{\mathbf{Q}}$ which appear in the $\overline{\mathbf{Q}}[G]$-module $\mathcal{E}_{K} \otimes_{\mathbf{Z}} \overline{\mathbf{Q}}$ where \mathcal{E}_{K} is the group of global units of K. We put

$$
\delta= \begin{cases}0 & \text { if } \Delta_{K / k} \text { contains the trivial character }, \\ 1 & \text { otherwise }\end{cases}
$$

Note that the right hand side in the Theorem is larger than or equal to the above trivial lower bound.

Next, we consider the special case where $K=\mathbf{Q}(\sqrt[3]{a})(a \in \mathbf{Z}$, cube free), as a first example of the case of non abelian base fields.

THEOREM 1.2 (Theorem 7.3, Proposition 7.8). (i) Let $K=\mathbf{Q}(\sqrt[3]{a})$. Let p be an odd prime such that $(p)=\mathfrak{p}_{1} \mathfrak{p}_{2}$ in K where $K_{\mathfrak{p}_{1}}=\mathbf{Q}_{p}$ and $\left[K_{\mathfrak{p}_{2}}: \mathbf{Q}_{p}\right]=2$. Let $T=\left\{\mathfrak{p}_{2}\right\}$. Then $\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right)$ is Λ-torsion.
(ii) Further, there is a sufficient condition for the vanishing of $\mu\left(\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right)\right)$.

The another reason why we consider this special example is that $\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right)$ in the above theorem for $p=3$ is related with the Selmer group $\operatorname{Sel}_{p \infty}\left(E / \mathbf{Q}_{\infty}\right)$ of a certain elliptic curve E / \mathbf{Q} concerning with the μ-invariant ([Ha1], [Ha2]).

There is another application of the theory of $\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right)$. Let $\lambda_{p}(K), \mu_{p}(K)$ and $v_{p}(K)$ be the classical Iwasawa invariants of K. (See $\S 8$ for the definition.) We give a criterion for the vanishing of these invariants for special non abelian fields. This is a generalization of a result of Fukuda-Komatsu([FuKo]).

ThEOREM 1.3 (Theorem 8.1). Let K be a number field. Assume that there are exactly two primes \mathfrak{p}_{1} and \mathfrak{p}_{2} of K above p such that $K_{\mathfrak{p}_{1}}=\mathbf{Q}_{p}$ and that they are totally ramified in K_{∞}. Then the following are equivalent.
(i) $\quad \lambda_{p}(K)=\mu_{p}(K)=v_{p}(K)=0$
(ii) $\mathrm{Cl}(K)\left[p^{\infty}\right]=0$ and $\left(1+p \mathbf{Z}_{p}\right)=\overline{\mathcal{E}_{K} \cap\left(1+p \mathbf{Z}_{p}\right)}$.

Here, $\mathrm{Cl}(K)\left[p^{\infty}\right]$ is the p-part of the ideal class group of K and \mathcal{E}_{K} is the group of global units of K which we embed in $K_{\mathfrak{p}_{1}}=\mathbf{Q}_{p}$.

The outline of this article is as follows. From $\S 2$ to $\S 4$ we give general facts on $\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right)$ in the context of the classical Iwasawa theory. After seeing an application of the methods of

Ax and Brumer in §5, we give an upper bound of the Λ-rank of $\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right)$ (Theorem 6.2) in §6. Then, in $\S 7$ we consider a special case where $K=\mathbf{Q}(\sqrt[3]{a})$ and apply the above results to this case. In §8, we give a proof of Theorem 1.3.

Acknowledgments. I am grateful to Professor Shoichi Nakajima and Professor Humio Ichimura for leading and guiding me to Iwasawa theory. I thank Kazuo Matsuno and Takae Tsuji for valuable discussions. Finally, I would like to express my sincere gratitude to my supervisor, Professor Takayuki Oda for valuable advices.

This article is based on a part of my thesis. I was supported by JSPS Research Fellowships for Young Scientists.

2. Extensions with restricted p-ramification

In this section, we define some notions related to extensions with restricted p-ramification. Then we recall known results and easy consequences.

Let p be a prime. For an algebraic number field K, let $P(K)$ be the set of all primes of K above p. For an arbitrary subset

$$
T \subset P(K),
$$

we denote by $\mathcal{M}_{T}(K)$ the maximal abelian p-extension of K which is unramified outside T. Let

$$
\mathcal{Y}_{T}(K):=\operatorname{Gal}\left(\mathcal{M}_{T}(K) / K\right)
$$

We also denote by $\mathcal{M}_{T}^{\prime}(K)$ the maximal subfield of $\mathcal{M}_{T}(K)$ all of whose primes above $P(K)-T$ are completely decomposed and put

$$
\mathcal{Y}_{T}^{\prime}(K):=\operatorname{Gal}\left(\mathcal{M}_{T}^{\prime}(K) / K\right)
$$

Let K be a number field of finite degree and K_{∞} the cyclotomic \mathbf{Z}_{p}-extension of K. For $T \subset P(K)$, let $T_{\infty} \subset P\left(K_{\infty}\right)$ be the set of primes above T. Then

$$
\Gamma=\operatorname{Gal}\left(K_{\infty} / K\right)
$$

acts on $\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right)$ and $\mathcal{Y}_{T_{\infty}}^{\prime}\left(K_{\infty}\right)$ by conjugation in the usual way. Therefore $\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right)$ and $\mathcal{Y}_{T_{\infty}}^{\prime}\left(K_{\infty}\right)$ are endowed with the action of

$$
\Lambda:=\mathbf{Z}_{p}[[\Gamma]]
$$

By fixing a topological generator of Γ, we identify Λ with the power series ring $\mathbf{Z}_{p}[[T]]$ in the usual manner.

For $T=\varnothing$ (empty set), we put

$$
H(K):=\mathcal{M}_{\varnothing}(K), \quad H^{\prime}(K):=\mathcal{M}_{\varnothing}^{\prime}(K)
$$

and

$$
A(K):=\mathcal{Y}_{\varnothing}(K), \quad A^{\prime}(K):=\mathcal{Y}_{\varnothing}^{\prime}(K) .
$$

For $T=P(K)$, we put $M(K):=\mathcal{M}_{P(K)}(K)$ and

$$
\mathfrak{X}(K):=\mathcal{Y}_{P(K)}(K) .
$$

We define similarly $A\left(K_{\infty}\right), A^{\prime}\left(K_{\infty}\right)$ and $\mathfrak{X}\left(K_{\infty}\right)$ for K_{∞}. These modules are well studied in Iwasawa theory.

Theorem 2.1 (Iwasawa [Iw], see also [Wa]). (i) $\mathfrak{X}\left(K_{\infty}\right)$ is a finitely generated Λ module and $\operatorname{rank}_{\Lambda}\left(\mathfrak{X}\left(K_{\infty}\right)\right)=r_{2}$, where r_{2} is the number of complex infinite primes of K.
(ii) Both $A\left(K_{\infty}\right)$ and $A^{\prime}\left(K_{\infty}\right)$ are Λ-torsion. Further, $\mu\left(A\left(K_{\infty}\right)\right)=\mu\left(A^{\prime}\left(K_{\infty}\right)\right)$.

Note that

$$
H\left(K_{\infty}\right) \subset \mathcal{M}_{T}\left(K_{\infty}\right) \subset M\left(K_{\infty}\right) \quad \text { and } \quad H^{\prime}\left(K_{\infty}\right) \subset \mathcal{M}_{T}^{\prime}\left(K_{\infty}\right) \subset M\left(K_{\infty}\right)
$$

Thus $\mathcal{Y}_{T}\left(K_{\infty}\right)$ and $\mathcal{Y}_{T}^{\prime}\left(K_{\infty}\right)$ are finitely generated over Λ.
Let v be a prime of K dividing p and w a prime of K_{∞} above v. Denote K_{v} by the completion of K at v and by $K_{\infty, w}$ the composite field $K_{v} K_{\infty}$ in $\overline{K_{v}}$ where we identify K_{∞} with its image of the embedding $K_{\infty} \hookrightarrow \overline{K_{v}}$ corresponding to w. Let

$$
\left\{\begin{array}{l}
X\left(K_{\infty, w}\right):=\operatorname{Gal}\left(K_{\infty, w}^{\mathrm{ab}, p} / K_{\infty, w}\right) \\
X^{\prime}\left(K_{\infty, w}\right):=\operatorname{Gal}\left(K_{\infty, w}^{\mathrm{ab}, p} / K_{\infty, w}^{\mathrm{ur}, p}\right)
\end{array}\right.
$$

where $K_{\infty, w}^{\mathrm{ab}, p}$ is the maximal abelian p-extension of $K_{\infty, w}$ and $K_{\infty, w}^{\mathrm{ur}, p}$ is the maximal unramified p-extension of $K_{\infty, w}$. Then $\left.\Gamma_{w}:=\operatorname{Gal}\left(K_{\infty, w} / K_{v}\right) \cong \mathbf{Z}_{p}\right)$ acts on $X\left(K_{\infty, w}\right)$ and $X^{\prime}\left(K_{\infty, w}\right)$ by conjugation and thus these are $\Lambda_{w}:=\mathbf{Z}_{p}\left[\left[\Gamma_{w}\right]\right]$-modules. Further,

$$
\bigoplus_{w \mid v} X\left(K_{\infty, w}\right) \cong \Lambda \otimes_{\Lambda_{w}} X\left(K_{\infty, w}\right) \quad \text { and } \quad \bigoplus_{w \mid v} X^{\prime}\left(K_{\infty, w}\right) \cong \Lambda \otimes_{\Lambda_{w}} X^{\prime}\left(K_{\infty, w}\right)
$$

as Λ-modules and it is known that
Theorem 2.2 ([Iw] Theorem 25).

$$
\operatorname{rank}_{\Lambda}\left(\bigoplus_{w \mid v} X\left(K_{\infty, w}\right)\right)=\operatorname{rank}_{\Lambda}\left(\bigoplus_{w \mid v} X^{\prime}\left(K_{\infty, w}\right)\right)=\left[K_{v}: \mathbf{Q}_{p}\right]
$$

Further, $\mu\left(\left(\bigoplus_{w \mid v} X\left(K_{\infty, w}\right)\right)_{\Lambda \text {-tor }}\right)=0$. Here, $\left(\bigoplus_{w \mid v} X\left(K_{\infty, w}\right)\right)_{\Lambda \text {-tor }}$ is the maximal Λ torsion submodule of $\bigoplus_{w \mid v} X\left(K_{\infty, w}\right)$.

In particular, if p is odd and K does not contain the group of p-th roots of unity μ_{p}, then $\bigoplus_{w \mid v} X\left(K_{\infty, w}\right) \cong \Lambda^{\oplus\left[K_{v}: \mathbf{Q}_{p}\right]}$.

Since we have the exact sequences

$$
\begin{equation*}
\bigoplus_{v \in P(K)-T}\left(\bigoplus_{w \mid v} X^{\prime}\left(K_{\infty, w}\right)\right) \rightarrow \mathfrak{X}\left(K_{\infty}\right) \rightarrow \mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right) \rightarrow 0 \quad \text { and } \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\bigoplus_{v \in P(K)-T}\left(\bigoplus_{w \mid v} X\left(K_{\infty, w}\right)\right) \rightarrow \mathfrak{X}\left(K_{\infty}\right) \rightarrow \mathcal{Y}_{T_{\infty}}^{\prime}\left(K_{\infty}\right) \rightarrow 0 \tag{2}
\end{equation*}
$$

we have
Proposition 2.3.

$$
\operatorname{rank}_{\Lambda}\left(\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right)\right) \geq r_{2}-\sum_{v \in P(K)-T}\left[K_{v}: \mathbf{Q}_{p}\right]
$$

We also have

$$
\begin{equation*}
\bigoplus_{v \in P(K)-T}\left(\bigoplus_{w \mid v} X\left(K_{\infty, w}\right) / X^{\prime}\left(K_{\infty, w}\right)\right) \rightarrow \mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right) \rightarrow \mathcal{Y}_{T_{\infty}}^{\prime}\left(K_{\infty}\right) \rightarrow 0 \tag{3}
\end{equation*}
$$

Because $X\left(K_{\infty, w}\right) / X^{\prime}\left(K_{\infty, w}\right)$ is isomorphic to \mathbf{Z}_{p}, we have:
Proposition 2.4.

$$
\operatorname{rank}_{\Lambda} \mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right)=\operatorname{rank}_{\Lambda} \mathcal{Y}_{T_{\infty}}^{\prime}\left(K_{\infty}\right) \quad \text { and } \quad \mu\left(\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right)_{\Lambda-t o r}\right)=\mu\left(\mathcal{Y}_{T_{\infty}}^{\prime}\left(K_{\infty}\right)_{\Lambda-t o r}\right)
$$

REMARK 2.5. When K is abelian over an imaginary quadratic field k in which p splits and when T is the set of all the primes above one of the primes of k dividing $p, \mathcal{Y}_{T_{\infty}}(\tilde{K})$ has been considered in relation with the Iwasawa theory of $C M$-elliptic curves. Here \tilde{K} / K is a certain \mathbf{Z}_{p}-extension which is not cyclotomic (cf. [Co]).

3. The extensions over finite number fields

Let p, K and $T \subset P(K)$ be as in $\S 2$. Let

$$
Z_{T}(K):=\operatorname{Gal}\left(\mathcal{M}_{T}(K) / H(K)\right) .
$$

Then, we have the exact sequence

$$
\begin{equation*}
0 \rightarrow Z_{T}(K) \rightarrow \mathcal{Y}_{T}(K) \rightarrow A(K) \rightarrow 0 \tag{4}
\end{equation*}
$$

Assume $[K: \mathbf{Q}] \leq \infty$. Let \mathcal{E}_{K} be the group of global units of K. For a prime v of K, let \mathcal{U}_{v} be the group of principal units in K_{v}. Put

$$
\mathcal{U}_{K, T}:=\prod_{v \in T} \mathcal{U}_{v} .
$$

Then we have the following:
PROPOSITION 3.1. $Z_{T}(K) \cong \mathcal{U}_{K, T} /\left(\overline{\mathcal{E}_{K} \cap \mathcal{U}_{K, T}}\right)$. Here, $\overline{\mathcal{E}_{K} \cap \mathcal{U}_{K, T}}$ is the topological closure of $\mathcal{E}_{K} \cap \mathcal{U}_{K, T}$ in $\mathcal{U}_{K, T}$.

Proof. The proof goes exactly on similar line to the proof of [Wa] Theorem 13.4. Let \tilde{H} be the maximal unramified abelian extension of K and \tilde{M}_{T} the maximal abelian extension
of K unramified outside T. By the class field theory,

$$
\operatorname{Gal}\left(\tilde{M}_{T} / \tilde{H}\right) \cong\left(K^{\times} \prod_{v: a l l} U_{v}\right) /\left(\overline{K^{\times} \prod_{v \notin T} U_{v}}\right)
$$

Here $\left(K^{\times} \prod_{v: a l l} U_{v}\right)$ and $\left(\overline{K^{\times} \prod_{v \notin T} U_{v}}\right)$ are considered as subgroups of the idele group of K, where U_{v} denotes the group of whole local units of K_{v}. The right hand side is isomorphic to $\prod_{v \in T} U_{v} /\left(\overline{K^{\times}} \prod_{v \notin T} U_{v} \cap \prod_{v \in T} U_{v}\right)$. By the same argument as in [Wa] Lemma 13.5, $\left(\overline{K^{\times}} \prod_{v \notin T} U_{v} \cap \prod_{v \in T} U_{v}\right)=\overline{\mathcal{E}_{K}}$. By taking the p-part, we have the proposition.

For $\mathcal{Y}^{\prime}{ }_{T}(K)$, we see the following: let $H_{T}(K)$ be the maximal unramified abelian p extension of K whose primes above $P(K)-T$ are all completely decomposed. Let $A_{T}(K):=$ $\operatorname{Gal}\left(H_{T}(K) / K\right)$. Then $A_{T}(K)$ is a quotient of $A(K)$ and $A^{\prime}(K)$ is a quotient of $A_{T}(K)$. Let $Z_{T}^{\prime}(K):=\operatorname{Gal}\left(\mathcal{M}_{T}^{\prime}(K) / H_{T}(K)\right)$. Then we have

$$
\begin{equation*}
1 \rightarrow Z_{T}^{\prime}(K) \rightarrow \mathcal{Y}^{\prime}{ }_{T}(K) \rightarrow A_{T}(K) \rightarrow 1 \tag{5}
\end{equation*}
$$

Proposition 3.2. Let $\mathcal{E}_{K,(P(K)-T)}$ be the group of $(P(K)-T)$-units of K. Then we have $Z_{T}^{\prime}(K) \cong \mathcal{U}_{K, T} /\left(\overline{\mathcal{E}_{K,(P(K)-T)} \cap \mathcal{U}_{K, T}}\right)$.

For the proof, let \tilde{H}_{T} be the maximal unramified abelian extension of K whose primes above $P(K)-T$ are all completely decomposed and \tilde{M}_{T}^{\prime} the maximal abelian extension of K which is unramified outside T and all of whose primes above $P(K)-T$ are completely decomposed. Then

$$
\left.\begin{array}{rl}
\operatorname{Gal}\left(\tilde{M}_{T}^{\prime} / \tilde{H}_{T}\right) & \cong\left(K^{\times} \prod_{v \notin P(K)-T} U_{v} \prod_{v \in P(K)-T} K_{v}^{\times}\right) /\left(\overline{K^{\times}} \prod_{v \notin P(K)} U_{v} \prod_{v \in P(K)-T} K_{v}^{\times}\right.
\end{array}\right)
$$

Thus we have the above fact in a similar manner as the proof of Proposition 3.1.
4. Relation between $\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right)$ and $\mathcal{Y}_{T_{n}}\left(K_{n}\right)$

First we prepare a Lemma on $\Lambda=\mathbf{Z}_{p}[[T]]$-modules. Let

$$
\left\{\begin{array}{l}
\omega_{n}:=(1+T)^{p^{n}}-1 \tag{6}\\
v_{m, n}:=\omega_{m} / \omega_{n} \text { for } m \geq n .
\end{array}\right.
$$

Lemma 4.1. Let $\left\{X_{n}\right\}_{n}$ be a projective system of Λ-modules. Let $X:=\lim _{\longleftarrow} X_{n}$ and assume $p r_{n}: X \rightarrow X_{n}$ are surjective for any $n \geq n_{0}$. Suppose that there exist Λ-modules D_{n}
and that there exist commutative diagrams

for any $n \geq n_{0}$, whose rows are exact. Further, assume that the left vertical maps $D_{n} \rightarrow$ D_{n+1} are surjective. Then, $X_{n}=X / v_{n, n_{0}} I$ where $I=\operatorname{Ker}\left(p r_{n_{0}}\right)$.

Proof. Let $I_{n}:=\operatorname{Ker}\left(p r_{n}\right)$. Then the map $\nu_{n+1, n}: I_{n} / \omega_{n} X \rightarrow I_{n+1} / \omega_{n+1} X$ is surjective. Thus, we have $v_{n+1, n} I_{n}+\omega_{n+1} X=I_{n+1}$. Since $v_{n+1, n} I_{n}+\omega_{n+1} X=v_{n+1, n}\left(I_{n}+\right.$ $\left.\omega_{n} X\right)=v_{n+1, n} I_{n}$, we have $v_{n+1, n} I_{n}=I_{n+1}$.

Let K_{n} be the n-th layer of K_{∞} / K. Let T_{n} be the set of primes of K_{n} above T. Then we have

$$
\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right)={\left.\underset{n}{\underset{n}{\lim }} \mathcal{Y}_{T_{n}}\left(K_{n}\right), ~\right)}
$$

where the inverse limit is taken w.r.t. the natural restrictions. Let n_{0} be the minimal number such that all of the primes in $P\left(K_{n_{0}}\right)-T_{n_{0}}$ are totally ramified in $K_{\infty} / K_{n_{0}}$. Let

$$
\begin{equation*}
W_{T}:=\operatorname{Gal}\left(\mathcal{M}_{T_{\infty}}\left(K_{\infty}\right) / K_{\infty} \mathcal{M}_{T_{n_{0}}}\left(K_{n_{0}}\right)\right) \tag{7}
\end{equation*}
$$

This is a Λ-submodule of $\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right)$. We see that $\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right) / W_{T}$ is isomorphic to a submodule of $\mathcal{Y}_{T_{n_{0}}}\left(K_{n_{0}}\right)$ which is a finitely generated \mathbf{Z}_{p}-module. Let ω_{n} and $\nu_{m, n}$ be the elements of Λ defined by (6).

Proposition 4.2. Assume $T \neq P(K)$. Then, for any $n \geq n_{0}$, we have

$$
\mathcal{Y}_{T_{n}}\left(K_{n}\right) \cong \mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right) / v_{n, n_{0}} W_{T}
$$

If $n_{0}=0$ and $\sharp(P(K)-T)=1$, then

$$
\mathcal{Y}_{T_{n}}\left(K_{n}\right) \cong \mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right) / \omega_{n} \mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right)
$$

for all n.
REMARK 4.3. When $T=\varnothing$, this is a well known result of Iwasawa ([Iw], [Wa] Lemma 13.18). On the other hand, when $T=P(K)$, it is also well known that $\operatorname{Gal}\left(\mathcal{M}_{T_{n}}\left(K_{n}\right) / K_{\infty}\right) \cong \mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right) / \omega_{n}$.

Proof. Let $\tilde{\mathcal{M}}_{n}$ be the subfield of $\mathcal{M}_{T_{\infty}}\left(K_{\infty}\right) / K_{\infty}$ corresponding to the subgroup $\omega_{n} \mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right)$. This is the maximal subfield which is abelian over K_{n}. Then the following is exact:

$$
1 \rightarrow \bigoplus_{\mathfrak{p}_{n} \in P\left(K_{n}\right)-T_{n}} T\left(\mathfrak{p}_{n}\right) \rightarrow \operatorname{Gal}\left(\tilde{\mathcal{M}}_{n} / K_{n}\right) \rightarrow \mathcal{Y}_{T_{n}}\left(K_{n}\right) \rightarrow 1
$$

Here, $T\left(\mathfrak{p}_{n}\right)$ is the inertia group of \mathfrak{p}_{n} in $\operatorname{Gal}\left(\tilde{\mathcal{M}}_{n} / K_{n}\right)$. For $n \geq n_{0}$, the restriction map $T\left(\mathfrak{p}_{n}\right) \rightarrow \operatorname{Gal}\left(K_{\infty} / K_{n}\right)\left(\cong \mathbf{Z}_{p}\right)$ is an isomorphism. Thus, for $\mathfrak{p}_{n+1} \in P\left(K_{n+1}\right)-T_{n+1}$ the image of $T\left(\mathfrak{p}_{n+1}\right)$ by the restriction map

$$
\phi_{n}: \operatorname{Gal}\left(\tilde{\mathcal{M}}_{n+1} / K_{n+1}\right) \rightarrow \operatorname{Gal}\left(\tilde{\mathcal{M}}_{n} / K_{n}\right)
$$

is $p T\left(\mathfrak{p}_{n}\right)$ where $\mathfrak{p}_{n}=\left.\mathfrak{p}_{n+1}\right|_{K_{n}}$. Consider the transfer map

$$
\psi_{n}: \operatorname{Gal}\left(\tilde{\mathcal{M}}_{n} / K_{n}\right) \rightarrow \operatorname{Gal}\left(\tilde{\mathcal{M}}_{n+1} / K_{n+1}\right)
$$

Then we see that the image of $T\left(\mathfrak{p}_{n}\right)$ by ψ_{n} is contained in $T\left(\mathfrak{p}_{n+1}\right)$. Further, $\left.\psi_{n}\right|_{T\left(\mathfrak{p}_{n}\right)}$ is an isomorphism. In fact, since $\phi_{n} \circ \psi_{n}=p, \phi_{n}\left(\psi_{n}\left(T\left(\mathfrak{p}_{n}\right)\right)=p T\left(\mathfrak{p}_{n+1}\right)=\phi_{n}\left(T\left(\mathfrak{p}_{n+1}\right)\right)\right.$. Thus, since ϕ_{n} is injective on $T\left(\mathfrak{p}_{n+1}\right), \psi_{n}\left(T\left(\mathfrak{p}_{n}\right)\right)=T\left(\mathfrak{p}_{n+1}\right)$. Therefore we have the diagram for $n \geq n_{0}$

The vertical maps are transfers. The left vertical map is an isomorphism by the above. From this and the facts that $\operatorname{Gal}\left(\tilde{\mathcal{M}}_{n} / K_{\infty}\right) \cong \mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right) / \omega_{n}$ and $\mathcal{M}_{T_{n}}\left(K_{n}\right) \cap K_{\infty}=K_{n}$ (since $T \neq P(K)$), we have the diagram

where $D_{n}:=\operatorname{Ker}\left(\bigoplus_{\mathfrak{p}_{n} \in P\left(K_{n}\right)-T_{n}} T\left(\mathfrak{p}_{n}\right) \rightarrow \operatorname{Gal}\left(K_{\infty} / K_{n}\right)\right)$. The left vertical map is an isomorphism. Thus we have Proposition 4.2 by Lemma 4.1. When $\sharp(P(K)-T)=1$, then $D_{n}=0$. Thus $\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right) / \omega_{n} \cong \mathcal{Y}_{T_{n}}\left(K_{n}\right)$.

A result of the same type can be verified for $\mathcal{Y}_{T_{\infty}}^{\prime}\left(K_{\infty}\right)$. In fact, in the above proof, if we replace $\mathcal{M}_{T_{\infty}}\left(K_{\infty}\right)$ by $\mathcal{M}_{T_{\infty}}^{\prime}\left(K_{\infty}\right)$ and $T\left(\mathfrak{p}_{n}\right)$ by the decomposition group $Z\left(\mathfrak{p}_{n}\right)$, we have:

Proposition 4.4. For any $n \geq n_{0}$, we have

$$
\mathcal{Y}_{T_{n}}^{\prime}\left(K_{n}\right) \cong \mathcal{Y}_{T_{\infty}}^{\prime}\left(K_{\infty}\right) / v_{n, n_{0}} W_{T}^{\prime}
$$

where $W_{T}^{\prime}:=\operatorname{Gal}\left(\mathcal{M}_{T_{\infty}}^{\prime}\left(K_{\infty}\right) / K_{\infty} \mathcal{M}_{T_{n_{0}}}^{\prime}\left(K_{n_{0}}\right)\right)$. If $n_{0}=0$ and $\sharp(P(K)-T)=1$, then

$$
\mathcal{Y}_{T_{n}}^{\prime}\left(K_{n}\right) \cong \mathcal{Y}_{T_{\infty}}^{\prime}\left(K_{\infty}\right) / \omega_{n}
$$

for all n.
In concluding this section, we note the following explicit formula when K is a CM field.

ThEOREM 4.5 (cf. [JaMa]). Assume p is odd and K is a CM-field. Let

$$
T_{0}:=\{v \in T \mid \sigma v \in T\}
$$

where σ is the complex conjugation. Then,

$$
\operatorname{rank}_{\Lambda}\left(\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right)\right)=\sum_{v \in T_{0}}\left[K_{v}: \mathbf{Q}_{p}\right] / 2
$$

Further, we have $\mu\left(\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right)_{\Lambda-t o r}\right)=0$ if $\mu\left(\mathcal{Y}_{\varnothing}\left(L_{\infty}\right)\right)=0$ where $L=K\left(\mu_{p}\right)$. Here, $\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right)_{\Lambda \text {-tor }}$ is the maximal Λ-torsion submodule of $\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right)$.

When K is abelian, we have $\mu\left(\mathcal{Y}_{\varnothing}\left(L_{\infty}\right)\right)=0$ since $K\left(\mu_{p}\right)$ is abelian. This gives a complete answer to our problem in this case.
5. A bound for the Z_{p}-rank of global units: an application of $A x$ and Brumer's
method

In this section, we consider the \mathbf{Z}_{p}-rank of $\overline{\mathcal{E}_{K} \cap \mathcal{U}_{K, T}}$ in $\mathcal{U}_{K, T}$ after the methods of Ax and Brumer ([Ax] and [Br]). We also use the formulation of [EKW].

Let K be an algebraic number field of finite degree. Let p be a prime and $T \subset P(K)$ a non-empty subset. Assume there exists a subfield $k \subset K$ such that K / k is Galois. Assume that there exists a prime $u \in P(k)$ such that

$$
\begin{equation*}
T^{\prime}:=\{v \in P(K)|v| u\} \tag{8}
\end{equation*}
$$

is contained in T. Let G be the Galois group of K over k. We prove the following:
THEOREM 5.1. Let K / k and $T \subset P(K)$ be as above. Let $\overline{\mathcal{E}_{K} \cap \mathcal{U}_{K, T}}$ be the topological closure of $\mathcal{E}_{K} \cap \mathcal{U}_{K, T}$ in $\mathcal{U}_{K, T}$. Then,

$$
\operatorname{rank}_{\mathbf{Z}_{p}} \overline{\mathcal{E}_{K} \cap \mathcal{U}_{K, T}} \geq \sum_{\chi \in \Delta_{K / k}} \operatorname{deg}(\chi)
$$

Here, $\Delta_{K / k}$ is the set of the distinct irreducible characters of G over $\overline{\mathbf{Q}}$ which appears in the $\overline{\mathbf{Q}}[G]$-module $\mathcal{E}_{K} \otimes_{\mathbf{Z}} \overline{\mathbf{Q}}$. That is,

$$
\mathcal{E}_{K} \otimes \mathbf{Z} \overline{\mathbf{Q}} \cong \bigoplus_{\chi \in \Delta_{K / k}} V_{\chi}^{n_{\chi}}
$$

where V_{χ} is the irreducible $\overline{\mathbf{Q}}[G]$-module corresponding to χ with $n_{\chi}>0$ and if $\chi \neq \chi^{\prime}$ in $\Delta_{K / k}$ then $V_{\chi} \neq V_{\chi^{\prime}}$.

REMARK 5.2. The same result is obtained by C. Maire in [Ma] by the same method. But we prove this here for the completeness.

To prove Theorem 5.1, we need the following:

Lemma 5.3 ([EKW] Lemme 1). Let X be a finite dimensional $\mathbf{C}_{p}[G]$-module. Let $A \subset X$ be $a \overline{\mathbf{Q}}[G]$-submodule. Let A^{cl} be the topological closure of A in X. Then $\operatorname{dim}_{\mathbf{C}_{p}} A^{\mathrm{cl}} \geq$ $\sum_{\chi \in \Delta_{A}} \operatorname{deg}(\chi)$. Here, Δ_{A} is the set of the distinct irreducible characters of G over $\overline{\mathbf{Q}}$ which appears in A.

Proof. Let V_{χ} be an irreducible component of A corresponding to χ. Then $V_{\chi} \otimes_{\overline{\mathbf{Q}}} \mathbf{C}_{p}$ is irreducible over \mathbf{C}_{p}. Thus, the induced map $V_{\chi} \otimes \mathbf{C}_{p} \rightarrow X$ should be injective. If $\chi \neq \chi^{\prime}$, then we see the intersection of the images of $V_{\chi} \otimes \mathbf{C}_{p}$ and $V_{\chi^{\prime}} \otimes \mathbf{C}_{p}$ is 0 . Thus we have the conclusion.

Let $T^{\prime} \subset T$ be as (8). For $v \in T^{\prime}$, we denote the corresponding embedding by $\iota_{v}: K \hookrightarrow$ K_{v}. Let $G_{v}:=\operatorname{Gal}\left(K_{v} / k_{u}\right) \subset G$ where $v \mid u$. Let

$$
\log _{p}: K_{v}^{\times} \rightarrow K_{v}
$$

be the p-adic logarithm map. This is a G_{v}-homomorphism. Then we have the following theorem due to Brumer:

THEOREM 5.4 (Brumer[Br]). Let $\mathcal{E}_{K} \rightarrow \mathbf{C}_{p}$ be the composition of the map $\iota_{v} \mid \mathcal{E}_{K}, \log _{p}$ and the inclusion $K_{v} \hookrightarrow \mathbf{C}_{p}$. Then the induced map

$$
\mathcal{E}_{K} \otimes \overline{\mathbf{Q}} \rightarrow \mathbf{C}_{p}
$$

is injective.
Proof of Theorem 5.1. We note that $\mathcal{E}_{K} \cap \mathcal{U}_{K, T}$ is of finite index in \mathcal{E}_{K}. We see that the \mathbf{Z}_{p}-rank of $\overline{\mathcal{E}_{K} \cap \mathcal{U}_{K, T}}$ in $\mathcal{U}_{K, T}$ is not less than that of $\overline{\mathcal{E}_{K} \cap \mathcal{U}_{K, T^{\prime}}}$ in $\mathcal{U}_{K, T^{\prime}}$. Thus, we only need to prove Theorem for T^{\prime}. For $v \in T^{\prime}$, let \mathcal{U}_{v} be the principal local units of K_{v}. Let

$$
\ell_{v}: \mathcal{U}_{v} \rightarrow K_{v} \otimes_{k_{u}} \mathbf{C}_{p}
$$

be the map defined by $u \mapsto \log _{p}(u) \otimes 1$. We have $K_{v} \otimes_{k_{u}} \mathbf{C}_{p} \cong \mathbf{C}_{p}\left[G_{v}\right]$ as a $\mathbf{C}_{p}\left[G_{v}\right]$-module and ℓ_{v} is a $\mathbf{Z}_{p}\left[G_{v}\right]$-module homomorphism. Here we consider \mathbf{C}_{p} as a trivial G_{v}-module. Let

$$
X:=\bigoplus_{v \in T^{\prime}}\left(K_{v} \otimes_{k_{u}} \mathbf{C}_{p}\right)
$$

and

$$
\theta:=\bigoplus_{v \in T^{\prime}} \ell_{v}: \mathcal{U}_{K, T^{\prime}} \rightarrow X
$$

Then we have $X \cong \mathbf{C}_{p}[G]$ and θ is a $\mathbf{Z}_{p}[G]$-homomorphism. By Theorem 5.4, we see that the induced map

$$
\left(\left.\theta\right|_{\left(\mathcal{E}_{K} \cap \mathcal{U}_{K, T^{\prime}}\right)}\right) \otimes \overline{\mathbf{Q}}:\left(\mathcal{E}_{K} \cap \mathcal{U}_{K, T^{\prime}}\right) \otimes \overline{\mathbf{Q}} \rightarrow X
$$

is injective. Since the above map is a G-homomorphism, we have

$$
\operatorname{dim}_{\mathbf{C}_{p}}\left(\theta\left(\mathcal{E}_{K} \cap \mathcal{U}_{K, T^{\prime}}\right) \otimes \overline{\mathbf{Q}}\right)^{\mathrm{cl}} \geq \sum_{\chi \in \Delta_{K / k}} \operatorname{deg}(\chi)
$$

by Lemma 5.3. Therefore we get the inequality

$$
\operatorname{rank}_{\mathbf{z}_{p}} \overline{\mathcal{E}_{K} \cap \mathcal{U}_{K, T^{\prime}}} \geq \sum_{\chi \in \Delta_{K / k}} \operatorname{deg}(\chi)
$$

since θ is a \mathbf{Z}_{p}-homomorphism.
Next, we recall the well-known structure of $\mathcal{E}_{K} \otimes \mathbf{Q}$ as a $\mathbf{Q}[G]$-module.
Definition 5.5. Let K / k be a Galois extension and $G:=\operatorname{Gal}(K / k)$. Let V_{1} be the set of all real primes of k which remain real in K, V_{2} the set of real primes of k which become complex in K and V_{3} the set of all complex primes. For a prime u in V_{2}, choose v, a prime of K above u. Let $\operatorname{Gal}\left(K_{v} / k_{u}\right)=\left\langle\sigma_{v}\right\rangle \subset G$. We define a $\mathbf{Q}[G]$-module $M_{K / k}$ as

$$
M_{K / k}:=\left(\bigoplus_{u \in V_{1} \cup V_{3}} \mathbf{Q}[G]\right) \oplus\left(\bigoplus_{u \in V_{2}} \mathbf{Q}\left[G /\left\langle\sigma_{v}\right\rangle\right]\right) .
$$

DEFINITION 5.6. Let $K / k, G, V_{1}, V_{2}, V_{3}$ and σ_{v} be as above. Let

$$
r_{1}: \mathbf{Q}[G] \rightarrow \mathbf{Q} \quad\left(\text { resp. } \quad r_{2}: \mathbf{Q}\left[G /\left\langle\sigma_{v}\right\rangle\right] \rightarrow \mathbf{Q}\right)
$$

be the map defined by $\sum_{\tau} a_{\tau} \tau \mapsto \sum_{\tau} a_{\tau}$ (resp. $\sum_{\tau \in G /\left\langle\sigma_{v}\right\rangle} a_{\tau} \tau \mapsto \sum_{\tau \in G / /\left\langle\sigma_{v}\right\rangle} a_{\tau}$). Let

$$
\psi_{K}:=\left(\sum_{u \in V_{1} \cup V_{3}} r_{1}\right)+\left(\sum_{u \in V_{2}} r_{2}\right): M_{K / k} \rightarrow \mathbf{Q}
$$

Proposition 5.7 (see also [EKW]). As $\mathbf{Q}[G]$-modules,

$$
\mathcal{E}_{K} \otimes \mathbf{Q} \cong \operatorname{Ker}\left(\psi_{K}\right)
$$

Proof. Let us consider the regulator map

$$
r_{K}: \mathcal{E}_{K} \rightarrow M_{K / k} \otimes \mathbf{R}
$$

defined by

$$
\epsilon \mapsto\left(\bigoplus_{u \in V_{1} \cup V_{3}} \sum_{\tau}\left(\left|\log \epsilon^{(\tau v)}\right| \tau\right)\right) \oplus\left(\bigoplus_{u \in V_{2}} \sum_{\tau}\left(\left|\log \epsilon^{(\tau v)}\right| \tau\right)\right)
$$

where $v \mid u$ and $\epsilon^{(\tau v)} \in \mathbf{R}$ or \mathbf{C} is the image of ϵ under the embedding corresponding to τv. This is a G-homomorphism. Dirichlet's unit theorem states that $r_{K} \otimes \mathbf{R}$ is injective and

$$
\mathcal{E}_{K} \otimes \mathbf{R} \cong \operatorname{Ker}\left(\psi_{K}\right) \otimes \mathbf{R}
$$

For $\mathbf{Q}[G]$-modules A and B, if $A \otimes \mathbf{R} \cong B \otimes \mathbf{R}$ as $\mathbf{R}[G]$-modules, then $A \cong B$ as $\mathbf{Q}[G]$ modules (cf. [ANT] Chapter IV p. 110 Lemma for the proof of Proposition 12). Thus we have the Proposition.

6. A bound for the Λ-rank of $\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right)$

Let M be a finitely generated Λ-module. As for the Λ-rank of M, we see the following: Let $\omega_{n}:=(1+T)^{p^{n}}-1$ and $v_{m, n}:=\omega_{m} / \omega_{n}$ be the elements of Λ as (6).

Lemma 6.1. Let M be a finitely generated Λ-module. Then we have

$$
\operatorname{rank}_{\Lambda}(M)=\lim _{m \rightarrow \infty} \frac{1}{p^{m}}\left(\operatorname{rank}_{\mathbf{Z}_{p}}\left(M / v_{m, n}\right)\right)
$$

for any $n \geq 0$.
Proof. By the structure theorem of Λ-modules, there exists

$$
M \rightarrow \Lambda^{r} \oplus\left(\bigoplus_{i} \Lambda / p^{n_{i}}\right) \oplus\left(\bigoplus_{j} \Lambda /\left(f_{j}\right)^{e_{j}}\right)
$$

with finite kernel and cokernel, where f_{j} 's are irreducible distinguished polynomials. Thus we have

$$
\begin{aligned}
\operatorname{rank}_{\mathbf{Z}_{p}}\left(M / v_{m, n}\right)= & r\left(\operatorname{rank}_{\mathbf{Z}_{p}}\left(\Lambda / v_{m, n}\right)\right)+\sum_{i} \operatorname{rank}_{\mathbf{Z}_{p}}\left(\Lambda /\left(p^{n_{i}}, v_{m, n}\right)\right) \\
& +\sum_{j} \operatorname{rank}_{\mathbf{Z}_{p}}\left(\Lambda /\left(f_{j}^{e_{j}}, v_{m, n}\right)\right)
\end{aligned}
$$

We see $\operatorname{rank}_{\mathbf{Z}_{p}}\left(\Lambda / v_{m, n}\right)=p^{m}-p^{n}, \sum_{j} \operatorname{rank}_{\mathbf{Z}_{p}}\left(\Lambda /\left(f_{j}^{e_{j}}, v_{m, n}\right)\right) \leq \sum_{j} \operatorname{rank}_{\mathbf{Z}_{p}}\left(\Lambda /\left(f_{j}\right)^{e_{j}}\right)$ and that $\left(\Lambda /\left(p^{n_{i}}, v_{m, n}\right)\right)$ is finite. Thus we have the lemma since $r=\operatorname{rank}_{\Lambda}(M)$.

We now consider K / k and $T \subset P(K)$ satisfying the conditions stated at the beginning of $\S 5$. Let K_{∞} (resp. k_{∞}) be the cyclotomic \mathbf{Z}_{p}-extension of K (resp. k). We further assume here that

$$
K \cap k_{\infty}=k
$$

Then,

$$
\operatorname{Gal}\left(K_{\infty} / k\right) \cong G \times \Gamma
$$

Let $T_{\infty} \subset P\left(K_{\infty}\right)$ be the set of primes above T. Then we see that
THEOREM 6.2. Assume K / k and $T \subset P(K)$ satisfy the above conditions. Then we have

$$
\operatorname{rank}_{\Lambda}\left(\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right)\right) \leq\left(\sum_{v \in T}\left[K_{v}: \mathbf{Q}_{p}\right]\right)-\left(\sum_{\chi \in \Delta_{K / k}} \operatorname{deg} \chi\right)-\delta
$$

Here, $\Delta_{K / k}$ is the set of the distinct irreducible characters of G over $\overline{\mathbf{Q}}$ which appear in the $\overline{\mathbf{Q}}[G]$-module $\mathcal{E}_{K} \otimes_{\mathbf{Z}} \overline{\mathbf{Q}}$. We put

$$
\delta= \begin{cases}0 & \text { if } \Delta_{K / k} \text { contains the trivial character }, \\ 1 & \text { otherwise }\end{cases}
$$

Proof. First, we consider the case where $T \neq P(K)$. Let $W_{T} \subset \mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right)$ be the Λ submodule defined by (7). We know that $\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right) / W_{T}$ is a finitely generated \mathbf{Z}_{p}-module. Thus, $\operatorname{rank}_{\Lambda}\left(\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right)\right)=\operatorname{rank}_{\Lambda}\left(W_{T}\right)$ and

$$
\operatorname{rank}_{\mathbf{Z}_{p}}\left(W_{T} / v_{n, n_{0}}\right)=\operatorname{rank}_{\mathbf{Z}_{p}}\left(\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right) / v_{n, n_{0}} W_{T}\right)-\operatorname{rank}_{\mathbf{Z}_{p}}\left(\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right) / W_{T}\right) .
$$

By Proposition 4.2, we have $\operatorname{rank}_{\mathbf{Z}_{p}}\left(\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right) / v_{n, n_{0}} W_{T}\right)=\operatorname{rank}_{\mathbf{z}_{p}}\left(\mathcal{Y}_{T_{n}}\left(K_{n}\right)\right)$, where $T_{n} \subset$ $P\left(K_{n}\right)$ is the set of primes above T. On the other hand,

$$
\operatorname{rank}_{\mathbf{Z}_{p}}\left(\mathcal{Y}_{T_{n}}\left(K_{n}\right)\right)=\operatorname{rank}_{\mathbf{Z}_{p}}\left(\mathcal{U}_{K_{n}, T_{n}} /\left(\overline{\mathcal{E}_{K_{n}} \cap \mathcal{U}_{K_{n}, T_{n}}}\right)\right)
$$

by (4) and Proposition 3.1. We claim here that

$$
\operatorname{rank}_{\mathbf{Z}_{p}}\left(\mathcal{U}_{K_{n}, T_{n}} /\left(\overline{\mathcal{E}_{K_{n}} \cap \mathcal{U}_{K_{n}, T_{n}}}\right)\right) \leq p^{n}\left(\left(\sum_{v \in T}\left[K_{v}: \mathbf{Q}_{p}\right]\right)-\left(\sum_{\chi \in \Delta_{K / k}} \operatorname{deg} \chi\right)-\delta\right)+\delta
$$

By this claim, we have

$$
\begin{aligned}
\operatorname{rank}_{\mathbf{Z}_{p}}\left(W_{T} / v_{n, n_{0}}\right) \leq & p^{n}\left(\sum_{v \in T}\left[K_{v}: \mathbf{Q}_{p}\right]-\sum_{\chi \in \Delta_{K / k}} \operatorname{deg} \chi-\delta\right)+\delta \\
& -\operatorname{rank}_{\mathbf{Z}_{p}}\left(\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right) / W_{T}\right)
\end{aligned}
$$

Thus by Lemma 6.1, we have

$$
\operatorname{rank}_{\Lambda}\left(\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right)\right)=\operatorname{rank}_{\Lambda}\left(W_{T}\right) \leq \sum_{v \in T}\left[K_{v}: \mathbf{Q}_{p}\right]-\sum_{\chi \in \Delta_{K / k}} \operatorname{deg} \chi-\delta
$$

So it remains to prove the claim above.
Since $\operatorname{rank}_{\mathbf{Z}_{p}}\left(\mathcal{U}_{K_{n}, T_{n}}\right)=p^{n} \sum_{v \in T}\left[K_{v}: \mathbf{Q}_{p}\right]$, we see from Theorem 5.1 that

$$
\operatorname{rank}_{\mathbf{Z}_{p}}\left(\mathcal{U}_{K_{n}, T_{n}} / \overline{\left(\overline{\mathcal{E}_{K_{n}} \cap \mathcal{U}_{K_{n}}, T_{n}}\right)}\right) \leq p^{n}\left(\sum_{v \in T}\left[K_{v}: \mathbf{Q}_{p}\right]\right)-\sum_{\chi \in \Delta_{K_{n} / k}} \operatorname{deg} \chi
$$

We calculate $\sum_{\chi \in \Delta_{K_{n} / k}} \operatorname{deg} \chi$. Since $\operatorname{Gal}\left(K_{n} / k\right) \cong G \times \Gamma / \Gamma^{p^{n}}$, we have

$$
M_{K_{n} / k}=\left(\bigoplus_{v \in V_{1} \cup V_{3}} \mathbf{Q}\left[G \times \Gamma / \Gamma^{p^{n}}\right]\right) \oplus\left(\bigoplus_{v \in V_{2}} \mathbf{Q}\left[\left(G \times \Gamma / \Gamma^{p^{n}}\right) /\left\langle\sigma_{v}\right\rangle\right]\right)
$$

and $\mathcal{E}_{K_{n}} \otimes \mathbf{Q} \cong \operatorname{Ker}\left(\psi_{K_{n}}\right)$ by Proposition 5.7. Let $\left(\Gamma / \Gamma^{p^{n}}\right)^{\wedge}$ be the set of characters of $\Gamma / \Gamma^{p^{n}}$. Since $\Gamma / \Gamma^{p^{n}}$ is abelian, we see that if $\Delta_{K / k}$ contains the trivial character, then

$$
\Delta_{K_{n} / k}=\left\{\chi \otimes \chi^{\prime} \mid \chi \in \Delta_{K / k}, \chi^{\prime} \in\left(\Gamma / \Gamma^{p^{n}}\right)^{\wedge}\right\} .
$$

If $\Delta_{K / k}$ does not contain the trivial character, then

$$
\Delta_{K_{n} / k}=\left\{\chi \otimes \chi^{\prime} \mid \chi \in \Delta_{K / k}, \chi^{\prime} \in\left(\Gamma / \Gamma^{p^{n}}\right)^{\wedge}\right\} \cup\left\{1 \otimes \chi^{\prime} \mid \chi^{\prime} \in\left(\Gamma / \Gamma^{p^{n}}\right)^{\wedge} \text { and } \chi^{\prime} \neq 1^{\prime}\right\}
$$

where 1 and 1^{\prime} are the trivial characters of G and $\Gamma / \Gamma^{p^{n}}$. Since each χ^{\prime} is of degree one, we have $\operatorname{deg}\left(\chi \otimes \chi^{\prime}\right)=\operatorname{deg} \chi$. Thus, $\sharp \Delta_{K_{n} / k}=\left(p^{n} \sharp \Delta_{K / k}\right)+\delta\left(p^{n}-1\right)$ and

$$
\sum_{\chi \in \Delta_{K_{n} / k}} \operatorname{deg} \chi=\left(p^{n} \sum_{\chi \in \Delta_{K / k}} \operatorname{deg} \chi\right)+\delta\left(p^{n}-1\right)
$$

This proves the claim.
In the case where $T=P(K)$, we have

$$
\operatorname{rank}_{\mathbf{Z}_{p}}\left(\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right) / \omega_{n}\right)=\operatorname{rank}_{\mathbf{Z}_{p}}\left(\mathcal{Y}_{T_{n}}\left(K_{n}\right)\right)-1
$$

by Remark 4.3. We calculate $\operatorname{rank}_{\mathbf{Z}_{p}}\left(\mathcal{Y}_{T_{n}}\left(K_{n}\right)\right)$ similarly as above, and get the same conclusion. Note, however, that our estimate for the Λ-rank is weaker than Iwasawa's equality (Theorem 2.1), in this case.
7. Λ-torsionness and μ-invariant of $\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right)$ for $K=\mathbf{Q}(\sqrt[3]{a})$

In this section, we consider a special base field

$$
K=\mathbf{Q}(\sqrt[3]{a})
$$

where $a \in \mathbf{Z}$ and cube free. Let $k=\mathbf{Q}\left(\zeta_{3}\right)$ and

$$
L=\mathbf{Q}\left(\sqrt[3]{a}, \zeta_{3}\right)
$$

the Galois closure of K. Let σ be a generator of $\operatorname{Gal}(L / K)$ and τ that of $\operatorname{Gal}(L / k)$. Then

$$
G:=\operatorname{Gal}(L / \mathbf{Q}) \cong \mathfrak{S}_{3}
$$

and G is generated by σ and τ, satisfying $\sigma^{2}=1, \tau^{3}=1$ and $\sigma \tau=\tau^{-1} \sigma$.
Let p be an odd prime satisfying the following: p inerts in k and π splits in L where π is the unique prime of k above p. This is equivalent to the assumption that K has two primes \mathfrak{p}_{1} and \mathfrak{p}_{2} above p.

Denote the primes above p in L by v_{1}, v_{2} and v_{3}. We see that $L_{v_{i}}=\mathbf{Q}_{p}\left(\zeta_{3}\right)$. We may assume that $G_{v_{i}}:=\operatorname{Gal}\left(L_{v_{i}} / \mathbf{Q}_{p}\right)$ is $\left\langle\tau^{i-1} \sigma \tau^{-(i-1)}\right\rangle$ in G. Then, we denote the primes of K above p by \mathfrak{p}_{1} and \mathfrak{p}_{2}, where \mathfrak{p}_{1} is below v_{1} while \mathfrak{p}_{2} is below v_{2} and v_{3}. We have $K_{\mathfrak{p}_{1}}=\mathbf{Q}_{p}$ and $K_{\mathfrak{p}_{2}}=\mathbf{Q}_{p}\left(\zeta_{3}\right),\left[K_{\mathfrak{p}_{2}}: \mathbf{Q}_{p}\right]=2$.

Let L_{∞} (resp. k_{∞}, K_{∞} and \mathbf{Q}_{∞}) be the cyclotomic \mathbf{Z}_{p}-extension of L (resp. k, K and $\mathbf{Q})$. Let $\Gamma=\operatorname{Gal}\left(L_{\infty} / L\right)$ and we identify this with $\operatorname{Gal}\left(K_{\infty} / K\right), \operatorname{Gal}\left(k_{\infty} / k\right)$ and $\operatorname{Gal}\left(\mathbf{Q}_{\infty} / \mathbf{Q}\right)$. We see that L_{∞} is Galois over \mathbf{Q} and $\operatorname{Gal}\left(L_{\infty} / \mathbf{Q}\right) \cong G \times \Gamma$. We identify $\operatorname{Gal}\left(L_{\infty} / \mathbf{Q}_{\infty}\right)$ with G. We easily see the following:

Lemma 7.1. The prime v_{i} (resp. \mathfrak{p}_{i}, π) is totally ramified in L_{∞} / L (resp. K_{∞} / K, $\left.k_{\infty} / k\right)$.

We write v_{i} (resp. $\left.\mathfrak{p}_{i}, \pi\right)$ again for the unique prime of L_{∞} (resp. K_{∞}, k_{∞}) above v_{i} (resp. \mathfrak{p}_{i}, π).

REMARK 7.2. The reason why we consider this special case is that this situation appears in [Ha1],[Ha2] for $p=3$. There, $\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right)$ plays an important role in relation with the μ-invariants of Selmer groups of certain elliptic curves.
7.1. The Λ-torsionness We will prove the following:

THEOREM 7.3. Let K, L and p be as above. Put $T_{\infty}^{\prime}=\left\{v_{1}\right\} \subset P\left(L_{\infty}\right)$ and $T_{\infty}=$ $\left\{\mathfrak{p}_{2}\right\} \subset P\left(K_{\infty}\right)$. Then $\mathcal{Y}_{T_{\infty}^{\prime}}\left(L_{\infty}\right)$ and $\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right)$ are Λ-torsion.

For the proof, we need the following:
Lemma 7.4. $\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right)$ is Λ-torsion if and only if the kernel of the restriction map

$$
\operatorname{res}_{v_{1}}: X\left(L_{\infty, v_{1}}\right) \rightarrow \mathfrak{X}\left(L_{\infty}\right)
$$

is Λ-torsion.
Proof. The above map is a homomorphism of $\operatorname{Gal}(L / K)=\langle\sigma\rangle$-modules. For a $\langle\sigma\rangle$ module M, let $M^{(\sigma= \pm 1)}$ be the maximum $\langle\sigma\rangle$-submodule of M on which σ acts as multiplication by ± 1. Then

$$
M=M^{(\sigma=1)} \oplus M^{(\sigma=-1)} .
$$

We also see that the kernel of $\operatorname{res}_{v_{1}}$ is Λ-torsion if and only if so are the kernels of res ${ }_{v_{1}}^{(\sigma= \pm 1)}$. We have the commutative diagram

Here $X\left(k_{\infty, \pi}\right)^{-}$and $\mathfrak{X}\left(k_{\infty}\right)^{-}$are the minus parts of $X\left(k_{\infty, \pi}\right)$ and $\mathfrak{X}\left(k_{\infty}\right)$, respectively, i.e., the maximum submodules on which the complex conjugation in $\operatorname{Gal}(k / \mathbf{Q})$ acts by (-1) multiplication. Here, π is the unique prime of k_{∞} above p. The cokernel of the bottom row is $A^{\prime}\left(k_{\infty, \pi}\right)^{-}$which is Λ-torsion. We see that $\operatorname{rank}_{\Lambda} X\left(k_{\infty, \pi}\right)^{-}=1$ and $\operatorname{rank}_{\Lambda} \mathfrak{X}\left(k_{\infty}\right)^{-}=1$ by Theorems 2.2 and 2.1, since $X\left(k_{\infty, \pi}\right)^{+}=X\left(k_{\infty, \pi}^{+}\right)$and $\mathfrak{X}\left(k_{\infty}\right)^{+}=\mathfrak{X}\left(k_{\infty}^{+}\right)$where $k^{+}=\mathbf{Q}$. Thus the kernel of res ${ }_{\pi}^{-}$is Λ-torsion. Since the left column is an isomorphism, the kernel of $\operatorname{res}_{v_{1}}^{(\sigma=-1)}$ is Λ-torsion.

On the other hand, we have another commutative diagram

The vertical maps are isomorphisms. By Theorem 2.1, $\operatorname{rank}_{\Lambda}\left(\mathfrak{X}\left(K_{\infty}\right)\right)=1$. Since $K_{\mathfrak{p}_{1}}=\mathbf{Q}_{p}$, $X\left(K_{\infty, \mathfrak{p}_{1}}\right) \cong \Lambda$ by Theorem 2.2. Thus, $\operatorname{res}_{v_{1}}^{(\sigma=1)}$ is injective if and only if res $\mathfrak{p}_{\mathfrak{p}_{1}}$ is injective. We also see res \mathfrak{p}_{1} is injective if and only if the cokernel of res \mathfrak{p}_{1} is Λ-torsion. The cokernel of $\operatorname{res}_{\mathfrak{p}_{1}}$ is $\mathcal{Y}_{T_{\infty}}^{\prime}\left(K_{\infty}\right)$. By Proposition 2.4, $\mathcal{Y}_{T_{\infty}}^{\prime}\left(K_{\infty}\right)$ is Λ-torsion if and only if so is $\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right)$. This proves the claim.

Proof of Theorem 7.3. For the first assertion, we apply Theorem 6.2 to the extension L / K and $T^{\prime}=\left\{v_{1}\right\} \subset P(L)$. Note here that T^{\prime} is clearly $\operatorname{Gal}(L / K)=\langle\sigma\rangle$-stable.

We see that

$$
M_{L / K}=\mathbf{Q} \oplus \mathbf{Q}[\langle\sigma\rangle]
$$

since there exist two infinite primes of K one of which is the real prime becoming complex in L and the another of which is the complex prime. Thus we see

$$
\operatorname{Ker}\left(\psi_{L}\right) \cong \mathbf{Q}[\langle\sigma\rangle]
$$

By Proposition 5.7, we have $\sum_{\chi \in \Delta_{L / K}} \operatorname{deg} \chi=2$. On the other hand, $\left[L_{v_{1}}: \mathbf{Q}_{p}\right]=2$. Thus by Theorem 6.2,

$$
\operatorname{rank}_{\Lambda} \mathcal{Y}_{T_{\infty}^{\prime}}\left(L_{\infty}\right) \leq\left[L_{v_{1}}: \mathbf{Q}_{p}\right]-\sum_{\chi \in \Delta_{L / K}} \operatorname{deg} \chi=0
$$

Here, $\delta=0$ because $\Delta_{L / K}$ contains the trivial character. This proves the first assertion.
For the second, we consider the map

$$
\sum_{i} \operatorname{res}_{v_{i}}: \bigoplus_{i} X\left(L_{\infty, v_{i}}\right) \rightarrow \mathfrak{X}\left(L_{\infty}\right)
$$

which is a $G=\operatorname{Gal}(L / \mathbf{Q})$-module homomorphism. G acts on the set $\left\{X\left(L_{\infty, v_{i}}\right)\right\}_{i}$ transitively. Thus, the kernel of $\operatorname{res}_{v_{i}}: X\left(L_{\infty}, v_{i}\right) \rightarrow \mathfrak{X}\left(L_{\infty}\right)$ is Λ-torsion for $i=1$ if and only if so is for any i. Assume $\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right)$ is not Λ-torsion. Then the kernel of the map

$$
\operatorname{res}_{v_{1}}: X\left(L_{\infty, v_{1}}\right) \rightarrow \mathfrak{X}\left(L_{\infty}\right)
$$

is not Λ-torsion by Lemma 7.4. Thus the same happens for any i. Therefore we have

$$
\operatorname{rank}_{\Lambda}\left(\operatorname{res}_{v_{i}}\left(X\left(L_{\infty, v_{i}}\right)\right) \leq 1\right.
$$

since $\operatorname{rank}_{\Lambda} X\left(L_{\infty, v_{i}}\right)=2$ by Theorem 2.2. Thus

$$
\operatorname{rank}_{\Lambda}\left(\operatorname{res}_{v_{2}}\left(X\left(L_{\infty, v_{2}}\right)\right)+\operatorname{res}_{v_{3}}\left(X\left(L_{\infty, v_{3}}\right)\right)\right) \leq 2
$$

in $\mathfrak{X}\left(L_{\infty}\right)$. Since $\operatorname{rank}_{\Lambda}\left(\mathfrak{X}\left(L_{\infty}\right)\right)=3$ by Theorem 2.1, the cokernel of the map

$$
X\left(L_{\infty, v_{2}}\right) \oplus X\left(L_{\infty, v_{3}}\right) \rightarrow \mathfrak{X}\left(L_{\infty}\right)
$$

is not Λ-torsion. The cokernel is $\mathcal{Y}_{T_{\infty}^{\prime}}^{\prime}\left(L_{\infty}\right)$. By Proposition 2.4, $\mathcal{Y}_{T_{\infty}^{\prime}}^{\prime}\left(L_{\infty}\right)$ is Λ-torsion if and only if so is $\mathcal{Y}_{T_{\infty}^{\prime}}\left(L_{\infty}\right)$. This contradicts the first assertion.
7.2. A criterion for the vanishing of $\mu\left(\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right)\right)$ We give a sufficient condition for the vanishing of the μ-invariant of $\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right)$ for p and K as in §7.1.

We first quote elementary lemmas on Λ-modules.
Lemma 7.5 ([Gr] p. 123, Lemma for Proposition 10). Let

$$
0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0
$$

be an exact sequence of finitely generated Λ-modules. If A is a free Λ-module and B has no non-trivial finite Λ-submodule, then C also has no non-trivial finite Λ-submodule.

Lemma 7.6 ([Go]). Let M be a finitely generated Λ-torsion Λ-module. Assume M has no non-trivial finite Λ-submodule. Let

$$
e_{n}:=\operatorname{ord}_{p}\left(\sharp\left(M / \omega_{n}\right)\right) .
$$

Here, we set $e_{n}=\infty$ if $\sharp\left(M / \omega_{n}\right)=\infty$. Then, $\mu(M)=0$ if there exists an $n \geq 0$ such that $e_{n+1}<\infty$ (which implies $e_{n}<\infty$) and $\left(e_{n+1}-e_{n}\right)<\varphi\left(p^{n+1}\right)$. Here φ is the Euler φ-function.

Let us return to the situation in the previous subsection. Let $K=\mathbf{Q}(\sqrt[3]{a})$. Let p be an odd prime such that $(p)=\mathfrak{p}_{1} \mathfrak{p}_{2}$ in K where $K_{\mathfrak{p}_{1}}=\mathbf{Q}_{p}$ and $\left[K_{\mathfrak{p}_{2}}: \mathbf{Q}\right]=2$. Let $T_{\infty}=\left\{\mathfrak{p}_{2}\right\} \subset$ $P\left(K_{\infty}\right)$.

PROPOSITION 7.7. $\mathcal{Y}_{T_{\infty}}^{\prime}\left(K_{\infty}\right)$ has no non-trivial finite Λ-submodule.
Proof. By (2), the sequence

$$
X\left(K_{\infty, \mathfrak{p}_{1}}\right) \rightarrow \mathfrak{X}\left(K_{\infty}\right) \rightarrow \mathcal{Y}_{T}^{\prime}\left(K_{\infty}\right) \rightarrow 1
$$

is exact. By Theorem 2.2, $X\left(K_{\infty, \mathfrak{p}_{1}}\right) \cong \Lambda$ and by Theorem 2.1, $\operatorname{rank}_{\Lambda} \mathfrak{X}\left(K_{\infty}\right)=1$. Since $\mathcal{Y}_{T}^{\prime}\left(K_{\infty}\right)$ is Λ-torsion by Theorem 7.3, the left map should be an injection. Thus we have the Proposition by Lemma 7.5.

Thus, we have the following:
Proposition 7.8. Let K and p be as above. Let $\mathrm{Cl}_{\left\{\mathfrak{p}_{1}\right\}, n}\left[p^{\infty}\right]$ be the p-part of the \mathfrak{p}_{1}-ideal class group of K_{n} and $\mathcal{E}_{n,\left\{\mathfrak{p}_{1}\right\}}$ the group of global \mathfrak{p}_{1}-units of K_{n}. Put

$$
e_{n}:=\operatorname{ord}_{p}\left(\mathcal{U}_{n, \mathfrak{p}_{2}} / \overline{\mathcal{U}_{n, \mathfrak{p}_{2}} \cap \mathcal{E}_{n,\left\{\mathfrak{p}_{1}\right\}}}\right)+\operatorname{ord}_{p}\left(\mathrm{Cl}_{\left\{\mathfrak{p}_{1}\right\}, n}\left[p^{\infty}\right]\right)
$$

Then, if there exists an $n \geq 0$ such that $e_{n+1}<\infty$ and $\left(e_{n+1}-e_{n}\right)<\varphi\left(p^{n+1}\right)$, then $\mu\left(\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right)\right)=0$.

Proof. We note that $\mu\left(\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right)\right)=0$ if and only if $\mu\left(\mathcal{Y}_{T_{\infty}}^{\prime}\left(K_{\infty}\right)\right)=0$ by Proposition 2.4. By the class field theory, $\mathrm{Cl}_{\left\{\mathfrak{p}_{1}\right\}, n}\left[p^{\infty}\right]$ is isomorphic to $A_{\left\{\mathfrak{p}_{2}\right\}}\left(K_{n}\right)$ defined before Proposition 3.2. By (5) and Proposition 3.2, $e_{n}=\operatorname{ord}_{p}\left(\sharp \mathcal{Y}_{T_{n}}^{\prime}\left(K_{n}\right)\right)$. By Proposition 4.4, we have $\mathcal{Y}_{T_{n}}^{\prime}\left(K_{n}\right)=\mathcal{Y}_{T_{\infty}}^{\prime}\left(K_{\infty}\right) / \omega_{n}$. Then, we have the Proposition by Lemma 7.6.

REMARK 7.9. The reason why we consider $\mathcal{Y}_{T_{\infty}}^{\prime}\left(K_{\infty}\right)$ instead of $\mathcal{Y}_{T_{\infty}}\left(K_{\infty}\right)$ is as follows: We have $\operatorname{rank}_{\mathbf{Z}_{p}} \mathcal{E}_{n,\left\{\mathfrak{p}_{1}\right\}}=2 p^{n}$. Since $\operatorname{rank}_{\mathbf{Z}_{p}} \mathcal{U}_{n, \mathfrak{p}_{2}}=2 p^{n}$, we can expect that $\mathcal{U}_{n, \mathfrak{p}_{2}} / \overline{\mathcal{U}_{n, \mathfrak{p}_{2}} \cap \mathcal{E}_{n,\left\{\mathfrak{p}_{1}\right\}}}$ is finite. (See the examples of the next subsection.)
7.3. Example Let $p=3$. Let $K=\mathbf{Q}(\sqrt[3]{a})$ with (3) $=\mathfrak{p}_{1} \mathfrak{p}_{2}$. This occurs if and only if $b^{2} \equiv c^{2} \bmod 9$ where b and c are square free integers which are relatively prime to each other satisfying $a=b c^{2}$. Thus, $a=10,17,19,26,28 \ldots$, for example. We have the following:

PROPOSITION 7.10. If $p=3$, then $\lambda\left(\mathcal{Y}_{T_{\infty}}^{\prime}\left(K_{\infty}\right)\right) \geq 1$.
Proof. By Proposition 3.2, $\mathcal{Y}_{T_{\infty}}^{\prime}\left(K_{\infty}\right)$ contains $\lim _{\longleftarrow} \mathcal{U}_{n, \mathfrak{p}_{2}} / \overline{\mathcal{U}_{n, \mathfrak{p}_{2}} \cap \mathcal{E}_{n,\left\{\mathfrak{p}_{1}\right\}}}$. We see that $\underset{\rightleftarrows}{\lim } \mathcal{U}_{n, \mathfrak{p}_{2}}$ contains $\lim _{\leftrightarrows} \mu_{3^{n}}$ since $K_{\mathfrak{p}_{2}}=\mathbf{Q}_{3}\left(\zeta_{3}\right)$. But $\mathcal{E}_{n,\left\{\mathfrak{p}_{1}\right\}}$ does not contain p-th roots of unity and hence we see that $\lim _{\leftarrow} \mathcal{U}_{n, \mathfrak{p}_{2}} / \overline{\mathcal{U}_{n, \mathfrak{p}_{2}} \cap \mathcal{E}_{n,\left\{\mathfrak{p}_{1}\right\}}}$ contains $\lim _{\leftarrow} \mu_{3^{n}}$.

Thus if it happens that $e_{0}=1$, then $\lambda\left(\mathcal{Y}_{T_{\infty}}^{\prime}\left(K_{\infty}\right)\right)=1$ and $\mu\left(\mathcal{Y}_{T_{\infty}}^{\prime}\left(K_{\infty}\right)\right)=0$.
Let us see some examples. Let $a=10$. Then $A_{0}=0$ and $\mathcal{U}_{0, \mathfrak{p}_{2}} / \overline{\mathcal{U}_{0, \mathfrak{p}_{2}} \cap \mathcal{E}_{0,\left\{\mathfrak{p}_{1}\right\}}} \cong$ $\mathbf{Z} / 3 \oplus \mathbf{Z} / 3$. Thus, $\lambda \geq 2$ or $\mu>0$ in this case. We see that $\sharp\left(\mathcal{U}_{0, \mathfrak{p}_{2}} \overline{\mathcal{U}_{0, \mathfrak{p}_{2}} \cap \mathcal{E}_{0,\left\{\mathfrak{p}_{1}\right\}}}\right) \geq 9$ for $a=17,19,26,28,44,45$. (For the computation, we used Kash[Kash] and Pari[Pari].) Therefore we have to compute for $n \geq 1$ to determine whether $\mu\left(\mathcal{Y}_{T_{\infty}}^{\prime}\left(K_{\infty}\right)\right)=0$ or not.

8. An application to the vanishing of Iwasawa invariants

In this section, we give an application to the original Iwasawa invariants.
Let K be a number field of finite degree. Let $\lambda_{p}(K), \mu_{p}(K)$ and $v_{p}(K)$ be the classical Iwasawa invariants of K. That is, for all sufficiently large n, we have

$$
\sharp \mathrm{Cl}\left(K_{n}\right)\left[p^{\infty}\right]=p^{\lambda_{p}(K) n+\mu_{p}(K) p^{n}+v_{p}(K)}
$$

where $\mathrm{Cl}\left(K_{n}\right)\left[p^{\infty}\right]$ is the p-Sylow subgroup of the ideal class group of K_{n}, the n-th layer of K_{∞} / K.

The following is a generalization of a criterion of Fukuda-Komatsu ([FuKo]).
Theorem 8.1. Let K be a number field. Assume that there are exactly two primes \mathfrak{p}_{1} and \mathfrak{p}_{2} of K above p such that $K_{\mathfrak{p}_{1}}=\mathbf{Q}_{p}$ and that they are totally ramified in K_{∞}. Then, $\lambda_{p}(K)=\mu_{p}(K)=v_{p}(K)=0$ if and only if $A(K)=0$ and $\mathcal{U}_{K, T^{\prime \prime}} /\left(\overline{\mathcal{E}_{K} \cap \mathcal{U}_{K, T^{\prime \prime}}}\right)=0$. Here, $T^{\prime \prime}=\left\{\mathfrak{p}_{1}\right\}$.

To prove this, we need the following:
Lemma 8.2. $A\left(K_{\infty}\right) \cong \mathcal{Y}_{T_{\infty}^{\prime \prime}}\left(K_{\infty}\right)$ where $T_{\infty}^{\prime \prime}=\left\{\mathfrak{p}_{1}\right\} \subset P\left(K_{\infty}\right)$.
Proof. By (4) and Proposition 3.1, the kernel of

$$
\mathcal{Y}_{T_{\infty}^{\prime \prime}}\left(K_{\infty}\right) \rightarrow A\left(K_{\infty}\right)
$$

is isomorphic to

$$
\lim _{\longleftarrow} \mathcal{U}_{K_{n}, T_{n}^{\prime \prime}} / \overline{\mathcal{E}_{K_{n}} \cap \mathcal{U}_{K_{n}, T_{n}^{\prime \prime}}} .
$$

Since $K_{\mathfrak{p}_{1}}=\mathbf{Q}_{p}$,
is a quotient of

$$
\lim _{\leftrightarrows} \mathcal{U}_{\mathbf{Q}_{n}, \pi_{n}} \overline{\mathcal{E}_{\mathbf{Q}_{n}} \cap \mathcal{U}_{\mathbf{Q}_{n}, \pi_{n}}}
$$

where π_{n} is the unique prime of \mathbf{Q}_{n} above p. Since $A\left(\mathbf{Q}_{\infty}\right)=0$ as is well known, we have

$$
\lim _{\leftarrow} \mathcal{U}_{\mathbf{Q}_{n}, \pi_{n}} / \overline{\mathcal{E}_{\mathbf{Q}_{n}} \cap \mathcal{U}_{\mathbf{Q}_{n}, \pi_{n}}} \cong \mathfrak{X}\left(\mathbf{Q}_{\infty}\right)
$$

by (4) and Proposition 3.1 for $K=\mathbf{Q}_{\infty}$ and $T=P\left(\mathbf{Q}_{\infty}\right)=\left\{\pi_{\infty}\right\}$. It is also well known that $\mathfrak{X}\left(\mathbf{Q}_{\infty}\right)=0$.

Proof of Theorem 8.1. We note that $\lambda_{p}(K)=\mu_{p}(K)=v_{p}(K)=0$ is equivalent to $A\left(K_{\infty}\right)=0$. By the above Lemma and Nakayama's lemma, this is equivalent to

$$
\mathcal{Y}_{T_{\infty}^{\prime \prime}}\left(K_{\infty}\right) / \omega_{0}=0
$$

By Proposition 4.2,

$$
\mathcal{Y}_{T_{\infty}^{\prime \prime}}\left(K_{\infty}\right) / \omega_{0} \cong \mathcal{Y}_{T^{\prime \prime}}(K)
$$

Thus, again by (4) and Proposition 3.1, we get our conclusion.
Example 8.3. Let

$$
K=\mathbf{Q}(\sqrt[3]{a})
$$

with $a \in \mathbf{Z}, a>0$ and cube free. Let ε be the fundamental unit of K. Let p be an odd prime satisfying the condition of Theorem 8.1. Then, we see that

$$
\mathcal{U}_{K, T^{\prime \prime}} /\left(\overline{\mathcal{E}_{K} \cap \mathcal{U}_{K, T^{\prime \prime}}}\right)=0 \Leftrightarrow \varepsilon^{p-1} \not \equiv 1 \quad \bmod \left(\mathfrak{p}_{1}^{2}\right)
$$

and the validity of the latter condition is easily computable. An odd prime p satisfies the condition of Theorem 8.1 if and only if either (A) $p=3$ when $b^{2} \equiv c^{2} \bmod 9$ where b and c are square free integers which are relatively prime to each other satisfying $a=b c^{2}$ or (B) $p \nmid 3 a$ and $p \equiv 2 \bmod 3$. In the case (B), we calculated $\varepsilon^{p-1} \bmod \left(\mathfrak{p}_{1}^{2}\right)$ for $a=$ $2,3,5,6,10$ and for $3<p<1000$ by using Pari-GP[Pari] and Kash[Kash]. Then, we found that $A\left(K_{\infty}\right) \neq 0$ only when $a=3$ and $p=23$.

References

[ANT] J. W. S. CASSELS and A. FröHLICH, (eds.), Algebraic Number fields, Academic Press (1967).
[Ax] J. Ax, On the units of an algebraic number field, Illinois J. Math. 9 (1965), 584-589.
[Br] A. Brumer, On the units of algebraic number fields, Mathematika 14 (1967), 121-124.
[Co] J. Coates, Elliptic curves and Iwasawa theory, Modular forms (Durham, 1983), Ellis Horwood Ser. Math. Appl. (1984), 51-73.
[EKW] M. Emsalem, H. Kisilevsky and D. Wales, Indépendence linéaire sur $\overline{\mathbf{Q}}$ de logarithmes p-adiques de nombres algébriques et rang p-adiques du group des unité d'un corps de nombres, J. Number Theory $\mathbf{1 9}$ (1984), 384-391.
[FeWa] B. Ferrero and L. C. Washington, The Iwasawa invariant μ_{p} vanishes for abelian number fields, Ann. of Math. 109 (1979), 377-395.
[FuKo] T. Fukuda and K. Komatsu, On \mathbf{Z}_{p}-extensions of real quadratic fields, J. Math. Soc. Japan, $\mathbf{3 8}$ (1986), 95-102.
[Go] R. Gold, Examples of Iwasawa invariants, Acta. Arith. 26 (1974), 21-32.
[Gr] R. Greenberg, Iwasawa theory for p-adic representations, Adv. Studies in Pure Math. 17 (1989), 97-137.
[Ha1] Y. Hachimori, On the μ-invariants in Iwasawa theory of elliptic curves, doctor's thesis, University of Tokyo, March 2001.
[Ha2] Y. HACHIMORI, On the μ-invariants in Iwasawa theory of elliptic curves, preprint.
[Iw] K. Iwasawa, On \mathbf{Z}_{l}-extensions of algebraic number fields, Annals of Math. 98 (1973), 246-326.
[JaMa] J.-F. Jaulent and C. Maire, Invariants d'Iwasawa de la tour cyclotomique, preprint 2001.
[Kash] M. Daberkow, C. Fieker, J. Klüners, M. Pohst, K. Roegner and K. Wildanger, Kant V4, J. Symbolic Comp. 24 (1997), 267-283.
[Ma] C. Maire, On the \mathbf{Z}_{l}-rank of abelian extensions with restricted ramification, J. Number Theory 92 (2002), 376-404.
[Pari] C. Batut, D. Bernardi, H. Cohen and H. Olivier, User's guide to Pari-GP.
[Wa] L. C. WASHington, Introduction to cyclotomic fields 2nd ed., G.T.M. 83 (1997), Springer.

Present Address:

Department of Mathematics, Faculty of Science, Gakushuin University, Mejiro, Toshima-ku, Tokyo, 171-8588 Japan.
e-mail: yhachi@math.gakushuin.ac.jp

[^0]: Received June 10, 2002

