Monodromy on the Central Hyperbolic Component of Polynomials with Just Two Distinct Critical Points

Hikaru YAZAWA

Gakushuin University

(Communicated by T. Kawasaki)

Abstract

For any given integers $d_{0}, d_{1} \geq 1$, let \mathcal{F} be the family of polynomial maps f such that f has a fixed point at the origin, and moreover has just two distinct critical points 1 and $c_{f} \neq 1$ of multiplicies d_{0} and d_{1}, respectively. For the central hyperbolic component \mathcal{H} of \mathcal{F}, a monodromy map on \mathcal{H} is obtained by Branner-Hubbard deformations. We show that for any given λ with $0<|\lambda|<1$ and for any given integer $n \geq 1$, the monodromy map transitively acts on the family of all polynomial maps $f \in \mathcal{H}$ with $f^{\prime}(0)=\lambda$ and $f^{\circ n}\left(c_{f}\right)=1$.

1. Introduction

For a polynomial map of degree ≥ 2 on the complex plane, if the polynomial map has an attracting fixed point, then we obtain Branner-Hubbard deformations by wringing the standard complex structure on the attracting basin. In this paper, we consider Branner-Hubbard deformations of a polynomial map which has just two distinct critical points and an attracting fixed point at the origin with a non-zero multiplier.

For any given integers $d_{0}, d_{1} \geq 1$, let \mathcal{F} be the family of polynomial maps f such that f has a fixed point at the origin, and moreover has just two distinct critical points 1 and $c_{f} \neq 1$ of multiplicies d_{0} and d_{1}, respectively. A hyperbolic component of \mathcal{F} is defined to be a connected component of the family of all polynomial maps $f \in \mathcal{F}$ such that both critical points are contained in the attracting basins of f. In particular, the central hyperbolic component \mathcal{H} of \mathcal{F} is defined to be the family of all polynomial maps $f \in \mathcal{F}$ such that f has an attracting fixed point at the origin whose immediate basin contains both critical points. Moreover, for any complex number λ with $|\lambda|<1$, let \mathcal{H}_{λ} be the family of all polynomial maps $f \in \mathcal{H}$ with $f^{\prime}(0)=\lambda$.

In the case of $0<|\lambda|<1$, the monodromy map on \mathcal{H}_{λ} is obtained by making use of the technique of Branner-Hubbard deformations. For any polynomial map $f \in \mathcal{H}_{\lambda}$, we obtain the Branner-Hubbard deformation f_{s} which has an attracting fixed point with multiplier $\lambda|\lambda|^{s-1}$ at the origin, where $s=u+i v$ be a complex number with $v>0$. In particular, for each
$s(t)=1+2 \pi i t / \log |\lambda|$ with $t \in \mathbf{R}$, we have $\lambda|\lambda|^{s(t)-1}=e^{2 \pi i t} \lambda$, and hence the BrannerHubbard deformation $f_{s(t)}$ is called the turning deformation. Using this Branner-Hubbard deformation, we define the monodromy map $\mathcal{M}_{\lambda}: \mathcal{H}_{\lambda} \rightarrow \mathcal{H}_{\lambda}$ by $\mathcal{M}_{\lambda}(f)=f_{s(1)}$.

In this paper, we study the action of \mathcal{M}_{λ} on the family of all polynomial maps $f \in \mathcal{H}_{\lambda}$ with the critical orbit relation $f^{\circ n}\left(c_{f}\right)=1$ for some integer $n \geq 1$. Our main result is as follows.

MAIN THEOREM. In the case of $0<|\lambda|<1$, for any given integer $n \geq 1$, the monodromy map \mathcal{M}_{λ} transitively acts on the family of all polynomial maps $f \in \mathcal{H}_{\lambda}$ with $f^{\circ n}\left(c_{f}\right)=1$.

In §2-3, we prove this theorem. In §4, we give an immediate application of the pinching deformations of Haissinsky [4] to polynomial maps obtained by this theorem.

2. Preliminaries

We first state some of definitions and facts about the dynamics of polynomial maps. For proofs and further details, see Milnor [8].

Let f be a polynomial map of degree ≥ 2 having an attracting fixed point with multiplier $\lambda(|\lambda|<1)$ at the origin. We denote by $\mathcal{A}(f, 0)$ the basin of attraction, i.e.,

$$
\mathcal{A}(f, 0)=\left\{z \in \mathbf{C} \mid f^{\circ k}(z) \rightarrow 0(k \rightarrow \infty)\right\}
$$

A connected component of $\mathcal{A}(f, 0)$ is called the immediate attracting basin if the connected component contains 0 .

In the case of $\lambda=0$, the dynamics of f on a neighborhood of 0 is understood by the Böttcher theorem. The polynomial map f takes the form $f(z)=a_{d} z^{d}+a_{d+1} z^{d+1} \cdots$, with $d \geq 2$ and $a_{d} \neq 0$. The Böttcher theorem asserts that there exists a conformal isomorphism φ defined on a neighborhood of 0 satisfying $\varphi(0)=0$ and $\varphi \circ f(z)=(\varphi(z))^{d}$ for all z in the neighborhood. This φ need not be extended throughout the attracting basin. However, the function $|\varphi(z)|$ is extended throughout the attracting basin.

In the case of $0<|\lambda|<1$, the dynamics of f on a neighborhood of 0 is understood by the Kœnigs theorem. There exists a holomorphic map φ defined on $\mathcal{A}(f, 0)$ satisfying $\varphi(0)=0$ and $\varphi \circ f(z)=\lambda \varphi(z)$ for all $z \in \mathcal{A}(f, 0)$. Moreover, φ is unique up to multiplication by a non-zero constant. For a small radius $r>0$, this holomorphic map φ has a holomorphic inverse map $\psi: \mathbf{D}_{r} \rightarrow \mathcal{A}(f, 0)$ with $\psi(0)=0$. In particular, there exists the largest radius R such that ψ is well defined on \mathbf{D}_{R}. Note that ψ extends homeomorphically over $\partial \mathbf{D}_{R}$, and the image $\psi\left(\partial \mathbf{D}_{R}\right)$ contains a critical point of f.

DEFINITION 1. For f as above, a critical point of f is said to be first in $\mathcal{A}(f, 0)$ if the critical point is contained in $\psi\left(\partial \mathbf{D}_{R}\right)$.

For any polynomial map $f \in \mathcal{H}_{\lambda}$ with $0<|\lambda|<1$, let φ_{f} be the holomorphic map satisfying $\varphi_{f}(0)=0, \varphi_{f}(1)=1$, and $\varphi_{f} \circ f(z)=\lambda \varphi_{f}(z)$ for all $z \in \mathcal{A}(f, 0)$. Note that
$\mathcal{A}(f, 0)$ contains both critical points 1 and c_{f}. Hence for a radius r with $0<r<1$, the inverse map ψ_{f} of φ_{f} with $\psi_{f}(0)=0$ can be defined on \mathbf{D}_{r}. In particular, if f satisfies $f^{\circ n}\left(c_{f}\right)=1$ for some integer $n \geq 1$, then the critical point 1 is first in $\mathcal{A}(f, 0)$, and hence ψ_{f} is well defined on \mathbf{D}.

For the rest of this section, we will prove the following.
Proposition 2. For any given integer $n \geq 1$, there exists a polynomial map $f \in \mathcal{H}$ which satisfies the inequality $0<\left|f^{\prime}(0)\right|<1$ and the critical orbit relation $f^{\circ n}\left(c_{f}\right)=1$.

To prove Proposition 2, we consider the parameter space of polynomial maps $f_{a, b}$ with two critical points $a, b \in \mathbf{C}$.

Let $f_{a, b}(z)$ be the unique polynomial such that $f_{a, b}(0)=0$ and $f_{a, b}^{\prime}(z)=d(z-a)^{d_{0}}(z-$ $b)^{d_{1}}$. Since $f_{0,0}(z)=z^{d_{0}+d_{1}+1}$, there exists a small $\varepsilon>0$ such that for $f_{a, b}$ with $|a|,|b|<\varepsilon$, the attracting basin $\mathcal{A}\left(f_{a, b}, 0\right)$ contains both critical points a and b. For such a polynomial $f_{a, b}$, the polynomial $g_{a, b}(z)=f_{a, b}(a z) / a$ belongs to \mathcal{H} if $a \neq 0$ and if $a \neq b$. To find a polynomial $f_{a, b}$ with $f_{a, b}^{\circ n}(b)=a$ for some integer $n \geq 1$, we introduce algebraic curves of parameters (a, b) related to critical orbit relations.

For any positive integer n, let $F_{n}(a, b)=f_{a, b}^{\circ n}(b)-a$, and let \mathcal{S}_{n} be the set of all zeros of F_{n}. Note that \mathcal{S}_{n} has no isolated point. Since $(0,0) \in \mathcal{S}_{n}$, there exists a parameter (a, b) such that the polynomial $g_{a, b}(z)=f_{a, b}(a z) / a$ belongs to \mathcal{H}.

LEMMA 3. For any given integer $n \geq 1$ and for any complex number $b \neq 0$, if $(0, b) \in$ \mathcal{S}_{n}, then the immediate attracting basin of $\mathcal{A}\left(f_{0, b}, 0\right)$ does not contain the critical point b.

Proof. We use the Böttcher theorem for $f_{0, b}$. Suppose that $b \in \mathbf{C} \backslash\{0\}$. Then there exists a holomorphic map φ_{b} on a neighborhood of the origin satisfying $\varphi_{b}(0)=0$ and $\varphi_{b} \circ$ $f_{0, b}(z)=\left(\varphi_{b}(z)\right)^{d_{0}}$ for all z in the neighborhood. Following Milnor [8], we extend the function $\left|\varphi_{b}\right|$ to a continuous function G_{b} which is well defined and satisfies $G_{b}\left(f_{0, b}(z)\right)=$ $\left(G_{b}(z)\right)^{d_{0}}$ for all $z \in \mathcal{A}\left(f_{0, b}, 0\right)$.

In the case of $(0, b) \in \mathcal{S}_{n} \backslash\{(0,0)\}$, since $f_{0, b}^{\circ n}(b)=0$, it follows from the equality above that $G_{b}(b)=0$. Hence for any real number r with $0<r<1$, any connected component of the set $\left\{z \in \mathcal{A}\left(f_{0, b}, 0\right) \mid G_{b}(z)=r\right\}$ is a Jordan curve. In particular, φ_{b} extends continuously on such Jordan curves surrounding the origin. Hence φ_{b} is well defined on the immediate basin of $\mathcal{A}\left(f_{0, b}, 0\right)$, or equivalently the inverse map ψ_{b} of φ_{b} is well defined on \mathbf{D}.

Thus $f_{0, b}$ satisfies $\varphi_{b} \circ f_{0, b} \circ \psi_{b}(w)=w^{d_{0}}$ for all $w \in \mathbf{D}$, and hence the immediate basin does not contain the critical point b.

Now we consider the section $\mathcal{S}_{n} \cap(\{0\} \times \mathbf{C})$.
Lemma 4. $(0,0)$ is an isolated point of $\mathcal{S}_{n} \cap(\{0\} \times \mathbf{C})$.
Proof. There exists a small $\varepsilon>0$ such that if $|z|<\varepsilon$, then $\left|f_{0, b}(z)\right|<|z|$. Suppose that $(0, b) \in \mathcal{S}_{n} \cap(\{0\} \times \mathbf{C})$ and $|b|<\varepsilon$. Then by the inequality above, the immediate
attracting basin of 0 for $f_{0, b}$ contains the critical point b. Thus it follows from Lemma 3 that $b=0$.

Proposition 2 is proved immediately by Lemma 4 as follows.
Proof of Proposition 2. For a radius $r>0$, define $I_{r}^{2}=\left\{(a, b) \in \mathbf{C}^{2}| | a \mid<\right.$ $r,|b|<r\}$. It follows from Lemma 4 that for a small radius $r>0$, there exists a parameter $(a, b) \in\left(\mathcal{S}_{n} \cap I_{r}^{2}\right) \backslash\{(0,0)\}$ satisfying $0<\left|f_{a, b}^{\prime}(0)\right|<1$ and $\left|f_{a, b}(z)\right|<|z|$ for all z with $|z| \leq r$. Then each inverse image of the circles $|z|=r$ under $f_{a, b}^{\circ k}$ for all integer $k \geq 1$ is connected, and hence the attracting basin is also connected. Thus it follows that $g_{a, b} \in \mathcal{H}$ and $g_{a, b}^{\circ n}\left(c_{g}\right)=1$.

3. Proof of Main Theorem

In this section, for a polynomial map $f \in \mathcal{H}$ with $f^{\prime}(0)=0$, we define the BrannerHubbard deformations of obtained by wringing the standard complex structure on $\mathcal{A}(f, 0)$, and prove Main Theorem. For details of Branner-Hubbard deformations, see, for example, [2], [3], [5], and [9].

Suppose that f is a polynomial map in \mathcal{H} with the critical orbit relation $f^{\circ n}\left(c_{f}\right)=1$ for some integer $n \geq 1$. Note that $f^{\prime}(0) \neq 0$, and f has the first critical point 1 .

For any complex number $s=u+i v$ with $u>0$, we define the Branner-Hubbard deformation f_{s} as follows. Consider the complex structure obtained by the pull-back of the standard complex structure σ_{0} on \mathbf{C}. Let $l_{s}(z)=z|z|^{s-1}$, and let σ_{s} be the f-invariant almost complex structure such that

$$
\sigma_{s}= \begin{cases}\sigma_{0} & \text { on } \mathbf{C} \backslash \mathcal{A}(f, 0) \\ \left(l_{s} \circ \varphi_{f}\right)^{*} \sigma_{0} & \text { on } \psi_{f}(\mathbf{D})\end{cases}
$$

Using the Measurable Riemann Mapping Theorem, we have a unique quasiconformal map h_{s} satisfying $h_{s}(0)=0, h_{s}(1)=1$ and $h_{s}^{*} \sigma_{0}=\sigma_{s}$. We define $f_{s}=h_{s} \circ f \circ h_{s}^{-1}$. Then it follows from [9] that $\varphi_{f_{s}}=l_{s} \circ f \circ h_{s}^{-1}$ and $f_{s}^{\prime}(0)=l_{s}\left(f^{\prime}(0)\right)$. Since l_{s} maps \mathbf{D} onto itself, we have the following:

Proposition 5. For any integer $n \geq 1$ and for any complex number λ with $0<|\lambda|<$ 1 , there exist polynomial maps $f \in \mathcal{H}$ with $f^{\prime}(0)=\lambda$ and $f^{\circ n}\left(c_{f}\right)=1$.

Without loss of generality, we may suppose that $\lambda=f^{\prime}(0) \in(0,1)$. Then it follows from $\lambda \in(0,1)$ that ψ_{f} can be extended to the univalent function

$$
\psi_{f, 0}: \mathbf{C} \backslash[1, \infty) \rightarrow \mathcal{A}(f, 0)
$$

For example, consider the case of $d=3$ and $n=1$. Since $\varphi_{f}\left(c_{f}\right)=\lambda^{-1}$ holds,

$$
c_{f}=\lim _{y \downarrow 0} \psi_{f, 0}\left(\lambda^{-1}+i y\right) \text { or } c_{f}=\lim _{y \uparrow 0} \psi_{f, 0}\left(\lambda^{-1}+i y\right)
$$

Figure 1. The case of $d=3$ and $n=1$.
holds as in Figure 1.
The quasiconformal map $h_{s(m)}$ is a Dehn twist of a fundamental annulus in $\psi_{f}(\mathbf{D})$. Consider the inverse image of $\hat{U}_{f, m}=l_{s(m)}^{-1}(\mathbf{C} \backslash[1, \infty))$ under φ_{f}. The inverse map ψ_{f} of φ_{f} is extended to the univalent map $\psi_{f, m}$ from $\hat{U}_{f, m}$ into $\mathcal{A}(f, 0)$. Let $U_{f, m}=\psi_{f, m}\left(\hat{U}_{f, m}\right)$. Note that $h_{s(m)}\left(U_{f, m}\right)=\psi_{f_{s(m)}, 0}(\mathbf{C} \backslash[1, \infty))$. Thus, if $c_{f}=\lim _{y \downarrow 0} \psi_{f, 0}\left(\lambda^{-1}+i y\right)$ holds, then $c_{f_{s(1)}}=h_{s(1)}\left(c_{f}\right)=\lim _{y \uparrow 0} \psi_{f_{s(1)}, 0}\left(\lambda^{-1}+i y\right)$ holds as in Figure 2.

Again, suppose that $d \geq 3$ and $n \geq 1$ are any given integers. To prove Main Theorem, considering the behavior of $h_{s(m)}$ on $\mathcal{A}(f, 0)$ for each integer $m \geq 1$, we describe a dynamical location of $c_{f_{s(m)}}$ on $\mathcal{A}\left(f_{s(m)}, 0\right)$.

LEMMA 6. For f as above, suppose that $c_{f} \neq \lim _{y \downarrow 0} \psi_{f, 0}\left(\lambda^{-1}+i y\right)$. Then there exists an integer $m \geq 1$ such that $c_{f_{s(m)}}=\lim _{y \downarrow 0} \psi_{f_{s(m)}, 0}\left(\lambda^{-n}+i y\right)$.

PRoof. For any real number $r>0$, let $D_{f}(0 ; r)$ be the connected component of 0 in $\left\{z \in \mathcal{A}(f, 0)\left|\left|\varphi_{f}(z)\right|<r\right\}\right.$. We denote by $O_{f}^{-}(1)$ the set of all points z such that $f^{\circ k}(z)=1$ for some integer $k \geq 1$. Since $f^{\circ n}\left(c_{f}\right)=1$, we obtain $\partial D_{f}\left(0 ; \lambda^{-k}\right) \cap O_{f}^{-}(1) \neq \emptyset$ for all $k \geq 1$. For a small $\varepsilon>0$, consider the ring domain $D_{f}(0 ; \lambda+\varepsilon) \backslash D_{f}(0 ; \lambda-\varepsilon)$. Since the preimage of this ring domain under $f^{\circ n}$ contains c_{f}, the preimage is simply connected. Hence, the preimage of the circle $|z|=\lambda^{-n}$ under φ_{f} is just one connected curve. Thus $\partial D_{f}\left(0 ; \lambda^{-n}\right)$ contains c_{f} as in Figure 3.

To prove this lemma, we study the process of the Dehn twist on $D_{f}\left(0 ; \lambda^{-n}\right)$.

Figure 2. The case of $d=3$ and $n=1$.

Figure 3. This figure shows the curve $\left|\varphi_{f}(z)\right|=\lambda^{-n}$ containing c_{f}.

First we label each point of $\partial D_{f}\left(0 ; \lambda^{-k}\right) \cap O_{f}^{-}(1)$ for all $k \geq 1$. Recall that f has a critical point 1 with multiplicity d_{0}, in other words f takes the form

$$
f(w)=f(1)+a_{d_{0}}(w-1)^{d_{0}}+\cdots,
$$

where $d_{0} \geq 2$ and $a_{d_{0}} \neq 0$. Since f restricted to $D_{f}\left(0 ; \lambda^{-j}\right) \backslash\{1\}$ is d_{0}-to-one for any given integer $j \geq 1$, the boundary $\partial D_{f}\left(0 ; \lambda^{-j}\right)$ contains just d_{0}^{j} points of $O_{f}^{-}(1)$. Now we define

$$
z(j, 0)=\lim _{y \downarrow 0} \psi_{f, 0}\left(\lambda^{-j}+i y\right),
$$

and moreover, we denote by $z(j, k)$ the k-th point of $O_{f}^{-}(1) \cap \partial D_{f}\left(0 ; \lambda^{-j}\right)$ from $z(j, 0)$ along the curve $\partial D_{f}\left(0 ; \lambda^{-k}\right)$ counterclockwise. For example, if $d=3$ and $n=1$, then $O_{f}^{-}(1) \cap \partial D_{f}\left(0 ; \lambda^{-1}\right)$ consists of just two points $z(1,0)$ and $z(1,1)$ as in Figure 5.

Next, for any angle $\theta \in(0,1)$, consider the curve

$$
C_{m}(\theta)=\left\{\psi_{f, m} \circ l_{m}^{-1}\left(r e^{2 \pi i \theta}\right) \mid r>0\right\},
$$

which passes through a subarc of $\partial D_{f}\left(0 ; \lambda^{-j}\right) \cap U_{f, m}$. To describe such subarcs, we introduce the order relation \prec_{j} in $\partial D_{f}\left(0 ; \lambda^{-j}\right) \cap O_{f}^{-}(1)$ as follows. For the positive orientation of

Figure 4. The case of $d=3$ and $n=2$.

Figure 5. The case of $d=3$ and $n=2$.
$\partial D_{f}\left(0 ; \lambda^{-j}\right)$ with respect to $D_{f}\left(0 ; \lambda^{-j}\right)$, let $\gamma_{j}:[0,1) \rightarrow \partial D_{f}\left(0 ; \lambda^{-j}\right)$ be an orientation preserving homeomorphism such that $\gamma_{j}(0)=z(j, 0)$. For any points $z, w \in \partial D_{f}\left(0 ; \lambda^{-j}\right)$ with $z \neq w$, we say that $z \prec_{j} w$ if $\gamma_{j}^{-1}(z)<\gamma_{j}^{-1}(w)$. As in Figure 6 , let $A(j, k)$ be the open subarc of $\partial D_{f}\left(0 ; \lambda^{-j}\right)$ which consists of all $z \in \partial D_{f}\left(0 ; \lambda^{-j}\right)$ satisfying

$$
z\left(j, k \bmod d_{0}^{j}\right) \prec_{j} z \prec_{j} z\left(j, k+1 \bmod d_{0}^{j}\right)
$$

It follows from straightforward computation that $C_{m}(\theta)$ passes through

$$
\begin{aligned}
& A(1, m) \\
& A\left(2, m+d_{0} m\right)=A\left(2, m\left(d_{0}+1\right)\right) \\
& A\left(3, m+d_{0} m\left(d_{0}+1\right)\right)=A\left(3, m\left(d_{0}^{2}+d_{0}+1\right)\right) \\
& \ldots \\
& \text { and } A\left(n, m+d_{0} m \sum_{k=0}^{n-2} d_{0}^{k}\right)=A\left(n, m \sum_{k=0}^{n-1} d_{0}^{k}\right)
\end{aligned}
$$

Figure 6. The case of $d=3$ and $n=2$.

Now suppose that $z\left(n, k_{0}\right)=c_{f}$, where k_{0} is some integer with $1 \leq k_{0} \leq d_{0}-1$. Then c_{f} and $z\left(n, k_{0}+1 \bmod d_{0}^{n}\right)$ are the end-points of $A\left(n, k_{0}\right)$. Let $M=\left(d_{0}-1\right)\left(-k_{0}+d_{0}^{n}\right)$. Since $M \sum_{k=0}^{n-1} d_{0}^{k} \equiv k_{0}\left(\bmod d_{0}^{n}\right)$, it follows that $C_{M}(\theta)$ passes through $A\left(n, k_{0}\right)$. Thus c_{f} is contained in the curve

$$
\left\{\lim _{\theta \rightarrow+0} \psi_{f, M} \circ l_{M}^{-1}\left(r e^{2 \pi i \theta}\right) \mid r>0\right\},
$$

and hence we have $c_{f_{s(M)}}=\lim _{y \downarrow 0} \psi_{f_{s(M)}, 0}\left(\lambda^{-n}+i y\right)$.
Proof of Main Theorem. For each λ with $0<|\lambda|<1$, consider the family of all polynomial maps $f \in \mathcal{H}_{\lambda}$ such that $f^{\circ n}\left(c_{f}\right)=1$. Then by Proposition 2, we obtain $\mathcal{H}_{\lambda} \neq \emptyset$. In the case of $\lambda \in(0,1)$, as in Lemma 6 , we obtain $M_{\lambda}(f) \neq f$, i.e., $f_{s(1)} \neq f$. Moreover, it follows from Lemma 6 that the action of M_{λ} on \mathcal{H}_{λ} is transitive. Now for any given complex number $\mu \in \mathbf{D}$, any polynomial map $g \in \mathcal{H}_{\mu}$ is quasiconformally conjugate to a polynomial map $f \in \mathcal{H}_{\lambda}$. Thus we obtain Main Theorem.

4. Parabolic fixed points whose basin contains two distinct critical points

For a polynomial map $f_{0} \in \mathcal{H}_{\lambda}$ with $\lambda \in(0,1)$, we use the technique of the Haissinsky pinching deformations. The limit polynomial f_{∞} of the Haissinsky pinching deformations of f_{0} has a parabolic fixed point which attract two distinct critical points of f_{∞}. In this section, we classify such parabolic fixed points into four types, and moreover, for f_{0} obtained by Lemma 6, we consider the type of the parabolic fixed point of the limit polynomial f_{∞}.

For a parabolic fixed point α, we define the parabolic basin to be the union of all Fatou component U such that the orbit of each point of U converges to α. Suppose that f has a parabolic fixed point α whose basin contains just two distinct critical points. A Fatou component of f is critical if the Fatou component contains at least one critical point. We denote by c_{0} a
critical point in the immediate parabolic basin, and denote by c_{1} another critical point. Let U_{k} be the Fatou component which contains c_{k}, where $k=0,1$. Then there are four possibilities as follows.

CASE 1: The critical Fatou components are adjacent, i.e., $U_{0}=U_{1}$.
CASE 2: The critical Fatou components are bitransitive. That is, the Fatou components satisfy that $U_{0} \cap U_{1}=\emptyset$, and moreover, there exist the smallest positive integers $p, q \geq 0$ satisfying $f^{\circ p}\left(U_{0}\right)=U_{1}$ and $f^{\circ q}\left(U_{1}\right)=U_{0}$.

CASE 3: The immediate parabolic basin captures U_{1}. That is, the immediate parabolic basin does not contain U_{1}, and hence contains $f^{\circ k}\left(U_{1}\right)$ for some integer $k \geq 1$.

CASE 4: There are two disjoint cycles in the immediate parabolic basin. That is, the immediate parabolic basin contains U_{0} and U_{1} which satisfy $f^{\circ n}\left(U_{0}\right) \cap f^{\circ m}\left(U_{1}\right)=\emptyset$ for any integers $n, m \geq 0$.

Definition 7. For any parabolic fixed point whose basin contains just two distinct critical points, we will say that the type is adjacent, bitransitive, capturing, or disjoint if its critical Fatou components satisfy the Case 1, 2, 3, or 4, respectively.

Now suppose that the critical orbit relation $f_{0}^{\circ n}\left(c_{f_{0}}\right)=1$ holds for an integer $n \geq 1$. Following [4], we define the pinching curves on $\mathcal{A}\left(f_{0}, 0\right)$ as follows.

First, we define straight lines. Let $p, q \geq 1$ be any integers with $0<p / q<1$. We define the lattice Λ by

$$
\Lambda=\{-N \log \lambda+2 i M \pi \mid(N, M) \in \mathbf{N} \times \mathbf{Z}\},
$$

and take the vector $\tau=q \log \lambda-2 i p \pi$. Moreover, let $L_{y}=\{t \tau+y i \mid t \in \mathbf{R}\}$, and let L be the union of all L_{y} with $L_{y} \cap \Lambda \neq \emptyset$.

Next, we define an f-invariant set of curves on $\mathcal{A}\left(f_{0}, 0\right)$. Let \hat{V}_{0} be a connected component of the complement $\mathbf{C} \backslash \exp (L)$ whose boundary $\partial \hat{V}_{0}$ contains $\varphi_{f_{0}}\left(c_{f_{0}}\right)$. The inverse $\operatorname{map} \psi_{f_{0}}$ of $\varphi_{f_{0}}$ can be extended to the univalent map $\Psi_{f_{0}}$ from \hat{V}_{0} to $V_{0}=\Psi_{f_{0}}\left(\hat{V}_{0}\right)$. Let $\hat{\gamma}_{0}$ be a curve such that each connected component of the inverse image under the exponential function is parallel to L_{y}, and let $\gamma_{0}=\Psi_{f}\left(\hat{\gamma}_{0}\right)$. The union $S=\bigcup_{k=0}^{\infty} f^{-k}\left(\gamma_{0}\right)$ is called the support of the pinching.

It follows from [4] that there exists a sequence of quasiconformal deformations such that the limit function is a polynomial map with a parabolic fixed point at the origin as follows. There exists a sequence of quasiconformal maps $\left(h_{t}\right)_{t \geq 0}$ satisfying the following properties:

1. the limit function h_{∞} is locally quasiconformal on $\mathbf{C} \backslash S$;
2. $\quad h_{t}(0)=0, h_{t}(1)=1$ and $h_{t}(\infty)=\infty$;
3. h_{t} (resp. $f_{t}=h_{t} \circ f \circ h_{t}^{-1}$) converges uniformly on $\widehat{\mathbf{C}}$ to a locally quasiconformal map h_{∞} (resp. a limit polynomial f_{∞});
4. moreover, $h_{\infty}\left(f^{\circ k}\left(\overline{\gamma_{0}}\right)\right)=0$ for any integer $k \geq 1$.

Figure 7. The pinching curves.

The pinching deformation is defined to be the sequence $\left(f_{t}=h_{t} \circ f_{0} \circ h_{t}^{-1}\right)_{t \geq 0}$. The limit function f_{∞} is a polynomial map with a parabolic fixed point at the origin, and f_{0} is semiconjugate to f_{∞} by h_{∞}, i.e., $h_{\infty} \circ f_{0}=f_{\infty} \circ h_{\infty}$. The critical points of f_{∞} is 1 and $h_{\infty}\left(c_{f_{0}}\right)$. It follows from the equality $f_{\infty}^{\circ n}\left(h_{\infty}\left(c_{f_{0}}\right)\right)=1$ that the immediate parabolic basin of 0 for f_{∞} contains 1 .

Combining the pinching deformations and Main Theorem, we obtain the following.
Corollary 8. For any given integer $n \geq 1$, there exists a polynomial map P in $\partial \mathcal{H}$ having a parabolic fixed point with the bitransitive type such that $P^{\circ n}\left(U_{1}\right)=U_{0}$ and $P^{\circ k}\left(U_{1}\right) \cap U_{0}=\emptyset$ for all integer k with $0 \leq k<n$, where U_{0} and U_{1} are the critical Fatou components such that $1 \in U_{0}$ and $c_{P} \in U_{1}$.

Proof. By Main Theorem for any given integer $n \geq 1$, we obtain the polynomial map $f_{0} \in \mathcal{H}_{\lambda}$ with $\lambda \in(0,1)$ such that f satisfies $f_{0}^{\circ n}\left(c_{f_{0}}\right)=1$ and $c_{f_{0}}=\lim _{y \downarrow 0} \psi_{f_{0}, 0}\left(\lambda^{-1}+i y\right)$. Note that 1 is the first critical point of f_{0} in $\mathcal{A}\left(f_{0}, 0\right)$.

We define a pinching curves separating two critical points. Let $p \geq 1$ and $q \geq n$ be any integers such that p / q is an irreducible fraction with $0<p / q<1$. Define γ_{0}, V_{0} and S as above. Let \hat{C} be any smooth open arc with end-points 0 and λ^{-n} satisfying $\hat{C} \cap[1, \infty)=\emptyset$ and $\hat{C} \subset \hat{V}_{0}$. Then the smooth curve $C=\psi_{f_{0}, 0}(\hat{C})$ has end-points 0 and $c_{f_{0}}$, and hence we obtain $c_{f_{0}} \in \partial V_{0}$ as in Figure 7. Thus the cycle of connected components $\mathcal{A}\left(f_{0}, 0\right) \backslash S$ contains both critical points. Let $f_{t}=h_{t} \circ f_{0} \circ h_{t}^{-1}$ be the Haissinsky pinching deformation of f_{0} defined by the support S. Since the image of this cycle under h_{∞} is contained in the immediate parabolic basin of 0 for f_{∞}, we obtain Corollary 8 .

AcKnowledgement. The author expresses his thanks to the referee for helpful comments for improving the paper.

References

[1] A. F. Beardon, Iteration of rational functions, Complex analytic dynamical systems, Graduate Texts in Mathematics, 132, Springer-Verlag, New York, 1991.
[2] B. Branner and J. H. Hubbard, The iteration of cubic polynomials. I. The global topology of parameter space, Acta Math. 160 (1988), no. 3-4, 143-206.
[3] B. Branner and J. H. Hubbard, The iteration of cubic polynomials. II. Patterns and parapatterns, Acta Math. 169 (1992), no. 3-4, 229-325.
[4] P. Haissinsky, Pincement de polynômes, Comment. Math. Helv. 77 (2002), no. 1, 1-23.
[5] Y. Komori and Sh. NaKane, Landing property of stretching rays for real cubic polynomials, Conform. Geom. Dyn. 8 (2004), 87-114.
[6] O. Lehto and K. Virtanen, Quasiconformal mappings in the plane, Second edition, Springer-Verlag, New York-Heidelberg, 1973.
[7] J. Milnor, Remarks on iterated cubic maps, Experiment. Math. 1 (1992), no. 1, 5-24.
[8] J. MILnor, Dynamics in one complex variable, Friedr. Vieweg \& Sohn, Braunschweig, 2000.
[9] C. Petersen and Tan Lei, Branner-Hubbard motions and attracting dynamics, Dynamics on the Riemann sphere, A Bodil Branner Festschrift (ed. P. Hjorth and C. Petersen), EMS., 2006, 45-70.
[10] C. Petersen and Tan Lei, The central hyperbolic component of cubic polynomials, prepublication de l'Universite de Cergy-Pontoise.
[11] TAN. Lei, On pinching deformations of rational maps, Ann. Sci. École Norm. Sup. (4) 35 (2002), no. 3, 353-370.

Present Address:
Department of Mathematics, Gakushuin University, Mejiro, Toshima-ku, Tokyo, 171-8588 Japan.

