34. A Characteristic Property of L_{ρ} Spaces ($\boldsymbol{p}>1$). II

By Koji Honda
Muroran Institute of Technology
(Comm. by K. Kunugi, m.J.A., March 12, 1960)

In the previous paper, ${ }^{1)}$ we gave a characteristic property of $L_{p^{-}}$ spaces $(p>1)$. The purpose of this paper is to give another characterization.

In the case of $L_{p}(p>1)$, the transformation (1)

$$
T x(t)=|x(t)|^{p-1} \cdot \operatorname{sgn} x(t)
$$

is a one-to-one correspondence between L_{p} and $L_{q}(q=p / p-1)$, and the functional (called a modular)

$$
\begin{equation*}
m(x)=\int_{0}^{1}(T \xi x, x) d \xi=\frac{1}{p} \int_{0}^{1}|x(t)|^{p} d t \tag{2}
\end{equation*}
$$

is well defined. Putting

$$
\begin{equation*}
\|x\|=\inf _{m(\xi x) \leq 1} \frac{1}{|\xi|} \tag{3}
\end{equation*}
$$

we get a norm of L_{p} and

$$
\|x\|=\left(\frac{1}{p} \int_{0}^{1}|x(t)|^{p} d t\right)^{\frac{1}{p}} \quad\left(x \in L_{p}\right)
$$

The conjugate norm of it is

$$
\begin{equation*}
\|\bar{x}\|=\sup _{\|x\| \leq 1}|(\bar{x}, x)|=p^{\frac{1}{p}}\left(\int_{0}^{1}|\bar{x}(t)|^{q} d t\right)^{\frac{1}{q}} \quad\left(\bar{x} \in L_{q}\right) . \tag{4}
\end{equation*}
$$

Then, it is easily seen that the transformation (1) is norm-preserving:

$$
\|x\|=\|y\| \text { in } L_{p} \text { implies }\|T x\|=\|T y\| \text { in } L_{q}
$$

In this paper, we will prove that this property of T is characteristic for $L_{p}(p>1)$ among such Banach spaces that have some transformations like (1), namely, conjugately similar spaces.

Definition. A universally continuous semi-ordered linear space R is said to be conjugately similar, ${ }^{2)}$ if R is reflexive and there exists a one-to-one transformation T from R onto its conjugate space \bar{R} with the following properties:
(i) $T(-a)=-T a \quad(a \in R)$;
(ii) $T a \leqq T b$ if and only if $a \leqq b \quad(a, b \in R)$;
(iii) $(T a, a)=0$ implies $a=0$.

The above transformation T is called a conjugately similar correspondence.

[^0]In the conjugately similar space, the modular $m(x)$ and the norm $\|x\|$ are defined by the formulas (2) and (3). It is known that, for the conjugate norm (4), we have

$$
\|\bar{x}\|=\inf _{\xi>0} \frac{1+\bar{m}(\xi \bar{x})}{\xi} \quad(\bar{x} \in \bar{R})
$$

where

$$
\begin{equation*}
\bar{m}(\bar{x})=\sup _{x \in R}\{(\bar{x}, x)-m(x)\} .^{3)} \tag{5}
\end{equation*}
$$

The correspondence T has the following properties:

$$
\begin{equation*}
m(x)+\bar{m}(T x)=(T x, x) ; \tag{6}
\end{equation*}
$$

(7) $x \frown y=0$ implies $T x \frown T y=0$;
(8) $x \frown y=0$ implies $m(x+y)=m(x)+m(y)$
and $\quad \bar{m}(T(x+y))=\bar{m}(T x)+\bar{m}(T y)$.
The fact we are going to prove in this paper is the following
Theorem. Let R be a universally continuous semi-ordered linear space which has at least two linearly independent elements. If there exists a conjugately similar correspondence T which is norm-preserving for the norms defined by (3) and (4), then we can find a number $p>1$ such that

$$
T \xi x=\xi^{p-1} T x
$$

for any number $\xi>0$ and $x \in R$.
Before proceeding to the proof, we state the following
Lemma. Let R be a conjugately similar space with its conjugately similar correspondence T. For the modulars defined by (2) and (5), if there exists a positive number γ such that, for any $x \in R$,
(*)

$$
\bar{m}(T x)=\gamma \cdot m(x),
$$

then $T \xi x=\xi^{r} T x$ for every $x \in R$ and $\xi>0$.
Proof. Since R is conjugately similar, for any $a \in R,(T \xi a, a)$ is a continuous function of ξ. ${ }^{4)}$
Setting $\Phi(\xi)=m(\xi a)$, by (2) and (6), we have

$$
\frac{d}{d \xi} \Phi(\xi)=\frac{\gamma+1}{\xi} \Phi(\xi)
$$

As the solution of the above differential equation, we have $m(\xi \alpha)$ $=\xi^{r+1} m(\alpha)$ and hence $T \xi x=\xi^{r} \cdot T x$. q.e.d.

Proof of Theorem. It is enough only to prove the existence of a positive number γ which satisfies the condition (*) in the above lemma. Since the modulars m and \bar{m} are simple and finite, ${ }^{5)}$ we have that $\|x\|=1$ is equivalent to $m(x)=1$ and hence
3) This is called the conjugate modular of $m(x)$.
4) See H. Nakano [2, §60, Th. 60.2].
5) m is said to be simple, if $m(x)=0$ implies $x=0$ and is said to be finite, if $m(\xi x)<+\infty$ for every ξ and $x \in R$. Also, see H. Nakano [2, $\S 60$, Th. 60.10].

$$
\|x\|=1 \text { implies }\|T x\|=1+\bar{m}(T x) .{ }^{6)}
$$

Therefore, we may set $\bar{m}(T x)=\gamma$ for every $\|x\|=1$.
We may prove the theorem as for two cases that R has not discrete elements and has complete system of discrete elements, ${ }^{7)}$ because R is a direct sum of the former and the latter.
I. Let R be non-atomic.

If $m(a)=n$ (positive integer), there exist mutually orthogonal positive elements such that

$$
|a|=a_{1}+a_{2}+\cdots+a_{n} \quad \text { and } \quad m\left(a_{i}\right)=1 \quad(i=1,2, \cdots, n) .
$$

Hence we have $\bar{m}(T a)=\sum_{i=1}^{n} \bar{m}\left(T a_{i}\right)=n \cdot \gamma$.
Next, let a be a non-complete element and be $m(a)=1 / n$ (n is a positive integer). Then, we can find $a_{1}, a_{2}, \cdots, a_{n-1}$ and c of R with the following properties:

1) $\quad a \frown a_{i}=0(i=1,2, \cdots, n-1), a_{i} \frown a_{j}=0$ if $i \neq j$ and $c \frown\left(a+a_{1}+a_{2}+\cdots+a_{n-1}\right)=0 ;$
2) $m\left(a_{i}\right)=1 / n(i=1,2, \cdots, n-1)$ and $m(c)=(n-1) / n$.

Then, we have

$$
\begin{aligned}
& \bar{m}(T a)=\bar{m}(T(a+c))-\bar{m}(T c)=\gamma-\bar{m}(T c) \\
& \bar{m}\left(T a_{i}\right)=\bar{m}\left(T\left(a_{i}+c\right)\right)-\bar{m}(T c)=\gamma-\bar{m}(T c),
\end{aligned}
$$

and
because $m(a+c)=1$ and $m\left(a_{i}+c\right)=1$.
Therefore

$$
\begin{aligned}
\bar{m}(T a) & =\frac{1}{n}\left\{\bar{m}(T a)+\sum_{i=1}^{n-1} \bar{m}\left(T a_{i}\right)\right\} \\
& =\frac{1}{n}\left\{\bar{m}\left(T\left(a+a_{1}+a_{2}+\cdots+a_{n-1}\right)\right)\right\}=\gamma / n
\end{aligned}
$$

because $m\left(a+a_{1}+a_{2}+\cdots+a_{n-1}\right)=1$. Thus, we have that $m(a)=1 / n$ implies $\bar{m}(T a)=\gamma / n$, if a is not a complete element.

If a is a complete element and $m(a)=1 / n$, we have such a partition that $|a|=a_{1}+a_{2}, a_{i}>0, m\left(a_{i}\right)=1 / 2 n$ and $a_{1} \frown a_{2}=0$ and hence $\bar{m}(T a)=\bar{m}\left(T a_{1}\right)+\bar{m}\left(T a_{2}\right)=\gamma / n$, because a_{i} is not complete elements.

When $m(a)$ is a rational number k, we have $\bar{m}(T a)=k \cdot \gamma$ by the same methods as above. Therefore, since $T a$ is continuous with respect to order-topology, ${ }^{8)}$ we have $\bar{m}(T a)=\gamma \cdot m(a)$ for any element $a \in R$.
II. Let R be a discrete space with its discrete base $\{e\}_{\lambda \in \Lambda}$:

$$
m\left(e_{\lambda}\right)=1(\lambda \in \Lambda) \text { and } e_{\lambda} \frown e_{\mu}=0(\lambda \neq \mu ; \lambda, \mu \in \Lambda)
$$

where Λ is a set of indices.

[^1]For any number ξ and element $e_{\lambda}, T \xi e_{\lambda}$ is a discrete element in \bar{R}, because ξe_{λ} is a discrete element in the conjugate similar space R. Therefore, there exists an increasing continuous function $\varphi_{e_{\lambda}}(\xi)$ of ξ depending on e_{λ} such that $T \xi e_{\lambda}=\varphi_{e_{\lambda}}(\xi) T e_{\lambda}$. But then by the assumption, i.e. $\left\|e_{\lambda}\right\|=\left\|e_{\mu}\right\|$ implies $\left\|T \xi e_{\lambda}\right\|=\left\|T \xi e_{\mu}\right\|$ for every $\xi>0, \lambda, \mu \in \Lambda$, we know $\varphi_{e_{\lambda}}(\xi)$ is independent of $\lambda \in \Lambda$, and hence it follows that ($T \xi e_{\lambda}$, e_{λ}) is independent of $\lambda \in \Lambda$. Therefore, by (2) and (6) we have

$$
m\left(\xi e_{\lambda}\right)=m\left(\xi e_{\mu}\right) \quad \text { and } \quad \bar{m}\left(T \xi e_{\lambda}\right)=\bar{m}\left(T \xi e_{\mu}\right)
$$

for every positive number ξ and $\lambda, \mu \in \Lambda$.
Now, we will prove that

$$
\begin{equation*}
\bar{m}\left(T \xi e_{\lambda}\right)=r \cdot m\left(\xi e_{\lambda}\right) \quad(\xi>0) . \tag{9}
\end{equation*}
$$

For this purpose, define a non-decreasing continuous function $f(\rho)$ as $m\left(\xi e_{\lambda}\right)=\rho$ implies $\bar{m}\left(T \xi e_{\lambda}\right)=f(\rho) \cdot \gamma$.

Then, we have

$$
\begin{array}{lll}
f(\rho)+f(1-\rho)=1 & \text { if } & 0 \leqq \rho \leqq 1 \\
f(2 \rho)=2 f(\rho) & \text { if } & \rho \geqq 0 . \tag{11}
\end{array}
$$

To prove (10), take $e_{\lambda}, e_{\mu}(\lambda \neq \mu)$ and ρ such that $0<\rho<1$. Then, if $m\left(\alpha e_{\lambda}\right)=\rho$, we can find $\beta>0$ such that $m\left(\beta e_{\mu}\right)=1-\rho$. By (8), we have

$$
m\left(\alpha e_{\lambda}+\beta e_{\mu}\right)=m\left(\alpha e_{\lambda}\right)+m\left(\beta e_{\mu}\right)=1
$$

and

$$
\begin{aligned}
\bar{m}\left(T\left(\alpha e_{\lambda}+\beta e_{\mu}\right)\right) & =\bar{m}\left(T \alpha e_{\lambda}\right)+\bar{m}\left(T \beta e_{\mu}\right) \\
& =[f(\rho)+f(1-\rho)] \cdot \gamma .
\end{aligned}
$$

To prove (11), take an arbitrary $\rho>0$, and fix e_{λ} and $e_{\mu}(\lambda \neq \mu)$. Then, there exists $\alpha>0$ such that $m\left(\alpha\left(e_{\lambda}+e_{\mu}\right)\right)=2 \rho$, which implies that $m\left(\alpha e_{\lambda}\right)=m\left(\alpha e_{\mu}\right)=\rho$ and $\bar{m}\left(T \alpha e_{\lambda}\right)=\bar{m}\left(T \alpha e_{\mu}\right)=f(\rho) \cdot \gamma$. On the other hand, $\bar{m}\left(T \alpha\left(e_{\lambda}+e_{\mu}\right)\right)=f(2 \rho) \cdot \gamma$.

Hence it follows that $f(2 \rho)=2 f(\rho)$.
Since $f(\rho)$ is continuous, by (10) and (11), we have $f(\xi)=\xi$, which implies (9).

From the fact that every element x of R is represented as $x=\sum_{\lambda \in \Lambda} \alpha_{\lambda} e_{\lambda}$, it follows that $\bar{m}(T x)=\gamma \cdot m(x)$ for any $x \in R$.

Thus the proof is completed.
Remark 1. If R has at least three linearly independent elements, we can generalize the lemma's assumption (*) as "there exists a real function $g(\xi)$ such that $\bar{m}(T x)=g(m(x))$ for every $x \in R$ ". Because, the above assumption brings the fact that R has a unique indicatrix. ${ }^{9)}$

Remark 2. It is easily seen that the case of one-dimensional is exceptional.

In conclusion, I wish to express my sincere thanks to Prof. S. Yamamuro for his encouragement and kind advice.

[^2]
References

[1] K. Honda and S. Yamamuro: A characteristic property of spaces ($p>1$), Proc. Japan Acad., 35, no. 8, 446-448 (1959).
[2] H. Nakano: Modulared Semi-ordered Linear Spaces, Tokyo, Maruzen (1950).
[3] H. Nakano: Stetige lineare Funktionale auf dem teilweisegeordneten Modul, Jour. Fac. Sci. Imp. Univ. Tokyo, 4, 201-382 (1942).
[4] S. Yamamuro: On conjugate spaces of Nakano spaces, Trans. Amer. Math. Soc., 90, 291-311 (1959).

[^0]: 1) K. Honda and S. Yamamuro [1].
 2) Throughout this paper, notations and terminologies are according to H. Nakano [2].
[^1]: 6) See S. Yamamuro [4, Th. 3.2.1].
 7) An element $a \in R$ is said to be discrete, if for every element $x \in R$ such that $|x| \leqq|a|$ there exists a real number α for which $x=\alpha a$. A subset N of R is said to be complete in R, if $|x| \frown|y|=0$ for all $x \in N$ implies $y=0$. We say that R is discrete, if R has a complete system of discrete elements, and is non-atomic, if R has no discrete element.
 8) See 4).
[^2]: 9) See H. Nakano [3, Anhang II, Satz II.6].
