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Abstract: The quasi traveling waves with quenching of ut ¼ uxx þ ð1� uÞ�� for � 2 2N

are considered. The existence of quasi traveling waves with quenching and their quenching rates

are studied by applying the Poincaré compactification.
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1. Introduction. In this paper, we consider

the quasi traveling waves with quenching (see

Def. 3) of the following equation:

ut ¼ uxx þ
1

ð1� uÞ�
; t > 0; x 2 R; � 2 N:ð1:1Þ

First, we state the definition of ‘‘quenching’’ for

the solution of (1.1).

Definition 1. We say that a solution uðt; xÞ
of (1.1) quenches at point ðT; x0Þ if

lim
t"T

uðt; x0Þ ¼ 1; lim
t"T

@u

@t
ðt; x0Þ

����
���� ¼ 1:

In order to consider the traveling waves of

(1.1), we introduce the following change of varia-

bles:

�ð�Þ ¼ 1� uðt; xÞ; � ¼ x� ct; c > 0:

We then seek the solution �ð�Þ of the following

equation:

c�0 ¼ ��00 þ ���; � 2 R; 0 ¼
d

d�
;ð1:2Þ

or

�0 ¼  ;
 0 ¼ �c þ ���:

�
ð1:3Þ

Second, we state the definition of quasi travel-

ing waves and quasi traveling waves with quenching

as follows:

Definition 2. We say that a function

uðt; xÞ � 1� �ð�Þ is a quasi traveling wave of (1.1)

if the function �ð�Þ is a solution of (1.2) on a finite

interval or semi-infinite interval.

Definition 3. We say that a function

uðt; xÞ � 1� �ð�Þ is a quasi traveling wave with

quenching of (1.1) if the function uðt; xÞ is a quasi

traveling wave of (1.1) on a finite interval (resp.

semi-infinite interval) such that j�0j becomes infin-

ite (namely, � reaches 0) at both ends of the

interval (resp. finite end point of the semi-infinite

interval). More precisely, we have the following

three cases:

(I) The function �ð�Þ is a solution of (1.2) on a

semi-infinite interval ð�1; ��Þ (�ð�Þ 2
C2ð�1; ��Þ \ C0ð�1; ���, j��j <1), and sat-

isfies

lim
�!���0

�ð�Þ ¼ 0 and lim
�!���0

j ð�Þj ¼ 1:

(II) The function �ð�Þ is a solution of (1.2) on a

semi-infinite interval ð��;þ1Þ (�ð�Þ 2 C2ð��;
þ1Þ \ C0½��;þ1Þ, j��j <1), and satisfies

lim
�!��þ0

�ð�Þ ¼ 0 and lim
�!��þ0

j ð�Þj ¼ 1:

(III) The function �ð�Þ is a solution of (1.2) on a

finite interval ð��; �þÞ (�ð�Þ 2 C2ð��; �þÞ \
C0½��; �þ�, �1 < �� < �þ < þ1), and satis-

fies the followings

lim
�!�þ�0

�ð�Þ ¼ 0; lim
�!��þ0

�ð�Þ ¼ 0;

lim
�!�þ�0

j ð�Þj ¼ 1; lim
�!��þ0

j ð�Þj ¼ 1:

Remark 1. The definition of quasi traveling

wave (with quenching) implies that it satisfies (1.1)

only on semi-infinite interval or finite interval. In

this paper, we do not discuss the behavior of the

solutions of (1.3) after  becomes infinity. It is

doi: 10.3792/pjaa.96.001
#2020 The Japan Academy

2010 Mathematics Subject Classification. Primary 35C07,
34C05, 34C08.
�Þ

Graduate School of Science and Technology, Meiji
University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa
214-8571, Japan.
��Þ

School of Science and Technology, Meiji University, 1-1-1
Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan.

No. 1] Proc. Japan Acad., 96, Ser. A (2020) 1

http://dx.doi.org/10.3792/pjaa.96.001


necessary that more detailed (and hard) analysis in

order to study the solutions after quenching (out-

side of the interval on that �ð�Þ satisfies (1.2)), and

so we leave it open here.

In this setting, Matsue [4] proved the following

theorem.

Theorem 1 (Theorem 4.21 of [4]). Assume

that � > 1 with � 2 N. Then, the quasi traveling

waves with quenching for (1.1) are, if exist, charac-

terized by trajectories whose initial data are on the

stable manifold of a equilibrium at infinity ð�;  Þ ¼
ð0;þ1Þ of (1.3). The quenching rates, namely, the

extinction rate of � and blow-up rate of  , are

�ð�Þ � Cð�� � �Þ
2�

2�2��þ1 ;

 ð�Þ � Cð�� � �Þ
1��

2�2��þ1

as �! ��

8<
:

with j��j <1 and C 6¼ 0.

The proof is given in [4].

Remark 2. We can obtain the equilibria at

infinity (of (1.3)) not only ð�;  Þ ¼ ð0;þ1Þ but also

other equilibria by applying the Poincaré compac-

tification (see [4] and Sec. 3 for the details).

We note that the existence of the quasi

traveling waves has not been proved yet. In this

paper, we give the proof of the existence of them by

considering the restricted case of � 2 2N. The proof

is based on Poincaré compactification (that is also

used to prove Theorem 1 in [4]) and basic theory

of dynamical systems. We then state the main

theorem of this paper (see also Figure 1).

Theorem 2. Assume that � 2 2N. Then, the

Eq. (1.1) possesses a family of ‘‘quasi traveling

waves with quenching on a finite interval’’. More-

over, each quasi traveling wave with quenching

uðt; xÞ ¼ 1� �ð�Þ (which satisfies (1.2) on a finite

interval ð��; �þÞ) satisfies the followings

.
lim

�!�þ�0
�ð�Þ ¼ 0; lim

�!��þ0
�ð�Þ ¼ 0;

lim
�!�þ�0

 ð�Þ ¼ 1; lim
�!��þ0

 ð�Þ ¼ �1:

8<
:

. �ð�Þ < 0 holds for � 2 ð��; �þÞ.

. There exists a constant �� 2 ð��; �þÞ such that

the following holds:  ð�Þ < 0 for � 2 ð��; ��Þ,
 ð��Þ ¼ 0 and  ð�Þ > 0 for � 2 ð��; �þÞ.

In addition, quenching rates are

�ð�Þ � �Cð�þ � �Þ
2�

2�2��þ1

 ð�Þ � Cð�þ � �Þ
1��

2�2��þ1

8<
: as � ! �þ � 0

and

�ð�Þ � �Cð� � ��Þ
2�

2�2��þ1

 ð�Þ � �Cð� � ��Þ
1��

2�2��þ1

8<
: as �! �� þ 0ð1:4Þ

with C > 0.

In order to prove Theorem 2, it is necessary to

seek a family of orbits that connect ð�;  Þ ¼ ð0;�1Þ
and ð0;þ1Þ of (1.3) (see Sec. 4 for the details). As

shown in [2,4], the Poincaré compactification is

useful, and applicable for this problem. In the next

section, we briefly introduce the Poincaré compac-

tification for the convenience of readers.

2. Preparation. In this section, we briefly

introduce the Poincaré compactification.

Let

X ¼ P ð�;  Þ @
@�
þQð�;  Þ @

@ 

be a polynomial vector field on R2, or in other

words
_� ¼ P ð�;  Þ;
_ ¼ Qð�;  Þ;

(

where _ denotes d=dt, and P , Q are polynomials of

arbitrary degree in the variables � and  .

First, we consider R2 as the plane in R3 defined

by

ðy1; y2; y3Þ ¼ ð�;  ; 1Þ:

We consider the sphere

S2 ¼ fy 2 R3 j y2
1 þ y2

2 þ y2
3 ¼ 1g

which we call Poincaré sphere. We divide the sphere

into

u

1

ξξ− ξ+

u(t, x) = 1 − φ(ξ)

Fig. 1. Schematic picture of the quasi traveling wave with

quenching on � 2 ½��; �þ� obtained in Theorem 2.
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Hþ ¼ fy 2 R3 j y3 > 0g;
H� ¼ fy 2 R3 j y3 < 0g

and

S1 ¼ fy 2 R3 j y3 ¼ 0g:

Let us consider the projection of vector field X

from R2 to S2 given by

fþ : R2 ! S2 and f� : R2 ! S2;

where

f�ð�;  Þ :¼ �
�

�ð�;  Þ
;

 

�ð�;  Þ
;

1

�ð�;  Þ

� �

with �ð�;  Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ  2 þ 1

p
.

Second, we consider six local charts on S2 given

by

Uk ¼ fy 2 S2 j yk > 0g and Vk ¼ fy 2 S2 j yk < 0g

for k ¼ 1; 2; 3. Consider the local projection

gþk : Uk ! R2 and g�k : Vk ! R2

defined as

gþk ðy1; y2; y3Þ ¼ �g�k ðy1; y2; y3Þ ¼
ym

yk
;
yn

yk

� �

for m < n and m;n 6¼ k. The projected vector fields

are obtained as the vector fields on the planes

Uk ¼ fy 2 R3 j yk ¼ 1g

and

V k ¼ fy 2 R3 j yk ¼ �1g

for each local chart Uk and Vk. We denote by ðx; �Þ
the value of g�k ðyÞ for any k.

For instance, it follows that

ðgþ2 � fþÞð�;  Þ ¼
�

 
;

1

 

� �
¼ ðx; �Þ;

therefore, we can obtain the dynamics on the local

chart U2 by the change of variables � ¼ x=� and

 ¼ 1=�. The locations of the Poincaré sphere,

ð�;  Þ-plane and U2 are expressed as Figure 2. We

refer to [2] and references therein for more details.

We also refer to [5] and [4] for the Poincaré type

compactification and its applications, respectively.

Throughout this paper, we follow the notations

used here for the Poincaré compactification. It is

sufficient to consider the dynamics onHþ [ S1, which

is called Poincaré disk, to obtain our main result.

3. Dynamics on the Poincaré disk of

(1.3). In order to study the dynamics of (1.3) on

the Poincaré disk, we desingularize it by the time-

scale desingularization

ds=d� ¼ f�ð�Þg�� for � 2 2N:ð3:1Þ

Since we assume that � is even, the direction of the

time does not change via this desingularization.

Then we have

_� ¼ �� ;
_ ¼ �c�� þ 1:

(
_ ¼

d

ds

� �
:ð3:2Þ

It should be noted that the time scale desingu-

larization (3.1) is simply multiplying the vector

field by ��. Then, with excepting the singularity

f� ¼ 0g, the solution curves of the system (vector

field) remain the same but are parameterized

differently. Still, we refer to Section 7.7 of [3] and

references therein for the analytical treatments of

desingularization with the time rescaling. In what

follows, we use the similar time rescaling (re-

parameterization of the solution curves) repeatedly

to desingularize the vector fields.

Now we can consider the dynamics of (3.2) on

the charts Uj and V j.

3.1. Dynamics on the chart U2. To obtain

the dynamics on the chart U2, we introduce

coordinates ð�; xÞ by the formulas

�ðsÞ ¼ xðsÞ=�ðsÞ;  ðsÞ ¼ 1=�ðsÞ:

Then we have

_� ¼ cx��1�� � �2;

_x ¼ xðcx���� � �Þ þ x����:

(

Time-scale desingularization d�=ds ¼ �ðsÞ�� yields

S

S1
x

λ

H−

H+

y1

y2

y3

φ

ψ

U2

Fig. 2. Locations of the Poincaré sphere and chart U2.
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�� ¼ cx��� �2þ�;

x� ¼ cx�þ1 � �1þ�xþ x�;

(
ð3:3Þ

where �� ¼ d�=d� and x� ¼ dx=d� . The system (3.3)

has the equilibria

pþ0 : ð�; xÞ ¼ ð0; 0Þ and pc : ð�; xÞ ¼ ð0;�1=cÞ:

The Jacobian matrices at these equilibria are

pþ0 :
0 0

0 0

� �
and pc :

c1�� 0

0 c1��

 !
:

Therefore, pc is a source, and pþ0 is not hyperbolic.

In order to determine the dynamics near pþ0 , we

desingularize pþ0 by introducing the following blow-

up coordinates:

� ¼ r��1 ��; x ¼ r�þ1 �x

(see Sec. 3 of [2] for the desingularizations of vector

fields by the blow-up). Since we are interested in the

dynamics on the Poincaré disk, we consider the

dynamics of blow-up vector fields on the charts

f�� ¼ 1g and f�x ¼ �1g.
Dynamics on the chart f�� ¼ 1g. By the

change of coordinates � ¼ r��1, x ¼ r�þ1 �x, we have

r� ¼
r

�� 1
ðc�x�r�ð�þ1Þ � r�2�1Þ;

�x� ¼
2

�� 1
ð�xr�2�1 � c�x�þ1r�ð�þ1ÞÞ þ �x�r�

2�1:

8><
>:

The time-rescaling d�=d� ¼ rð�Þ�
2�1 yields

r� ¼ ð�� 1Þ�1ð�rþ c�x�r2þ�Þ;
�x� ¼ 2ð�� 1Þ�1ð�x� c�x�þ1r�þ1Þ þ �x�:

(
ð3:4Þ

The equilibria of (3.4) on fr ¼ 0g are

�pþ0 : ðr; �xÞ ¼ ð0; 0Þ; �pþ� : ðr; �xÞ ¼ 0;
�2

�� 1

� � 1
��1

 !
:

The Jacobian matrices at these equilibria are

�pþ0 :
�

1

�� 1
0

0
2

�� 1

0
BB@

1
CCA and �pþ� :

�
1

�� 1
0

0 �2

0
@

1
A:

Moreover, since j1=ð�� 1Þj < 2 holds, trajectories

near �pþ� are tangent to f�x ¼ ½�2=ð�� 1Þ�
1

��1 ; r 	 0g
as � ! þ1. The solutions are approximated as

rð�Þ � Ce
�1
��1�ð1þ oð1ÞÞ;

�xð�Þ � Ce�2�ð1þ oð1ÞÞ þ
�2

�� 1

� � 1
��1

:

8>><
>>:

Dynamics on the chart f�x ¼ �1g. By the

change of coordinates � ¼ r��1 ��, x ¼ �r�þ1, and

time-rescaling d�=d� ¼ rð�Þ�
2�1, we have

r� ¼ ð�þ 1Þ�1ðcr�þ2 � r��
1þ� � rÞ;

��� ¼ �ð�þ 1Þ�1ð2��
2þ� � ð�� 1Þ��� 2cr�þ1 ��Þ:

(

The equilibria on fr ¼ 0g are

ðr; ��Þ ¼ ð0; 0Þ; ðr; ��Þ ¼ ð0; ½ð�� 1Þ=2�
1

�þ1Þ:

By the further computations, we can see that ð0; 0Þ
is a saddle, and ð0; ½ð�� 1Þ=2�

1
�þ1Þ is a sink.

Dynamics on the chart f�x ¼ 1g. The

change of coordinates � ¼ r��1 ��, x ¼ r�þ1, and

time-rescaling d�=d� ¼ rð�Þ�
2�1 yield

r� ¼ ð�þ 1Þ�1ðcr�þ2 � r��
1þ� þ rÞ;

��� ¼ �ð�þ 1Þ�1ð2��
2þ� þ ð�� 1Þ��� 2cr�þ1 ��Þ:

(

The equilibrium on fr ¼ 0; �� 	 0g is ð0; 0Þ. The

linearized eigenvalues are ð�þ 1Þ�1 and �ð�� 1Þ=
ð�þ 1Þ with corresponding eigenvectors ð1; 0Þ and

ð0; 1Þ, respectively. Therefore, ðr; ��Þ ¼ ð0; 0Þ on the

chart f�x ¼ 1g is a saddle.

Combining the dynamics on the charts f�� ¼ 1g
and f�x ¼ �1g, we obtain the dynamics on U2 (see

Figure 3).

Still, we continue to study the dynamics on

other charts in order to obtain the whole dynamics

on the Poincaré disk.

3.2. Dynamics on the chart V 2. The change

of coordinates

�ðsÞ ¼ �xðsÞ=�ðsÞ;  ðsÞ ¼ �1=�ðsÞ

give the projected dynamics of (1.3) on the chart

V 2:

{λ = 1}

{x = 1}

{x = −1}

x

λ

x
pc

p+
0

λ

p+
0

U2

Fig. 3. Schematic pictures of the dynamics of the blow-up

vector fields and U2.
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�� ¼ cx��þ �2þ�;

x� ¼ x� þ cx�þ1 þ �1þ�x;

(
ð3:5Þ

where � is the new time introduced by d�=ds ¼
�ðsÞ��. The system (3.5) can be transformed into

(3.3) by the change of coordinates ð�; xÞ 7! ð��; xÞ.
Therefore, it is sufficient to consider the blow-up of

singularity p�0 : ð�; xÞ ¼ ð0; 0Þ by the formulas

� ¼ r��1 ��; x ¼ r�þ1 �x with �� ¼ 1:

Then we have

r� ¼ ð�� 1Þ�1ðrþ c�x�r�þ2Þ;
�x� ¼ �x� � 2ð�� 1Þ�1ð�xþ c�x�þ1r�þ1Þ;

(
ð3:6Þ

where � satisfies d�=d� ¼ frð�Þg�
2�1. The equilibria

of (3.6) on fr ¼ 0g are

�p�0 : ðr; �xÞ ¼ ð0; 0Þ; �p�� : ðr; �xÞ ¼ 0;
2

�� 1

� � 1
��1

 !
:

The equilibrium �p�0 is a saddle with the eigenvalues

ð�� 1Þ�1 and �2ð�� 1Þ�1 whose corresponding

eigenvectors are ð1; 0Þ and ð0; 1Þ, respectively.

Further, �p�� is a source with the eigenvalues ð��
1Þ�1 and 2 whose corresponding eigenvectors are

ð1; 0Þ and ð0; 1Þ, respectively.

3.3. Dynamics on the chart U1. Let us

study the dynamics on the chart U1. The trans-

formations

�ðsÞ ¼ 1=�ðsÞ;  ðsÞ ¼ xðsÞ=�ðsÞ

yield

�� ¼ �x�;
x� ¼ �cxþ �1þ� � x2

�
ð3:7Þ

via time-rescaling d�=ds ¼ f�ðsÞg��. The equilibria

of (3.7) are ð0; 0Þ and ð0;�cÞ whose Jacobian

matrices are

0 0

0 �c

� �
and

c 0

0 c

� �
;

respectively. Then the center manifold theory is

applicable to study the dynamics near ð0; 0Þ (for

instance, see [1]). It implies that there exists a

function hð�Þ satisfying

hð0Þ ¼
dh

d�
ð0Þ ¼ 0

such that the center manifold of (3.7) is represented

as fð�; xÞ j x ¼ hð�Þg near ð0; 0Þ. Differentiating it

with respect to � , we have

��hð�Þ
dh

d�
ð�Þ ¼ �chð�Þ þ �1þ� � fhð�Þg2:

Then we can obtain the approximation of the

(graph of) center manifold as follows:

fð�; xÞ j x ¼ ��þ1=cþOð�2�þ2Þg:

Therefore, the dynamics of (3.7) near ð0; 0Þ is

topologically equivalent to the dynamics of the

following equation:

�� ¼ ���þ2=cþOð�2�þ3Þ:

These results give us the dynamics on the chart

U1.

3.4. Dynamics on the chart V 1. The trans-

formations

�ðsÞ ¼ �1=�ðsÞ;  ðsÞ ¼ �xðsÞ=�ðsÞ

yield

�� ¼ �x�;
x� ¼ �cx� �1þ� � x2

�
ð3:8Þ

via time-rescaling d�=ds ¼ f�ðsÞg��. We can see

that the system (3.8) can be transformed into the

system (3.7) by the change of variables: ð�; xÞ 7!
ð��; xÞ. Therefore, the dynamics of (3.8) is equiv-

alent to the reflected one of (3.7) with respect to

f� ¼ 0g.
4. Proof of Theorem 2. Since the point

ðy1; y2; y3Þ ¼ ð0; 1; 0Þ on the Poincaré disk corre-

sponds to pþ0 , we denote it by pþ0 as well. Similarly,

we denote by p�0 the point ðy1; y2; y3Þ ¼ ð0;�1; 0Þ. In

order to prove Theorem 2, it is necessary to find the

orbits that connect p�0 and pþ0 on the Poincaré disk.

The phase portrait on the Poincaré disk of (1.3) is

shown in Figure 4 for the convenience of readers.

Proof. (I): For a given compact subset W 
 Hþ,

there are no equilibria or closed orbits in W .

Therefore, by the Poincaré-Bendixson theorem,

any trajectories starting from the points in W can

not stay in W with increasing s. This implies that

the trajectories in Hþ go to S1, which corresponds

to fkð�;  Þk ¼ 1g.
(II): The line f� ¼ 0g is invariant under the flow of

(3.2). Therefore, any trajectories start from the

points in fy 2 Hþ j y1 < 0g can not go to fy 2
Hþ j y1 > 0g.
(III): Let W

s

�pþ�
be a stable manifold of �pþ� (which is

the equilibrium of the system (3.4)). We denote by

Wsð�pþ� Þ the stable set, which corresponds to W
s

�pþ�
on
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the blow-up vector filed (3.4), of the equilibrium

pþ0 of (3.3). Similarly, we denote by Wuð�p�� Þ the

unstable set of p�0 , corresponding to the unstable

manifold of �p�� on the blow-up vector field (3.6).

Consider the trajectories start from the points on

Wuð�p�� Þ 
 fy 2 Hþ j y1 < 0g. The trajectories can

not stay in any compact subset on Hþ, and can not

go to fy 2 Hþ j y1 > 0g, therefore, they go to pþ0
with lying on Wsð�pþ� Þ. This implies that the system

(3.2) possesses the orbits that connect p�0 and pþ0
on the Poincaré disk. It is easy to see that d�=d 

takes the same values on the vector fields defined by

(3.2) and (1.3) by excepting the singularity f� ¼ 0g.
Thus, there are orbits connecting ð�;  Þ ¼ ð0;�1Þ
and ð0;þ1Þ on the original vector field (1.3).

(IV): As shown in [4], we can obtain the quenching

rates of �ð�Þ and  ð�Þ. Indeed,

d�

d�
¼
ds

d�
�
d�

ds
�
d�

d�
¼ ��� � ��� � r�2�1

¼ r���1 � �x�� ¼ C e
�þ1
��1þ2�ð Þ�

holds with a constant C. This yields

�ð�Þ ¼ C e�
�þ1
��1þ2�ð Þ� þ ~C; ð ~C 2 RÞ:

Set �þ ¼ lim
�!þ1

�ð�Þ, then we have

�þ ¼ C
Z þ1

0

e�ð
�þ1
��1þ2�Þ� d� <1:

Therefore,

�þ � � � C e�ð
�þ1
��1þ2�Þ�

holds. Finally, we obtain

�ð�Þ ¼ r2ð�Þ � �xð�Þ � �C e
�2�
��1�

¼ �C ð�þ � �Þ
2�

2�2��þ1

with C > 0. Similarly, we can obtain the quenching

rates for  ð�Þ as � ! �þ and (1.4).

This completes the proof. �
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Fig. 4. Compactification of the system (1.3).
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