34. A Characteristic Property of L_{ρ} -Spaces (p>1). II

By Koji Honda

Muroran Institute of Technology

(Comm. by K. KUNUGI, M.J.A., March 12, 1960)

In the previous paper,¹⁾ we gave a characteristic property of L_p -spaces (p>1). The purpose of this paper is to give another characterization.

In the case of L_p (p>1), the transformation (1) $Tx(t) = |x(t)|^{p-1} \cdot \operatorname{sgn} x(t)$

is a one-to-one correspondence between L_p and L_q (q=p/p-1), and the functional (called a modular)

(2)
$$m(x) = \int_{0}^{1} (T\xi x, x) d\xi = \frac{1}{p} \int_{0}^{1} |x(t)|^{p} dt$$

is well defined. Putting

$$(3) ||x|| = \inf_{m(\xi x) \le 1} \frac{1}{|\xi|},$$

we get a norm of L_p and

$$||x|| = \left(\frac{1}{p}\int_{0}^{1} |x(t)|^{p} dt\right)^{\frac{1}{p}}$$
 $(x \in L_{p}).$

The conjugate norm of it is

$$(4) \qquad \qquad ||\overline{x}|| = \sup_{\|x\| \leq 1} |(\overline{x}, x)| = p^{\frac{1}{p}} \left(\int_{0}^{1} |\overline{x}(t)|^{q} dt \right)^{\frac{1}{q}} \quad (\overline{x} \in L_{q}).$$

Then, it is easily seen that the transformation (1) is norm-preserving: ||x|| = ||y|| in L_p implies ||Tx|| = ||Ty|| in L_q .

In this paper, we will prove that this property of T is characteristic for L_p (p>1) among such Banach spaces that have some transformations like (1), namely, conjugately similar spaces.

Definition. A universally continuous semi-ordered linear space R is said to be *conjugately similar*²⁾ if R is reflexive and there exists a one-to-one transformation T from R onto its conjugate space \overline{R} with the following properties:

(i) T(-a) = -Ta $(a \in R);$

(ii) $Ta \leq Tb$ if and only if $a \leq b$ $(a, b \in R)$;

(iii) (Ta, a)=0 implies a=0.

The above transformation T is called a *conjugately similar correspondence*.

¹⁾ K. Honda and S. Yamamuro [1].

²⁾ Throughout this paper, notations and terminologies are according to H. Nakano [2].

K. HONDA

In the conjugately similar space, the modular m(x) and the norm ||x|| are defined by the formulas (2) and (3). It is known that, for the conjugate norm (4), we have

$$\|\overline{x}\| = \inf_{\varepsilon > 0} \frac{1 + \overline{m}(\varepsilon \overline{x})}{\varepsilon} \qquad (\overline{x} \in \overline{R}),$$

where

(5)
$$\overline{m}(\overline{x}) = \sup_{x \in \mathbb{R}} \{ (\overline{x}, x) - m(x) \}^{3}$$

The correspondence T has the following properties:

(6)
$$m(x) + \overline{m}(Tx) = (Tx, x);$$

(7) $x \frown y = 0$ implies $Tx \frown Ty = 0$; (8) $x \frown y = 0$ implies m(x+y) = m(x) + m(y)

and
$$\overline{m}(T(x+y)) = \overline{m}(Tx) + \overline{m}(Ty).$$

The fact we are going to prove in this paper is the following

Theorem. Let R be a universally continuous semi-ordered linear space which has at least two linearly independent elements. If there exists a conjugately similar correspondence T which is norm-preserving for the norms defined by (3) and (4), then we can find a number p>1 such that

$$T\xi x = \xi^{p-1}Tx$$

for any number $\xi > 0$ and $x \in R$.

Before proceeding to the proof, we state the following

Lemma. Let R be a conjugately similar space with its conjugately similar correspondence T. For the modulars defined by (2) and (5), if there exists a positive number γ such that, for any $x \in R$,

(*)
$$\overline{m}(Tx) = \gamma \cdot m(x),$$

then $T\xi x = \xi^{T}Tx$ for every $x \in R$ and $\xi > 0$.

Proof. Since R is conjugately similar, for any $a \in R$, $(T \xi a, a)$ is a continuous function of ξ .⁴⁾

Setting $\Phi(\xi) = m(\xi a)$, by (2) and (6), we have

$$rac{d}{d\xi} \varPhi(\xi) = rac{\gamma+1}{\xi} \varPhi(\xi).$$

As the solution of the above differential equation, we have $m(\xi a) = \xi^{r+1}m(a)$ and hence $T\xi x = \xi^r \cdot Tx$. q.e.d.

Proof of Theorem. It is enough only to prove the existence of a positive number γ which satisfies the condition (*) in the above lemma. Since the modulars m and \overline{m} are simple and finite,⁵⁾ we have that

||x||=1 is equivalent to m(x)=1 and hence

³⁾ This is called the conjugate modular of m(x).

⁴⁾ See H. Nakano [2, §60, Th. 60.2].

⁵⁾ *m* is said to be *simple*, if m(x)=0 implies x=0 and is said to be *finite*, if $m(\xi x) < +\infty$ for every ξ and $x \in R$. Also, see H. Nakano [2, §60, Th. 60.10].

||x|| = 1 implies $||Tx|| = 1 + \overline{m}(Tx).^{6}$

Therefore, we may set $\overline{m}(Tx) = \gamma$ for every ||x|| = 1.

We may prove the theorem as for two cases that R has not discrete elements and has complete system of discrete elements,⁷ because R is a direct sum of the former and the latter.

I. Let R be non-atomic.

No. 3]

If m(a) = n (positive integer), there exist mutually orthogonal positive elements such that

 $|a|=a_1+a_2+\cdots+a_n$ and $m(a_i)=1$ $(i=1, 2, \cdots, n)$. Hence we have $\overline{m}(Ta)=\sum_{i=1}^n \overline{m}(Ta_i)=n\cdot\gamma$.

Next, let a be a non-complete element and be m(a)=1/n (n is a positive integer). Then, we can find a_1, a_2, \dots, a_{n-1} and c of R with the following properties:

1)
$$a \frown a_i = 0$$
 $(i = 1, 2, \dots, n-1), a_i \frown a_j = 0$ if $i \neq j$ and $c \frown (a + a_1 + a_2 + \dots + a_{n-1}) = 0;$

2) $m(a_i)=1/n$ $(i=1, 2, \dots, n-1)$ and m(c)=(n-1)/n. Then, we have

$$\overline{m}(Ta) = \overline{m}(T(a+c)) - \overline{m}(Tc) = \gamma - \overline{m}(Tc)$$

and $\overline{m}(Ta_i) = \overline{m}(T(a_i+c)) - \overline{m}(Tc) = \gamma - \overline{m}(Tc)$, because m(a+c) = 1 and $m(a_i+c) = 1$. Therefore

$$\overline{m}(Ta) = \frac{1}{n} \left\{ \overline{m}(Ta) + \sum_{i=1}^{n-1} \overline{m}(Ta_i) \right\}$$
$$= \frac{1}{n} \{ \overline{m}(T(a+a_1+a_2+\cdots+a_{n-1})) \} = \gamma/n,$$

because $m(a+a_1+a_2+\cdots+a_{n-1})=1$. Thus, we have that m(a)=1/n implies $\overline{m}(Ta)=\gamma/n$, if a is not a complete element.

If a is a complete element and m(a)=1/n, we have such a partition that $|a|=a_1+a_2$, $a_i>0$, $m(a_i)=1/2n$ and $a_1 \frown a_2=0$ and hence $\overline{m}(Ta)=\overline{m}(Ta_1)+\overline{m}(Ta_2)=\gamma/n$, because a_i is not complete elements.

When m(a) is a rational number k, we have $\overline{m}(Ta) = k \cdot \gamma$ by the same methods as above. Therefore, since Ta is continuous with respect to order-topology,⁸⁾ we have $\overline{m}(Ta) = \gamma \cdot m(a)$ for any element $a \in R$.

II. Let R be a discrete space with its discrete base $\{e\}_{\lambda \in \Lambda}$: $m(e_{\lambda})=1$ ($\lambda \in \Lambda$) and $e_{\lambda} \frown e_{\mu}=0$ ($\lambda \neq \mu$; $\lambda, \mu \in \Lambda$)

where Λ is a set of indices.

8) See 4).

⁶⁾ See S. Yamamuro [4, Th. 3.2.1].

⁷⁾ An element $a \in R$ is said to be *discrete*, if for every element $x \in R$ such that $|x| \leq |a|$ there exists a real number x for which x = aa. A subset N of R is said to be *complete* in R, if |x| > |y| = 0 for all $x \in N$ implies y = 0. We say that R is *discrete*, if R has a complete system of discrete elements, and is *non-atomic*, if R has no discrete element.

K. HONDA

[Vol. 36,

For any number ξ and element e_{λ} , $T\xi e_{\lambda}$ is a discrete element in \overline{R} , because ξe_{λ} is a discrete element in the conjugate similar space R. Therefore, there exists an increasing continuous function $\varphi_{e_{\lambda}}(\xi)$ of ξ depending on e_{λ} such that $T\xi e_{\lambda} = \varphi_{e_{\lambda}}(\xi)Te_{\lambda}$. But then by the assumption, i.e. $||e_{\lambda}|| = ||e_{\mu}||$ implies $||T\xi e_{\lambda}|| = ||T\xi e_{\mu}||$ for every $\xi > 0$, $\lambda, \mu \in \Lambda$, we know $\varphi_{e_{\lambda}}(\xi)$ is independent of $\lambda \in \Lambda$, and hence it follows that $(T\xi e_{\lambda}, e_{\lambda})$ is independent of $\lambda \in \Lambda$. Therefore, by (2) and (6) we have

$$m(\xi e_{\lambda}) = m(\xi e_{\mu})$$
 and $\overline{m}(T\xi e_{\lambda}) = \overline{m}(T\xi e_{\mu})$

for every positive number ξ and $\lambda, \mu \in \Lambda$.

Now, we will prove that

$$(9) \qquad \qquad \overline{m}(T\xi e_{\lambda}) = \gamma \cdot m(\xi e_{\lambda}) \quad (\xi > 0).$$

For this purpose, define a non-decreasing continuous function $f(\rho)$ as $m(\xi e_{\lambda}) = \rho$ implies $\overline{m}(T\xi e_{\lambda}) = f(\rho) \cdot \gamma$.

Then, we have

(10)
$$f(\rho) + f(1-\rho) = 1 \quad \text{if} \quad 0 \leq \rho \leq 1$$

(11)
$$f(2\rho)=2f(\rho)$$
 if $\rho \ge 0$.

To prove (10), take e_{λ} , e_{μ} ($\lambda \neq \mu$) and ρ such that $0 < \rho < 1$. Then, if $m(\alpha e_{\lambda}) = \rho$, we can find $\beta > 0$ such that $m(\beta e_{\mu}) = 1 - \rho$. By (8), we have

and

$$\begin{array}{l} m(\alpha e_{\lambda} + \beta e_{\mu}) = m(\alpha e_{\lambda}) + m(\beta e_{\mu}) = 1 \\ \overline{m}(T(\alpha e_{\lambda} + \beta e_{\mu})) = \overline{m}(T\alpha e_{\lambda}) + \overline{m}(T\beta e_{\mu}) \\ = [f(\rho) + f(1-\rho)] \cdot \gamma. \end{array}$$

To prove (11), take an arbitrary $\rho > 0$, and fix e_{λ} and e_{μ} $(\lambda \neq \mu)$. Then, there exists $\alpha > 0$ such that $m(\alpha(e_{\lambda} + e_{\mu})) = 2\rho$, which implies that $m(\alpha e_{\lambda}) = m(\alpha e_{\mu}) = \rho$ and $\overline{m}(T\alpha e_{\lambda}) = \overline{m}(T\alpha e_{\mu}) = f(\rho) \cdot \gamma$. On the other hand, $\overline{m}(T\alpha(e_{\lambda} + e_{\mu})) = f(2\rho) \cdot \gamma$.

Hence it follows that $f(2\rho)=2f(\rho)$.

Since $f(\rho)$ is continuous, by (10) and (11), we have $f(\xi) = \xi$, which implies (9).

From the fact that every element x of R is represented as $x = \sum_{\lambda \in A} \alpha_{\lambda} e_{\lambda}$, it follows that $\overline{m}(Tx) = \gamma \cdot m(x)$ for any $x \in R$.

Thus the proof is completed.

Remark 1. If R has at least three linearly independent elements, we can generalize the lemma's assumption (*) as "there exists a real function $g(\xi)$ such that $\overline{m}(Tx)=g(m(x))$ for every $x \in R$ ". Because, the above assumption brings the fact that R has a unique indicatrix.⁹⁾

Remark 2. It is easily seen that the case of one-dimensional is exceptional.

In conclusion, I wish to express my sincere thanks to Prof. S. Yamamuro for his encouragement and kind advice.

⁹⁾ See H. Nakano [3, Anhang II, Satz II.6].

References

- [1] K. Honda and S. Yamamuro: A characteristic property of spaces (p>1), Proc. Japan Acad., **35**, no. 8, 446-448 (1959).
- [2] H. Nakano: Modulared Semi-ordered Linear Spaces, Tokyo, Maruzen (1950).
- [3] H. Nakano: Stetige lineare Funktionale auf dem teilweisegeordneten Modul, Jour. Fac. Sci. Imp. Univ. Tokyo, 4, 201-382 (1942).
- [4] S. Yamamuro: On conjugate spaces of Nakano spaces, Trans. Amer. Math. Soc., 90, 291-311 (1959).