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Abstract: In this paper we mainly investigate the radial distribution of Julia sets of

Newton’s method of entire solutions of some complex linear differential equations. Under certain

conditions, we find the lower bound of it and also obtain some related results.
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1. Introduction and main results. In this

paper, we assume the reader is familiar with

standard notations and basic results of

Nevanlinna’s value distribution theory; see

[7,9,12,19,21]. Let f be a meromorphic function in

the whole complex plane. We use �ðfÞ, �ðfÞ to

denote the order and lower order of f respectively,

and �ða; fÞð�ða; fÞÞ to denote the (simplified)

Nevanlinna deficient value of f at a; see [9,21] for

the definitions. Nevanlinna theory plays an impor-

tant role in the study of complex differential

equations; see [12].

Let u be a solution of the second order complex

linear differential equation

u00 þ AðzÞu ¼ 0;ð1Þ

where AðzÞ is a transcendental entire function with

finite order. It’s well known that every nontrivial

solution of (1) is entire and of infinite order. We

recall that for any nonconstant meromorphic func-

tion u, the Newton’s method of finding the zeros of

u consists of iterating the function f defined by

fðzÞ ¼ z� uðzÞ
u0ðzÞ

:ð2Þ

Then zeros of u are then attracting fixed points of f ,

and the simple zeros of u are even super attracting

fixed points of f . Note that if u satisfies (1) and f is

defined by (2), then f satisfies the following Riccati

equation

f 0ðzÞ þ AðzÞðfðzÞ � zÞ2 ¼ 0;ð3Þ
where AðzÞ is defined in (1).

In this article we should also know some basic

knowledge of complex dynamics of meromorphic

functions; see [5,23]. We define fn; n 2 N, denote

the nth iterate of f . The Fatou set F ðfÞ of

transcendental meromorphic function f is the sub-

set of the plane C where the iterates fn of f form

a normal family. The complement of F ðfÞ in C is

called the Julia set JðfÞ of f . It is well known that

F ðfÞ is open and completely invariant under f , JðfÞ
is closed and non-empty.

We denote �ð�; �Þ ¼ fz 2 Cj arg z 2 ð�; �Þg,
where 0 < � < � < 2�. Given � 2 ½0; 2�Þ, if �ð��
"; �þ "Þ \ JðfÞ is unbounded for any " > 0, then

we call the ray arg z ¼ � the radial distribution of

JðfÞ. Define �ðfÞ ¼ f� 2 ½0; 2�Þj argz ¼ � is the

radial distribution of JðfÞg.
Obviously, �ðfÞ is closed and so measurable.

We use the mes�ðfÞ to denote the linear measure

of �ðfÞ. Many important results of radial distribu-

tions of transcendental meromorphic functions have

been obtained, for example [2,13–16,24]. Qiao [13]

proved that mes�ðfÞ ¼ 2� if �ðfÞ < 1=2 and

mes�ðfÞ � �=�ðfÞ if �ðfÞ � 1=2, where fðzÞ is a

transcendental entire function of finite lower order.

Recently, Huang and Wang [10,11] considered

radial distributions of Julia sets of entire solutions

of linear complex differential equations. Their

results are stated as follows:

Theorem A ([10]). Let ff1; f2; . . . ; fng be a

solution base of

f ðnÞ þAðzÞf ¼ 0;ð4Þ

where AðzÞ is a transcendental entire function with
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finite order, and denote E ¼ f1f2 . . . fn. Then

mes�ðEÞ � minf2�; �=�ðAÞg.
Theorem B ([11]). Let AiðzÞði ¼ 0; 1; . . . ;

n� 1Þ be entire functions of finite lower order such

that A0 is transcendental and mðr; AiÞ ¼
oðmðr; A0ÞÞ; ði ¼ 1; 2; . . . ; n� 1Þ as r!1. Then

every non-trivial solution f of the equation

fðnÞ þ An�1f
ðn�1Þ þ . . .þ A0f ¼ 0ð5Þ

satisfies mes�ðfÞ � minf2�; �=�ðA0Þg.
We [22] extended the above results and studied

the radial distribution of Julia sets of the deriva-

tives of entire solutions of equations (4) and (5).

Indeed, we obtained the following results.

Theorem C. Let AiðzÞði ¼ 0; 1; . . . ; n� 1Þ
be entire functions of finite lower order such that

A0 is transcendental and mðr;AiÞ ¼ oðmðr; A0ÞÞ;
ði ¼ 1; 2; . . . ; n� 1Þ as r!1. Then every non-

trivial solution f of the equation (5) satisfies

mesð�ðfÞ \�ðfðkÞÞÞ � minf2�; �=�ðA0Þg, where k

is a positive integer.

Theorem D. Under the hypothesis of Theo-

rem A, we have mes�ðEðkÞÞ � minf2�; �=�ðAÞg,
where k is a positive integer.

Based on these results, we shall do some further

researches in this direction. Our main purpose of

this paper is to investigate the radial distributions

of the Julia sets of Newton’s method of entire

solutions of differential equation (1), that is, we

shall study the radial distributions of Julia sets of

the meromorphic solutions of Riccati equation (3).

First of all, we consider the complex dynamical

properties of solutions to second order linear differ-

ential equations with polynomial coefficients and

obtain the following two remarks.

Remark 1.1. Suppose that pðzÞ is a noncon-

stant polynomial with degree n, and u is a non-

trivial solution of differential equation

u00 þ pðzÞu ¼ 0;ð6Þ

then mes�ðuÞ � 2�
nþ2. In fact, by Lemma 2.8 in

section 2 every nontrivial solution u of (6) is entire

with order 1þ n=2. Applying Lemma 2.6 to u, then

there exists an angular domain �ð�1; �2Þ with �2 �
�1 � 2�=ðnþ 2Þ such that ��ðuÞ ¼ �ðuÞ for any

� 2 ð�1; �2Þ. Finally, by Lemma 2.5, we have for

any � 2 ð�1; �2Þ, arg z ¼ � is a radial distribution of

JðuÞ. Thus, we get our assertion.

Remark 1.2. Suppose that u is a nontrivial

solution of equation (6) and that f is the Newton’s

method of u, then for any � 2 Ĉ, where bC is the

extended complex plane, we have �ð�; fÞ ¼ 0.

Clearly, the Newton’s method f of u satisfies the

Riccati equation

f 0ðzÞ þ pðzÞðfðzÞ � zÞ2 ¼ 0;ð7Þ

where pðzÞ is a nonconstant polynomial. By the

work of Wittich [18, pp. 73–80], the solutions of (7)

are meromorphic in the complex plane, and every

non-rational solution has order of growth �ðfÞ ¼
1þ n=2, where the non-negative integer n depends

on the coefficients pðzÞ only. Since pðzÞ 6� 0, then

for any constant � 2 Ĉ, pðzÞð�� zÞ2 6� 0. Thus, by

Lemma 2.7, we have �ð�; fÞ ¼ 0 for any � 2 Ĉ.

For the solutions of differential equations with

transcendental coefficients, we have the results

below.

Theorem 1.1. Suppose that f is transcen-

dental meromorphic solution of Riccati equation

(3), where AðzÞ is a transcendental entire func-

tion with finite order �ðAÞ. Then mes�ðfÞ �
minf2�; �=�ðAÞg.

Example 1.1. It’s clear that entire function

fðzÞ ¼ zþ e�z satisfies Riccati equation (3), where

AðzÞ ¼ ez � e2z with �ðAÞ ¼ 1, by Theorem 1.1 we

have mes�ðfÞ � �. From [3, Section 5] we know

the lines y ¼ ð2n� 1Þ�; n 2 Z are in JðfÞ, thus

mes�ðfÞ ¼ 2� which coincides with our result.

Corollary 1.1. Suppose that u is a nontrivial

solution of linear differential equation (1), where

AðzÞ is transcendental entire function with finite

order �ðAÞ, and u=u0 is transcendental meromor-

phic. Then the Newton’s method f of u satisfies

mes�ðfÞ � minf2�; �=�ðAÞg.
In the value distribution theory of entire

functions, Brück’s conjecture [6] is still an open

question, and it has close relation to the follow-

ing nonhomogeneous complex linear differential

equation,

f 0 þ epðzÞf ¼ 1;ð8Þ

where pðzÞ is an entire function. It’s known that

every nontrivial solution of (8) is of infinite order;

see [8]. Using the same method in the proof of

Theorem 1.1, we can obtain a result about the

radial distributions of the Julia sets of solutions

of (8).

Theorem 1.2. Suppose that f is a transcen-

dental entire solution of equation (8), then

mes�ðfÞ � minf2�; �=�ðepðzÞÞg.
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2. Preliminary lemmas. We recall the

Nevanlinna characteristic in an angle firstly;

see [7]. We set

�ð�; �; rÞ ¼ fz : z 2 �ð�; �Þ; jzj < rg;
�ðr; �; �Þ ¼ fz : z 2 �ð�; �Þ; jzj � rg

and denote by �ð�; �Þ the closure of �ð�; �Þ. Let

gðzÞ be meromorphic on the angle �ð�; �Þ, where

� � � 2 ð0; 2��. Following [7], we define

A�;�ðr; gÞ ¼
w

�

Z r

1

1

tw
�
tw

r2w

� �
� flogþ jgðtei�Þj þ logþ jgðtei�Þjg

dt

t
;

B�;�ðr; gÞ ¼
2w

�rw

Z �

�

logþ jgðrei�Þj sinwð�� �Þd�;

C�;�ðr; gÞ ¼ 2
X

1<jbnj<r

1

jbnjw
�
jbnjw

r2w

� �
sinwð�n � �Þ;

where w ¼ �=ð� � �Þ, and bn ¼ jbnjei�n are poles of

gðzÞ in �ð�; �Þ appearing according to their multi-

plicities. The Nevanlinna angular characteristic is

defined as

S�;�ðr; gÞ ¼ A�;�ðr; gÞ þB�;�ðr; gÞ þ C�;�ðr; gÞ:

In particular, we denote the order of S�;�ðr; gÞ by

��;�ðgÞ ¼ lim sup
r!1

logS�;�ðr; gÞ
log r

:

Set Mðr;�ð�; �Þ; gÞ ¼ sup�	�	� jgðrei�Þj, then

we define the sectorial, respectively radial, order

of growth for entire function gðzÞ, as

��;"ðgÞ ¼ lim sup
r!1

logþ logþMðr;�ð�� "; �þ "Þ; gÞ
log r

;

��ðgÞ ¼ lim
"!0

��;"ðgÞ:

Equivalently, for � 2 ½0; 2�Þ, ��ðgÞ can also be

defined as

��ðgÞ ¼ lim sup
r!1

logþ logþ jgðrei�Þj
log r

:

The following lemma shows some estimates

for the logarithmic derivative of functions being

analytic in an angle. Before this, we recall the

definition of an R-set; for reference, see [12]. Set

Bðzn; rnÞ ¼ fz : jz� znj < rng. If
P1

n¼1 rn <1 and

zn !1, then [1n¼1Bðzn; rnÞ is called an R-set.

Clearly, the set fjzj : z 2 [1n¼1Bðzn; rnÞg is of finite

linear measure.

Lemma 2.1 ([10]). Let z ¼ rei ; r0 þ 1 < r

and � 	  	 �, where 0 < � � � 	 2�. If gðzÞ is

meromorphic in �ðr0; �; �Þ with ��;�ðgÞ <1, then

there exist K > 0 and M > 0 depending only on g

and �ðr0; �; �Þ, and not depending on z, such that

g0ðzÞ
gðzÞ

���� ���� 	 KrMðsin kð � �ÞÞ�2

for all z 2 �ðr0; �; �Þ outside an R-set D, where k ¼
�=ð� � �Þ.

Lemma 2.2 ([20, 23]). Let fðzÞ be a tran-

scendental meromorphic function with lower order

�ðfÞ <1 and order 0 < �ðfÞ 	 1. Then, for any

positive number 	 with �ðfÞ 	 	 	 �ðfÞ and any set

H of finite measure, there exists a sequence frng
satisfies

(1) rn 62 H; limn!1 rn=n ¼ 1;

(2) lim infn!1 logT ðrn; fÞ= log rn � 	;

(3) T ðr; fÞ < ð1þ oð1ÞÞð2t=rnÞ	T ðrn=2; fÞ; t 2
½rn=n; nrn�;

(4) t�	�"nT ðt;fÞ 	 2	þ1r�	�"nn T ðrn;fÞ; 1	 t 	 nrn;
"n ¼ ðlognÞ�2.

Such frng is called a sequence of Pólya peaks of

order 	 outside H. The following lemma, which is

related to Pólya peaks, is called the spread relation;

see [1].

Lemma 2.3 ([1]). Let fðzÞ be a transcenden-

tal meromorphic function with positive order and

finite lower order, and has a deficient value a 2 bC.

Then, for any sequence of Pólya peaks frng of order

	 > 0, �ðfÞ 	 	 	 �ðfÞ, and any positive function

�ðrÞ ! 0 as rn !1, we have

lim inf
rn!1

mesD�ðrn; aÞ � min 2�;
4

	
arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ða; fÞ

2

r( )
;

where

D�ðr; aÞ ¼
�
� 2 ½0; 2�Þ : logþ

1

jfðrei�Þ � aj

> �ðrÞT ðr; fÞ
�
; a 2 C

and

D�ðr;1Þ ¼ f� 2 ½0; 2�Þ : logþ jfðrei�Þj
> �ðrÞT ðr; fÞg:

We call W a hyperbolic domain if bCnW
contains at least three points, where bC is the

extended complex plane. For an a 2 CnW , define

CW ðaÞ ¼ inff	W ðzÞjz� aj : 8z 2Wg, where 	W ðzÞ is

the hyperbolic density on W . It is well known that if
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every component of W is simply connected, then

CW ðaÞ � 1=2; see [23, p. 84]. For a finite num-

ber a 2 JðfÞ, if there is a component U in F ðfÞ
such that CUðaÞ > 0, then we call CF ðfÞðaÞ > 0,

where fðzÞ is a transcendental meromorphic func-

tion in C.

Lemma 2.4 ([24, Lemma 2.2]). Let fðzÞ be

analytic in �ðr0; �1; �2Þ, U be a hyperbolic domain,

and f : �ðr0; �1; �2Þ ! U. If there exists a point a 2
@Unf1g such that CUðaÞ > 0, then there exists a

constant d > 0 such that, for sufficiently small " > 0,

we have

jfðzÞj ¼ OðjzjdÞ; z!1; z 2 �ðr0; �1 þ "; �2 � "Þ:

Lemma 2.5. Let fðzÞ be a transcendental

entire function. If ��ðfÞ ¼ �ðfÞ, then arg z ¼ � is a

radial distribution of the Julia set of f.

Proof. If JðfÞ ¼ C, it’s obvious. If JðfÞ 6¼ C,

suppose that arg z ¼ � is not a radial distribution of

JðfÞ. Since the complement of �ðfÞ is open set,

then there exists an open interval ð�; �Þ 2 ½0; 2�Þ
satisfy ð�; �Þ \�ðfÞ ¼ ; and �ðr; �; �Þ \ JðfÞ ¼ ;.
Thus, there exists an unbounded Fatou component

U of F ðfÞ such that �ðr; �; �Þ 
 U. By the above

Lemma 2.4, we have jfðzÞj ¼ OðjzjdÞ, z 2 �ðr; �; �Þ,
where d is a positive constant. This contradicts to

��ðfÞ ¼ �ðfÞ ¼ lim supr!1
logþ jfðrei�Þj

log r ¼ 1 since f is

transcendental. �

Lemma 2.6 ([17, Corollary 2.3.6]). If gðzÞ is

an entire function with 0 < �ðgÞ <1, then there

exists an angular domain �ð�1; �2Þ with �2 � �1 �
�=�ðgÞ such that ��ðgÞ ¼ �ðgÞ for any � 2 ð�1; �2Þ.

Lemma 2.7 ([12, Theorem 9.1.12]). Let fðzÞ
be a meromorphic solution of Riccati differential

equations

f 0 ¼ a0ðzÞ þ a1ðzÞf þ a2ðzÞf2ð9Þ

with meromorphic coefficients such that T ðr; aiÞ ¼
Sðr; fÞ holds for i ¼ 0; 1; 2. Then �ð�; fÞ ¼ 0 for

� ¼ 1 and for all � 2 C such that a0ðzÞ þ �a1ðzÞ þ
�2a2ðzÞ 6� 0. If a0ðzÞ þ �a1ðzÞ þ �2a2ðzÞ � 0, then

�ð�; fÞ ¼ 1.

Lemma 2.8 ([12, Proposition 5.1]). All non-

trivial solution f of differential equation f 00 þ
pðzÞf ¼ 0, where pðzÞ is a polynomial with degree

n, has the order of growth �ðfÞ ¼ nþ2
2 .

Lemma 2.9 ([4, Corollary]). If g is an entire

map and Ng is its Newton’s method, then JðNgÞ is

connected.

Since the Julia set is closed, it is connected if

and only if all the Fatou components are simply

connected.

3. Proof of Theorem 1.1. The arguments

of this proof is referred to that in [11], but should

make some essential modifications since we are

treating with nonlinear case. In fact, we choose

a new �ðrÞ function and properly estimate the

module of item
f

ðf�zÞ2 . In the following, we shall

obtain the assertion by reduction to contradiction.

Assume that

mes�ðfÞ < 
 ¼ minf2�; �=�ðAÞgð10Þ

and set

� :¼ 
 �mes�ðfÞ > 0:ð11Þ

Since �ðfÞ is closed, clearly S ¼ ð0; 2�Þn�ðfÞ is

open, so it consists of at most countably many open

intervals. We can choose finitely many open inter-

vals Ii ¼ ð�i; �iÞ ði ¼ 1; 2; � � � ;mÞ satisfying ½�i; �i� 

S and mesðSn [mi¼1 IiÞ < �=4. For the angular do-

main �ð�i; �iÞ, it is easy to see that

ð�i; �iÞ \�ðfÞ ¼ ;; �ðr; �i; �iÞ \ JðfÞ ¼ ;

for sufficiently large r. This implies that, for each

i ¼ 1; 2; � � � ;m, there exist corresponding ri and

unbounded Fatou component Ui of F ðfÞ such that

�ðr; �i; �iÞ 
 Ui. Since the poles of f are in the set

JðfÞ; see [5, Section 2.1], then f does not have poles

in �ðr; �i; �iÞ. Thus the mapping f : �ðr; �i; �iÞ !
fðUiÞ is analytic. Moreover, F ðfÞ is invariant under

f, by Lemma 2.9, all components of fðUiÞ are

simply connected, then applying Lemma 2.4 to f

in every �ðr; �i; �iÞ, there exists a positive constant

d such that, for z 2 [mi¼1�ðr; �i þ "; �i � "Þ, we have

jfðzÞj ¼ OðjzjdÞ;ð12Þ

as jzj ! 1, " is sufficiently small.

Applying Lemma 2.3 to AðzÞ, we have a Pólya

peak frjg of order �ðAÞ with all rj =2 H. Since AðzÞ is

transcendental entire function, it follows that the

Nevanlinna deficient �ð1; AÞ ¼ 1. By Lemma 2.3,

for the Pólya peak frjg, we have

lim inf
rj!1

mesðD�ðrj;1ÞÞ � �=�ðAÞ;ð13Þ

where the function �ðrÞ is defined by

�ðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

log r

mðr;AÞ

s
ð14Þ

and mðr; AÞ is the proximation function of AðzÞ.
Obviously, �ðrÞ is positive and limr!1�ðrÞ ¼ 0.
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For the sake of simplicity, we denote D�ðrj;1Þ by

DðrjÞ in the following part.

Therefore, for sufficiently large j, we have

mesðDðrjÞÞ >
�

�ðAÞ �
�

4
:ð15Þ

Clearly,

mesðDðrjÞ \ SÞ ¼ mesðDðrjÞnð�ðfÞ \DðrjÞÞÞ
� mesðDðrjÞÞ �mes�ðfÞ

>
3�

4
> 0:ð16Þ

Then, for each j, we have

mesðDðrjÞ \ ð[mi¼1IiÞÞ ¼ mesðDðrjÞ \ SÞð17Þ

�mesðDðrjÞ \ ðSn [mi¼1 IiÞÞ >
3�

4
�
�

4
¼
�

2
:

Thus, there exists an open interval Ii0 ¼ ð�; �Þ 

[mi¼1Ii 
 S such that, for infinitely many j,

mesðDðrjÞ \ ð�; �ÞÞ >
�

2m
:ð18Þ

Without loss of generality, we can assume that (18)

holds for all j. It follows from the definition of DðrjÞ
and (18) thatZ

Fj

logþ jAðrjei�Þjd� � mesðFjÞ�ðrjÞmðrj; AÞð19Þ

�
�

4m
�ðrjÞmðrj; AÞ;

where � 2 Fj :¼ ð�þ 2"; � � 2"Þ \DðrjÞ. On the

other hand, by Lemma 2.4 and combining (3) and

(18) leads toZ
Fj

logþ jAðrjei�Þjd�ð20Þ

	
Z
Fj

 
logþ

f 0ðrjei�Þ
fðrjei�Þ

���� ����
þ logþ

fðrjei�Þ
ðfðrjei�Þ � rjei�Þ2

�����
�����
!
d�þOð1Þ

	
Z
Fj

�
logþ

f 0ðrjei�Þ
fðrjei�Þ

���� ����þ 3 logþ jfðrjei�Þj

þ 2 logþ rj

�
d�þOð1Þ

	 mesðFjÞOðlog rjÞ
	 mesðFjÞc0�2ðrjÞmðrj; AÞ;

where c0 is a positive constant. From (19) and (20),

we have

1 	 c0�ðrjÞ;ð21Þ
which contradicts to the fact �ðrjÞ ! 0 as j!1.

Thus, we complete the proof.
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