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1. Introduction

A regular tetrahedron has six edges. Choose a pair of non-adjacent edges. Then the
other four edges form a spatial quadrilateral. In about 1865, H. A. Schwarz and B. Riemann
independently constructed a solution of Plateau’s problem for this contour. It is called the
Riemann-Schwarz’ diamond surface.

In general a minimal surface can be continued analytically by the line symmetry of a line
segment of its boundary. By repeated applications of this process to the Riemann-Schwarz’
diamond surface, we get a triply periodic minimal surface. We express all these processes as
“the skew quadrilateral generates a triply periodic minimal surface”.

A spatial polygon is a simple closed curve in R3 consisting of a finite number of edges.
We say that a spatial polygon Γ generates a triply periodic minimal surface S if

i) S contains a compact domain SΓ bounded by Γ , and
ii) let G be the congruence group generated by the rotation of angle π about the lines

containing the edges of Γ , then

S =
⋃

g∈G

g SΓ .

FIGURE 1. The Riemann-Schwarz’ diamond surface and its continuation.
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In this paper, we classify spatial polygons that could possibly generate embedded triply
periodic minimal surfaces. There are 21 types of such spatial polygons. They are listed in
terms of crystallographic groups. The line symmetries of the edges of such a polygon gen-
erate a crystallographic group. The crystallographic groups are partitioned into the seven
crystal systems, by the types of lattices that they contain. They are triclinic, monoclinic,
orthorhombic, tetragonal, trigonal, hexagonal and cubic crystal systems. Since our crystallo-
graphic group is generated by line symmetries, the possible crystal system is orthorhombic,
tetragonal, trigonal, hexagonal or cubic crystal system.

There are five types of spatial polygons that could possibly generate embedded triply
periodic minimal surfaces whose crystallographic groups belong to orthorhombic crystal sys-
tem, that is, with a lattice of rectangular parallelepiped.

There are four types of spatial polygons that could possibly generate embedded triply
periodic minimal surfaces whose crystallographic groups belong to tetrahedral crystal system,
that is, with a lattice of right square cylinder.

There is no spatial polygon that generate embedded triply periodic minimal surfaces
whose crystallographic groups belong to trigonal crystal system.

There are only two types of spatial polygons that could possibly generate embedded
triply periodic minimal surfaces whose crystallographic groups belong to hexagonal crystal
system, that is, with a lattice of right, regular hexagonal cylinder.

There are ten types of spatial polygons that could possibly generate embedded triply
periodic minimal surfaces whose crystallographic groups belong to cubic crystal system, that
is, with a cubic lattice.

We restate our result in the form of a theorem.

THEOREM. Let S be an embedded triply periodic minimal surface generated by a spa-

FIGURE 2. Spatial polygons with orthorhombic lat-
tices.

FIGURE 3. Spatial polygons with tetrahedral lat-
tices.
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FIGURE 4. Spatial polygons with
hexagonal lattices.

FIGURE 5. Spatial polygons with cubic lattices (I).
　　　　　　　

FIGURE 6. Spatial polygons with cubic lattices (II).
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tial polygon Γ . Then Γ belongs to one of 21 types: P1–P21.

REMARK. Here, we do not discuss the existence of bounding minimal surfaces of Γ .
We assume the existence of the embedded triply periodic minimal surface S, generated by a
spatial polygon Γ . Let SΓ be a part of S bounded by Γ . We do not assume SΓ to be simply-
connected. We only assume that SΓ is a compact minimal surface with boundary Γ . The
crucial assumption is the embeddedness. This assumption is effective to reduce the types of
spatial polygons. Many of these polygons are known to generate embedded triply periodic
minimal surfaces [1, 5, 9]. We will refer to them later, see Section 5.

The proof of this theorem consists of two stages. In the first stage, we list up all the
possible configurations contained in triply periodic minimal surfaces. There are 36 types of
such configurations. Then, as the second stage, we search the possibility of finding spatial
polygons. Among 36 configurations, only 12 contain generating spatial polygons.

The author wishes to express his thanks to the referee who helped him to complete Sec-
tion 5.

2. Crystallographic groups generated by line symmetries

Let G be a crystallographic group and let T be its lattice subgroup, that is, G is a discrete

group of isometries of R3 and T is the subgroup of G consisting of all the translations. The

translation vectors of T form a lattice in R3. Then T is a normal subgroup of G and the
quotient group λG = G/T is a finite subgroup in O(3). This subgroup λG is called the point
group of G. The conjugacy class of a point group is called the crystal class. It is well-known
that there are only 32 crystal classes.

Now we assume that G is generated by line symmetries. Then λG is generated by line
symmetries of at least two independent directions. So λG is a subgroup of SO(3) and its
crystal class is one of five crystal classes:

D2,D4,D3,D6,O ,

that is, the dihedral group of order 4, 8, 6 or 12, or the octahedral group of order 24. Its crystal
system is orthorhombic, tetragonal, trigonal, hexagonal, or cubic, respectively.

2.1. Orthorhombic system D2. The group D2 is generated by line symmetries of x-,
y- and z-axes. There are nine crystallographic groups in the crystal class D2, among which
five groups are generated by line symmetries:

P222, P2221, C222, F222, I212121 .

2.2. Tetragonal system D4. The group D4 is generated by line symmetries of x-
and 110-axes. It also contains the rotation of order 4 around z-axis. There are eight crys-
tallographic groups in the crystal class D4, among which five groups are generated by line
symmetries:
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FIGURE 7. Point groups D2,D4,D3,D6,O .

P422, P4122, P4222, I422, I4122 .

2.3. Trigonal system D3. The group D3 is generated by line symmetries of x- and
π
3 -axes, here θ -axis means the ray in xy-plane, with angle θ from x-axis. It also contains the
rotation of order 3 around z-axis. There are five crystallographic groups in the crystal class
D3, among which three groups are generated by line symmetries:

P312, P3112, R32 .

2.4. Hexagonal system D6. The group D6 is generated by line symmetries of x- and
π
6 -axes. It also contains the rotation of order 6 around z-axis. There are four crystallographic
groups in the crystal class D6, all of which are generated by line symmetries:

P622, P6122, P6222, P6322 .

2.5. Cubic system O . The group O is generated by line symmetries of x-, 110- and
101-axes. It also contains the rotation of order 4 around z-axis, and also the rotation of order 3
around 111-axis. There are seven crystallographic groups in the crystal class O , all of which
are generated by line symmetries:

P432, P4232, F432, F4132, I432, P4332, I4132 .
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3. Configurations of triply periodic minimal surfaces

Let S be a complete, triply periodic minimal surface embedded in the Euclidean space

R3 and let L be the set of all lines contained in S. We assume that L is so large that the
symmetries of L generate a crystallographic group G. This is equivalent to the condition that
S contains at least two non-parallel lines. We call L the configuration of S. Since S is stable
under the symmetry of a line in S, G is a subgroup of the congruent transformation group of
S.

Now G is one of the crystallographic groups listed in the previous section. Let L̃ be the

axes of the line symmetries (π-rotations) in G. Then, L is a subet of L̃. Since L is invariant

by the actions of G, it is a union of G-orbits in L̃.

We call x to be a vertex of the configuration L, if it is an intersection point of lines in L̃.
We denote the isotropy subgroup at x by Gx , the lines through x by Lx = {l ∈ L | x ∈ l} and

by L̃x = {l ∈ L̃ | x ∈ l}. Since Gx does not contain translations, we can consider Gx as a
subgroup of λG. So, it is conjugate to D2, D4, D3, D6 or O . We call this conjugacy class as
the type of a vertex x. We can exclude the possibility of type O .

We denote the tangent plane of S at x by Πx . It is invariant by the action of Gx . Also, we

haveLx = {l ∈ L̃x | l ⊂ Πx}. If there exists l ∈ L̃x\Lx , then Πx is invariant by the symmetry

of l and l �⊂ Πx , or we have l = Π⊥
x . Therefore, either L̃x = Lx or L̃x = Lx ∪ {Π⊥

x }.
For a vertex of type O , we cannot find such a decomposition. So, there are no vertices of

type O . For vertices of type D4, D3 or D6, Lx is uniquely determined by L̃x . As for a vertex

of type D2, there are three possibilities of Lx , for each given L̃x .

3.1. Orthorhombic system D2

3.1.1. P222
L̃ consists of twelve G-orbits. We name α1, α2, α3, α4 the orbits parallel to x-axis,

β1, β2, β3, β4 the orbits parallel to y-axis and γ1, γ2, γ3, γ4 the orbits parallel to z-axis. All

the vertices of L̃ are of type D2. Then, for each vertex, L selects two lines out of three lines of

L̃. Therefore, for each small rectangular parallelepiped, the edges of L gives a simple closed
curves, or their disjoint union. We get five patterns. One does not generate G. Each of the
other four generate G. Thus we get four possible configurations. See Figs. 9, 10.

FIGURE 8. Vertices of type D2,D4,D3,D6.
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FIGURE 9. P 222, G-orbits and simple closed curves.

FIGURE 10. Configurations: C1 ∼ C4.

C1: L = α1 ∪ α2 ∪ α3 ∪ α4 ∪ β1 ∪ β2 ∪ β3 ∪ β4

C2: L = α1 ∪ α3 ∪ β1 ∪ β3 ∪ γ2 ∪ γ3

C3: L = α1 ∪ α4 ∪ β1 ∪ β4 ∪ γ2 ∪ γ3

C4: L = α1 ∪ α2 ∪ β3 ∪ β4 ∪ γ1 ∪ γ2 ∪ γ3 ∪ γ4

3.1.2. P2221

L̃ consists of four G-orbits. We name α1, α2 the orbits parallel to x-axis and β1, β2 the

orbits parallel to y-axis. We need all four G-orbits to generate G. Thus L = L̃. See Fig. 11.

C5: L = L̃ = α1 ∪ α2 ∪ β1 ∪ β2

3.1.3. C222
L̃ consists of seven G-orbits. We name α1, α2 the orbits parallel to x-axis, β1, β2 the

orbits parallel to y-axis and γ1, γ2, γ3 the orbits parallel to z-axis. Without γ3 orbit, other
orbits do not generate G. For the other six orbits, the same situation happens as the case
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FIGURE 11. P 2221, G-orbits, configurations: C5.

FIGURE 12. C222, G-orbits, simple closed curves.

FIGURE 13. Configurations: C6 ∼ C8.

P222. Because L is symmetric with respect to γ3, only two patterns are possible. See Figs.
12, 13.

C6: L = α1 ∪ α2 ∪ β1 ∪ β2 ∪ γ3

C7: L = α1 ∪ α2 ∪ γ1 ∪ γ2 ∪ γ3

C8: L = α1 ∪ β2 ∪ γ1 ∪ γ2 ∪ γ3
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3.1.4. F222
L̃ consists of six G-orbits. We name α1, α2 the orbits parallel to x-axis, β1, β2 the orbits

parallel to y-axis and γ1, γ2 the orbits parallel to z-axis. For each i, i = 1, 2, αi, βi and
γi meet at a vertex. So, we have to choose two out of three. By the symmetry, we get two
configurations. See Fig. 14.

C9: L = α1 ∪ α2 ∪ β1 ∪ β2

C10: L = α1 ∪ α2 ∪ β1 ∪ γ2

3.1.5. I212121

L̃ consists of three G-orbits. We name α the orbit parallel to x-axis, β the orbit parallel
to y-axis and γ the orbit parallel to z-axis. We need all three G-orbits to generate G. Thus

L = L̃. See Fig. 15.

C11: L = L̃ = α ∪ β ∪ γ

FIGURE 14. F222, G-orbits, configurations: C9, C10.
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FIGURE 15. I212121, G-orbits,
configuration: C11.

FIGURE 16. P 422, G-orbits, configuration: C12.
　　　　　　　　

3.2. Tetragonal system D4

3.2.1. P422
L̃ consists of nine G-orbits. We name α1, α2, α3, α4 the orbits parallel to x-axis, β1, β2

the orbits parallel to 110-axis and γ1, γ2, γ3 the orbits parallel to z-axis. Because there exists
a vertex of type D4, if L contains one of α1, α2 or β1, then it contains three, and so is for
α3, α4 or β2. Thus we get one possible configuration. See Fig. 16.

C12: L = α1 ∪ α2 ∪ α3 ∪ α4 ∪ β1 ∪ β2

3.2.2. P4122
L̃ consists of three G-orbits. We name α1, α2 the orbits parallel to x-axis and β the orbit

parallel to 110-axis. We need all three G-orbits to generate G. Thus L = L̃. See Fig. 17.

C13: L = L̃ = α1 ∪ α2 ∪ β

3.2.3. P4222

L̃ consists of nine G-orbits. We name α1, α2, α3, α4 the orbits parallel to x-axis, β1, β2

the orbits parallel to 110-axis and γ1, γ2, γ3 the orbits parallel to z-axis. All the vertices are
of type D2. The intersecting triads are:

(α1, α3, γ1), (α2, α3, γ2), (α2, α4, γ3), (α1, α4, γ2), (β1, β2, γ1), (β1, β2, γ3) .

L must contain β1 or β2. By the symmetry, we may assume that L contains β1. The choices
of α’s and γ ’s are the choices of simple closed curves in the parallelepiped. Thus we get four
possible configurations. See Figs. 18, 19.

C14: L = α1 ∪ α2 ∪ α3 ∪ α4 ∪ β1 ∪ β2

C15: L = α1 ∪ α3 ∪ β1 ∪ β2 ∪ γ2

C16: L = α1 ∪ α4 ∪ β1 ∪ γ1 ∪ γ3
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FIGURE 17. P 4122, G-orbits, configuration: C13.

FIGURE 18. P 4222, G-orbits, configurations: C14, C15.
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FIGURE 19. configurations: C16, C17. FIGURE 20. I422, G-orbits, configuration: C18.

C17: L = α1 ∪ α2 ∪ β1 ∪ γ1 ∪ γ2 ∪ γ3

3.2.4. I422
L̃ consists of six G-orbits. We name α1, α2 the orbits parallel to x-axis, β1, β2 the orbits

parallel to 110-axis and γ1, γ2 the orbits parallel to z-axis. Since there exists a vertex of type
D4, L does not contain γ ’s. To generate G we need all the other G-orbits. See Fig. 20.

C18: L = α1 ∪ α2 ∪ β1 ∪ β2

3.2.5. I4122

L̃ consists of four G-orbits. We name α the orbit parallel to x-axis, β1, β2 the orbits
parallel to 110-axis and γ the orbit parallel to z-axis. There exists only one vertex of type D2.
We get two possible configurations. See Figs. 21, 22.

C19: L = α ∪ β1 ∪ β2

C20: L = α ∪ β1 ∪ γ
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FIGURE 21. I4122, G-orbits. FIGURE 22. Configurations: C19, C20.

FIGURE 23. P 312, G-orbits, configuration: C21.
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FIGURE 24. P 3112, G-orbits, configuration: C22. FIGURE 25. R32, G-orbits, configuration: C23.

3.3. Trigonal system D3

3.3.1. P312
L̃ consists of two G-orbits. We name α1 the orbit on the top level and α2 the orbit on the

second level. Since we need both orbits to generate G, we have L = L̃. See Fig. 23.

C21: L = L̃ = α1 ∪ α2

3.3.2. P3112

L̃ consists of two G-orbits. We name α the orbit on the top level and β the orbit on the

second level. Since we need both orbits to generate G, we have L = L̃. See Fig. 24.

C22: L = L̃ = α ∪ β

3.3.3. R32
L̃ consists of two G-orbits. We name α1 the orbit on the top level and α2 the orbit on the

second level. Since we need both orbits to generate G, we have L = L̃. See Fig. 25.
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FIGURE 26. P 622, G-orbits, configuration: C24.

C23: L = L̃ = α1 ∪ α2

3.4. Hexagonal system D6

3.4.1. P622
L̃ consists of six G-orbits. We name α1, β1 the orbits on the top level, α2, β2 the orbits

on the second level and γ1, γ2 the orbits parallel to z-axis. Since there exists a vertex of type
D6, L contains α’s and β’s, and does not contain γ ’s. See Fig. 26.

C24: L = α1 ∪ α2 ∪ β1 ∪ β2

3.4.2. P6122

L̃ consists of two G-orbits. We name α the orbit on the top level and β the orbit on the
second level. We need both orbits to generate G. See Fig. 27.

C25: L = L̃ = α ∪ β

3.4.3. P6222

L̃ consists of six G-orbits. We name α1, β1 the orbits on the top level, α2, β2 the orbits
on the second level and γ1, γ2 the orbits parallel to z-axis. All vertices are of type D2. The
intersecting triads are:
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FIGURE 27. P 6122, G-orbits, configuration: C25. FIGURE 28. P 6222, G-orbits.

(α1, β1, γ1), (α1, β1, γ2), (α2, β2, γ1), (α2, β2, γ2) .

We get four possible configurations. See Figs. 28, 29, 30.

C26: L = α1 ∪ α2 ∪ β1 ∪ β2

C27: L = α1 ∪ α2 ∪ γ1 ∪ γ2

C28: L = β1 ∪ β2 ∪ γ1 ∪ γ2

C29: L = α1 ∪ β2 ∪ γ1 ∪ γ2
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FIGURE 29. Configurations: C26, C27.

FIGURE 30. Configurations: C28, C29.
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FIGURE 31. P 6322, G-orbits, configuration:
C30.

FIGURE 32. P 432, G-orbits, no configuration. 　
　　　　　　

3.4.4. P6322

L̃ consists of two G-orbits. We name α the orbit on the top level and β the orbit on the
second level. We need both orbits to generate G. See Fig. 31.

C30: L = L̃ = α ∪ β

3.5. Cubic system O

3.5.1. P432
L̃ consists of five G-orbits. We name α1, α2, α3 the orbits parallel to x-axis and β1, β2

the orbits parallel to 110-axis. There exists a vertex of type O . No orbits in L would meet
those vertices. So there is no possible configuration. See Fig. 32.

3.5.2. P4232

L̃ consists of five G-orbits. We name α1, α2, α3 the orbits parallel to x-axis and β1, β2

the orbits parallel to 110-axis. The intersecting triads at vertices of type D2 are:

(α1, α1, α1), (α1, α2, α3), (α2, β1, β2), (α3, β1, β2) .

Therefore, L does not contain α1. We get two possible configurations. See Figs. 33, 34.

C31: L = α2 ∪ α3 ∪ β1

C32: L = β1 ∪ β2
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FIGURE 33. P 4232, G-orbits. FIGURE 34. Configurations: C31, C32.

3.5.3. F432
L̃ consists of four G-orbits. We name α1, α2 the orbits parallel to x-axis and β1, β2 the

orbits parallel to 110-axis. There exists a vertex of type O . No orbits in L would meet those
vertices. So there is no possible configuration. See Fig. 35.

3.5.4. F4132

L̃ consists of two G-orbits. We name α the orbit parallel to x-axis and β the orbit parallel
to 110-axis. There exists a vertex of type D2. The intersecting triad is (α, α, α). So α is not
in L. The orbit β generates G. So we have a possible configuration. See Fig. 36.

C33: L = β

3.5.5. I432
L̃ consists of four G-orbits. We name α1, α2 the orbits parallel to x-axis and β1, β2
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FIGURE 35. F432, G-orbits, no configuration. FIGURE 36. F4132, G-orbits, configuration: C33.

the orbits parallel to 110-axis. There exists a vertex of type O . The orbits that do not meet
those vertices are α2 and β2. But these two orbits intersect at vertices of type D2, where
the intersecting triad is (α2, β2, β2). So only β2 could be contained in L. But this does not
generate G. There is no possible configuration. See Fig. 37.
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FIGURE 37. I432, G-orbits, no configuration. FIGURE 38. P 4332, G-orbit, configuration: C34.

3.5.6. P4332

L̃ consists of only one G-orbit. All vertices are of type D3. So L = L̃. See Fig. 38.

C34: L = L̃ = α

3.5.7. I4132

L̃ consists of three G-orbits. We name α the orbit parallel to x-axis and β1, β2 the orbits
parallel to 110-axis. There exists a vertex of type D2. The intersecting triad is (α, β1, β2). By
the symmetry, we have two possible configuration. See Figs. 39, 40.

C35: L = α ∪ β1

C36: L = β1 ∪ β2

4. Spatial polygons that could possibly generate triply periodic minimal surfaces

We call a finite spatial graph Γ to be a spatial polygon if it represents a simple closed
curve. We assume that Γ generates a triply periodic minimal surface S. Then Γ defines
a configuration L and the symmetries of L generates a transformation group G. Also, we

denote L̃ the set of all the axes of the symmetries in G.
Consider Γ as a set of edges. Then the G-orbits of the edges of Γ cover L. The lines in

L are covered by these edges. Thus we have a structure of graph over L, consisting of these
edges and vertices. These vertices are the same as in the previous section.

We denote the set of edges of L by E(L). Then Γ meets every G-orbit in E(L). Let GΓ

be the stationary group of Γ :
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FIGURE 39. I4132, G-orbits. FIGURE 40. Configurations: C35, C36.

GΓ = {g ∈ G | gΓ = Γ } .

Then GΓ acts on Γ freely. Since this action preserves the cyclic structure of Γ , GΓ is a cyclic
group. We call its order as the degree of Γ . It is an order of an element of G. Let d be the
degree of Γ and let k be the number of G-orbits in E(L), then Γ is a dk-gon.

Γ bounds a compact domain SΓ of S and SΓ and L intersect only at Γ . Therefore, for
any line l in L the linking number link(l, Γ ) is zero. That is, no line in L could pass through
or penetrate Γ . Then, also, the axis of GΓ is not contained in L.

The group G is generated by the symmetries of edges of Γ . Then, the configuration L is
connected. In the previous section we have classified the configurations. In this section, we
are only interested in connected configurations. They are fourteen types:

C2, C3, C4, C16, C17, C27, C28, C29, C31, C32, C33, C34, C35, C36

Here we mention roughly the process to find Γ from L. Let k be the number of the
G-orbits in E(L). Choose initial edge e1 arbitrarily. Find edge-paths e1, e2, · · · , ek, ek+1
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satisfying turn-to-the-first-corner principle. That is, at the vertex vi joining ei and ei+1, these
two are the nearest among branches at vi . For each ei , there are exactly two possible ei+1’s,
and they are in the same G-orbits. Check that e1, e2, · · · , ek belong to all different G-orbits
and e1 and ek+1 belong to the same G-orbit. If e1 = ek+1 then we have a possible polygon
of degree 1, or else we try to find a rotational symmetry ρ with ρe1 = ek+1, which would
generate GΓ .

4.1. Orthorhombic system D2

4.1.1. P222, Configuration C2
E(L) is partitioned into six G-orbits. There are one generating polygon P1 of degree 1

and another generating polygon P2 of degree 2. See Fig. 42.

4.1.2. P222, Configuration C3
E(L) is partitioned into six G-orbits. There is only one generating polygon P3 of degree

1. See Fig. 43.

FIGURE 41. Turn-to-the-first-corner principle.

FIGURE 42. P 222, C2, generating polygons:
P1, P2.

FIGURE 43. P 222, C3, generating polygon: P3. 　
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FIGURE 44. P 222, C4, generating polygons:
P4, P5.

FIGURE 45. P 4222, C16, generating polygons:
P6, P7.

4.1.3. P222, Configuration C4
E(L) is partitioned into eight G-orbits. There are two generating polygons P4, P5 of

degree 1. There is no generating polygon of degree 2. See Fig. 44.

4.2. Tetragonal system D4

4.2.1. P4222, Configuration C16
E(L) is partitioned into five G-orbits. There are one generating polygon P6 of degree 1

and another generating polygon P7 of degree 2. See Fig. 45.

4.2.2. P4222, Configuration C17
E(L) is partitioned into six G-orbits. There are one generating polygon P8 of degree 1,

and another generating polygon P9 of degree 2. See Fig. 46.

4.3. Hexagonal system D6

4.3.1. P6222, Configuration C27
E(L) is partitioned into four G-orbits. Two are vertical and the other two are horizontal.

One vertical edge is three times longer than the other. Therefore there is no generating polygon
of degree 1. There are two polygons of degree 2. One is the generating polygon P10, but the
other polygon has a penetrating line in L. See Fig. 47.
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FIGURE 46. P 4222, C17, generating polygons:
P8, P9.

FIGURE 47. P 6222, C27, generating polygon:
P10.

4.3.2. P6222, Configuration C28
E(L) is partitioned into four G-orbits. There is no generating polygon of degree 1.

There are two polygons of degree 2. But both have penetrating lines in L. Hence there is no
generating polygon. See Fig. 48.

4.3.3. P6222, Configuration C29
E(L) is partitioned into four G-orbits. There is no generating polygon of degree 1. There

are two polygons of degree 2. One is the generating polygon P11, but the other polygon has a
penetrating line in L. See Fig. 49.

4.4. Cubic system O

4.4.1. P4232, Configuration C31
E(L) is partitioned into four G-orbits. Two contain edges parallel to x-axis and the other

two contain edges parallel to 110-axis. For the latter case, one line is decomposed into two
G-orbits as: . . . aabbaabb. . . . There is one generating polygon P12 of degree 1 and another
generating polygon P13 of degree 3. There is no generating polygon of degree 2. See Fig. 50.

4.4.2. P4232, Configuration C32
E(L) is partitioned into four G-orbits. All edges are congruent and all G-orbits contain

edges parallel to 110-axis. Each line is decomposed into two G-orbits as: . . . aabbaabb. . . .
There is one generating polygon P14 of degree 1 and another generating polygon P15 of
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FIGURE 48. P 6222, C28, no generating polygon. FIGURE 49. P 6222, C29, generating polygon: P11.

FIGURE 50. P 4232, C31, generating polygons:
P12, P13.

FIGURE 51. P 4232, C31, P13, embedded triply pe-
riodic minimal surface.
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FIGURE 52. P 4232, C32, generating polygons:
P14, P15.

FIGURE 53. P 4232, C32, P15, embedded triply pe-
riodic minimal surface.

degree 2. There is no generating polygon of degree 3. See Fig. 52.

4.4.3. F4132, Configuration C33
E(L) is partitioned into two G-orbits. All edges are congruent and all G-orbits contain

edges parallel to 110-axis. Each line is decomposed into two orbits as: . . . ababab . . . . There
are one generating polygon P16 of degree 2 and another generating polygon P17 of degree 3.
There is no generating polygon of degree 1. See Fig. 54.

4.4.4. P4332, Configuration C34
E(L) is partitioned into two G-orbits. One edge is three times longer than the other.

All G-orbits contain edges parallel to 110-axis. Each line is decomposed into two orbits of
different length as: . . . slslsl . . . . There is no generating polygon of degree 1, neither of
degree 2 or 3.

4.4.5. I4132, Configuration C35
E(L) is partitioned into three G-orbits. One contains an edge parallel to x-axis and the

other two contain edges parallel to 110-axis. For the latter orbits, one is three times longer
than the other. A line parallel to 110-axis is decomposed into two orbits as: . . . ssllssll . . . .
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FIGURE 54. F4132, C33, generating polygons:
P16, P17.

FIGURE 55. I4132, C35, generating polygons:
P18, P19.

There is no generating polygon of degree 1. There is only one generating polygon P18 of
degree 2. Also, there is only one generating polygon P19 of degree 3. See Fig. 55.

4.4.6. I4132, Configuration C36
E(L) is partitioned into four G-orbits. Two are long and the other two are short. The

longer edges are congruent and the shorter edges are congruent too. All G-orbits contain
edges parallel to 110-axis. Each line is decomposed into two orbits as: . . . ssllssll . . . . There
is no generating polygon of degree 1. There are three polygons of degree 2. But the two are
congruent each other and they have penetrating lines in L. So, there is only one generating
polygon P20 of degree 2. Also, there are two polygons of degree 3. One has penetrating lines
in L. There is also only one generating polygon P21 of degree 3. See Figs. 56, 57.

5. Spanning minimal surfaces

Here, we list the known results concerning to the triply periodic minimal surfaces gener-
ated by our spatial polygons.

5.1. Nitsche Polygons. A spatial polygon Γ is called to be a Nitsche polygon, if the
following condition holds:
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FIGURE 56. I4132, C36, generating polygon: P20. FIGURE 57. I4132, C36, generating polygon: P21.

i) Γ projects to a convex polygon in a plane, and
ii) let π : Γ → π(Γ ) be the projection, then π−1(x) is either a point or a line segment.
Let Γ be a Nitsche polygon, then there is a Plateau solution SΓ for Γ . SΓ is homeomor-

phic to a disk. SΓ is unique in the sense that if there exist a compact minimal surface of any
genus bounded by Γ then it must coincide with SΓ .

For our spatial polygons, P1–P8 and P12–P17 are Nitsche polygons. So, they bound
unique Plateau disks SΓ ’s.

5.2. Orthorhombic system D2. The polygons belonging to the orthorhombic system
are P1–P5. All of them are Nitsche polygons.

• P1 is known to generate the CLP-surface [5]. See Fig. 42.
• P2 has line symmetries whose axes pass the pairs of the midpoints of the horizontal

edges and P2 decomposes into four P3-type polygons. Since the Plateau disk is unique,
the spanning surface for P2 is the same as the spanning surface for P3. See Figs. 42, 43.

• P3 is known to generate the least symmetric Schwarz D-surface [5].
• P4 has a line symmetry whose axis passes the midpoints of the horizontal edges and P4

decomposes into two P1-type polygons. So, the spanning surface for P4 is the same as
the spanning surface for P1. See Fig. 44.
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• P5 generate embedded triply periodic minimal surfaces treated in [3].

5.3. Tetragonal system D4. The polygons belonging to the tetragonal system are
P6–P9. Except P9, all of them are Nitsche polygons.

• P6 is known to generate the Gergonne surface [9], which is also a less symmetric Schwarz
D-surface. See Fig. 45.

• P7 generate a triply periodic minimal surface.
• P8 has a line symmetry whose axis passes the midpoint of the long vertical edge and the

midpoint of the long horizontal edge and P8 decomposes into two P6-type polygons. So,
the spanning surface for P8 is the same as the spanning surface for P6. See Fig. 46.

• P9 has two line symmetries whose axes are z-axis and 110-axis. If the spanning surface
SΓ inherits this symmetry, then it contains these axes and P9 decomposes into four P8-
type polygons. So, P9 does generate a triply periodic minimal surface which is the same
surface as the spanning surface for P6. But there remains a small possibility that another
SΓ , with genii, does not inherit the symmetry.

5.4. Hexagonal system D6. The polygons belonging to the hexagonal system are
P10–P11. These two are not Nitsche polygons.

• P10 generates an embedded triply periodic minimal surface shown in [6]. See Fig. 47.
• The existence of the spanning surface for P11 is not known.

5.5. Cubic system O . The polygons belonging to the cubic system are P12–P21.
Among them, P12–P17 are Nitsche polygons.

• P12 bounds one quarter of the Riemann-Schwarz’ diamond surface (or Schwarz D-
surface) [1, 5]. See Fig. 50.

• For P13, we can embed four copies of the Plateau disk SΓ in the truncated octahedron.
By the tessellation, we can get an embedded triply periodic minimal surface. It is known
as the C(D)-surface [1, 5]. See Fig. 51.

• P14 bounds the conjugate of the Riemann-Schwarz’ diamond surface (or the Schwarz
P-surface) [1, 5]. Twelve copies of this surface together form a catenoid-like minimal
surface between two parallel squares. See Fig. 52.

• For P15, we can embed six copies of the Plateau disk SΓ in the truncated octahedron.
By the tessellation, we can get an embedded triply periodic minimal surface, known as
the C(P)-surface [1, 5]. See Fig. 53.

• P16 has two line symmetries whose axes pass the pairs of the midpoints of the edges
and it decomposes into four P12-type polygons. So, the spanning surface for P16 is the
Schwarz D-surface. See Fig. 54.
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• P17 has three line symmetries whose axes pass the pairs of the midpoints of the edges
and it decomposes into six P14-type polygons. So, the spanning surface for P17 is the
Schwarz P-surface.

• The existence of the spanning surfaces for P18–P21 is not knowm.
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