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32. Correspondence of Sets on the Boundaries of
Riemann Surfaces

By Zenjiro KURAMOCHI
Mathematical Institute, Hokkaido University
(Comm. by K. KUNUGI, M.J.A., March 12, 1960)

Let D, be a domain in the z-plane. Let f(2)=u(z)+iv(z): w=u-+1v

be a topological mapping of D, into D, in the w-plane. If 1@ :?l:)]l <M
dz|->0

in D, and f(2) is a quasi-conformal mapping almost everywhere in D,
whose dilatation quotient <K in D,, we say that f(2) is an almost
quasi-conformal mapping and abbreviate it to A.Q.C. Let U(z) be a
harmonic function in D, such that the Dirichlet integral D(U(?)) is
finite and let f(z)=w be an A.Q.C. with dilatation quotient < K. Then

z%” U(2))<D(U(fw))) <K D(U()). (1)

Example. Let D and D’ be simply connected domains whose

C'D, DE, EF, FA, where A=ae'"" %) 4 g, B=—_r+iasine,

+1iBsin6,, C=—r+ifsinf,, D=—r, E=0, F=ae'*"?, D'=r, C+C'
=2F, B+ B'=2A.
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Put »(z)=y, EQQFJ:y cot 9, in CDEF

and v(R)=y, u(—z)zﬂz(y—h) cotd,, h=asin@, in CFAB.
Then |dw|=(1+2 cot? 4, (sin (v +2¢)))¥|dz|, where
dr=dzcos ¢, dy=dzsing and «lf:%—-(?i.
Then we see that the above mapping is quasi-conformal in the interior

of CDEF and in the interior of CFAB and is an A.Q.C. in the closure
of ABDEF.

Let R be a Riemann surface with positive boundary and {R,} be
its exhaustion with compact relative boundaries {dR,} (n=0,1,2,---).



No. 3] Correspondence of Sets on the Boundaries of Riemann Surfaces 113

Let B be the ideal boundary of R. Assume that a metric ¢ is given
on R+ B, for instance, Martin’s metric. Let F be a closed set in B. Put

Fm=E[zeR+B:5(z, F)g%} Then F=(F,. Let U,,..(2) be a
harmonic function in R—((R,.,,—R,)NF,)—R, such that U, , ,..(2)=0

on 3Ry Upuusdd)=1 on A(Byei— BINF,) and 2nnecl® o on
oR,.,—F,. Then U, ,,..(2)>U, .(?) in mean as ¢~ o, U, ,(2)>U,(?)

in mean as n—>co and U, (2)—>U(z) in mean as m—>co. We call D(U(z))
= f ag—f)ds the capacity® of F relative R—R,. Then we see
R

Cap (X F;) <> Cap (F) (2)
for closed sets F';, and that Cap (F)>0 or =0 does not depend on R, so
long as R, is compact.

Theorem 1. Let D be a domain in the z-plane. Let F, be a
closed set of positive logarithmic capacity on 9D. Assume that atf
every point zeF,, there exists a sector S(z) with its vertex at z, with
a positive radius and a positive aperture such that int S(z) C.D. Then
F, is a set of positive capacity relative D— D,, where D, is a compact
disc in D.

Proof. Let E,, be the set of points z such that a sector S(z)
with its vertex at z and S(?) satisfies the following conditions:

1) int S(z)CD.

2) radius of S(z)__>:%.
3) —1—§aperture of S (z)<n—-1—.
n n

27_; <argument of the half line of S(2)<-2%(i+1).
32n 32n

Then Fz=§ Ew]E'M. Then there exist numbers #, and 4, such that

n=1 %

E.., is of positive logarithmic capacity. And there exists a closed
subset F'(CE.,,:) of positive logarithmic capacity. Let F'” be the set

4)

’

of points 2z such that the argument of the half line of S (z)=§”i°
Mo

0:%0°

radius of S@)=L and its aperture=-Z_. Then by 4) F"'DE,
Ny n

Therefore we can suppose that at every point z of F’, there exists a
sector S(2) with aperture 20(% >20>0), radius=7 its vertex at z and

the argument of the half line is % We divide the z-plane into an

enumerably infinite number of rectangles such that

1) Z. Kuramochi: Mass distributions on the ideal boundary of Riemann surfaces,
II, Osaka Math. Jour., 8 (1956).
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L) T (s r . r o, .
T ijeoto<z<T (i+1)cots, ——j<y<-T (j+1
g L oti=r=—¢ (t+1)co e I=v=1g (7+1)

1, =0, =1, +2,...
Then there exists at least a rectangle such that the subset F' of F’
contained in the rectangle is of positive logarithmic capacity. Without

loss of generality, we can suppose that the rectangle R is E [z 0z

<r, Ogyé—Lcot 0]. Let R be a rectangle E[z:——'r—gxg 2'r’

16 16 16 16
—%coto_s_yg%cot 0}. Let » be a point of F. Then int S(p)C D,
whence there exists no point of F in R’ which has the same projection
as that of ». Hence y-coordinate ¥ of p can be considered as a one-
valued function y=f(x) of the projection x of p. It is clear

YVi—¥: | <cot® for p(z) and p(z,)eF
xl —_ wZ
. . r 2r r
and S(p):peF contains the rectangle F [z : ——l—é—gxé—l—g, ——2—cot 0>y
>%cot 0]. (3)

Let 2 be the domain containing every S(z):z¢F and contained in
R’. Then 2 is bounded by segments which are boundaries of S(z):zeF
and the boundary of R’ and F. By (8) 2 is simply connected C D and
its boundary is rectifiable. We show that F'is of positive capacity rela-
tive 2 which implies that F,(DF') is of positive capacity relative D.

Case 1. F is of positive linear measure. In this case map 2
conformally into [£|<1. Then F is mapped onto a set of positive linear
measure. Hence lim w,,(2) >0, where 2, is a compact set in 2 and w,,(z)

is a harmonic function in 2 —2,—F', such that »,,(?)=0 on 02,+02—F,,
and ,()=1 on oF, and F,=F [z: dist (2, F') é;nl—]’ whence U(?)
--——li"I.n Um(z)glgn ®,,(?)>0, where U, (?) is a harmonic function in 2—2,
—F,, such that U,(z)=0 on 92, Q—I%’Q:o on 02—F, and U,(2)=1

on oF,. Thus F is of positive capacity.

Case 2. F'is of linear measure zero. Let F, be the projection of
F. Then the function y(x) (x<F',) satisfies the Lipsitz’s condition,
whence F', is also closed. Now the complementary set of F' with re-

spect to y=0, ngg% is composed of an enumerably infinite number

of open intervals I, (a;<x<b,). Let 2, be the subdomain of 2 lying
between x=a, and x=b,. Let I' be the boundary of 02 consisting of
F and segments which are boundaries of S(2):z¢F. Then I' can be
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considered as a graph of y=g(x): ——1%—<w<-§—g~ and it is clear that
g(x) also satisfies the Lipsitz’s condition
_g(xl)"g(xz) <cot 6.
901—902

Let Iy, I'; and I'; be boundaries of £ lying on yzgcot 0, x=——i%

and wz% respectively. Let w=f(2)=u(2)+1v(z): u(2) =, v(z)=2g(x)
—y be the mapping. Then f(2) is continuous and univalent and

sup. %|< M,(6)=1+2: - cot §/1+cot? 0! and A.Q.C with dilatation

|dz1>0
quotient < M,(0) =((1+2 cot 6/cosec?® §)/(1 —2 cot §/cosec? 0))%" in Zi int 2,.
On the other hand, 342, is a set of areal measure zero. Thus f(z)
is an A.Q.C. f(9) contains a rectangle: — T e 2T ———Zﬂ)—t—gy<0

L1 16~ — 16’
t0<1—2 _-—_—) =" cot.
by 7 co (2 3 > 4cot

Assume that F' is of capacity zero relative 2. Then D(U,(z))—0,
where U,(?) is a harmonic function in Q—F,: F:E[z cdist (2, F)< 1 ]

n
such that U,(2)=0 on I',+I,+1I";, U,(2)=1 on 9F, and %’;ﬁz)—=0 on

I'—F,. Now 0F,+f(F,) encloses F. Put U,(2)=U,2) in 2—F,,
U,@)=U,(f ') in f(2—F,). Then U,2) is continuous in (2—F,
+f(Q—F,)), U,(2)=0 on I';+ I3+ I3+ f(I"y+Ty+1"5) and ﬁ,,(z):l on
0F,+ f(3F,). Then by (1) D(U,(2)) < D(U,(2))1+M:(9)). Let Ui (z)
be a harmonic function in (2—F,)+f(2—F,) such that UX(z)=0 on
L4+ T+ f(C+ 1+ 1) and UF()=1 on oF,+ f(0F,). Then by
the Dirichlet principle
D(Ux@2)=D(U,(2))>0 as n—>oo.

On the other hand, 9F,+ f(0F,) encloses F' in a domain 2+ f(2) and
the distance between (I"y+I',+ 13+ f(I"y+1'2+1;) and F' is positive.
This contradicts that F is of positive logarithmic capacity. Hence

F is of positive capacity relative 2. This implies that F,(DF) is of
positive capacity relative D.

Let G be a non-compact domain in a Riemann surface K whose
relative boundary G consists of at most an enumerably infinite number
of compact or non-compact analytic curves clustering nowhere in R.

We can construct another Riemann surface G by the process of sym-
metrization. We proved the following

Theorem.” Let R be a Riemann surface with null-boundary.

2) Z. Kuramochi: On covering surfaces, Osaka Math. Jour., 6 (1954).
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Let G be a non-compact domain. Then G—l—@ 18 a Riemann surface
with null-boundary.

As an inverse of the above theorem we have by Theorem 1 the
following

Theorem 2. Let R be a Riemann surface of finite genus with
positive boundary. Let B’ be a closed subset of B such that B’ is of
positive capacity relative R. If there exists a sector S(z) G with

its vertex at zeB' at every point of B, then G+(/}\ 18 a Riemann
surface with positive boundary.

Let w=f(2):2¢R be an analytic function in a Riemann surface R
and suppose that the covering surface of f(z) is spread over the w-
sphere K. Let a be a point of K and K, be a spherical disc of radius
p with a as its centre. Let n(a) be the number of zero of f(2)—a
in R,

If lim sup n(w)< oo,

>0 weK P
then a is called a boundedly covered point.
Let F' be a closed set on the ideal boundary on R. We call

H(fz)=N J: (2) the cluster set of f(2) at F, where Fn:E[zeR:
n 2EF,
dist (2, F)gl}. Then
n

Theorem 3. Let F be a closed set of positive capacity relative R
and w=f(z) be a non-constant analytic function. If every point of
H(f(2)) is boundedly covered, then H(f(z)) is a set of positive loga-
rithmic capacity.

Since at every point a of H(f(z)), there exists a circle C(a) with

radius % such that s%? n(w) < m(n,a) and since H(f(2)) is closed,
wel(a)

H(f(2)) is contained in the interior of sum of a finite number of circles
C(a;). Hence n(w)<m in G=3int C(a,) and
%

dist (H(f(z)), 0G)=6>0. (4)
G may consist of a finite number of components. Without loss of
generality, we can suppose that G does not cover a disc in the w-sphere.
Then f~(G) does not fall in a compact set D,. On the other hand,
z=f"!(w): wedG does not tend to F. If it were not so, H(f(2))NG

4=0. This contradicts (4). Let G,,:E[w:dist (w, H(f(z)))é%} Then

S G,) covers a neighbourhood of F' and dist (¥, f~1(0G,))=0,>0, as
above and f~'(dG,) separates F' from D, Assume that H(f(z)) is of
logarithmic capacity zero. Then D(U,(w))—>0 as n—>o, where U,(w)
is a harmonic function in G—G, such that U,(w)=0 on 9G and U,(w)

=1 on 9G,. Consider a continuous function U,(2) in R—D, such that
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U.(2)=0 in R—Dy,— f(G) and U,(2)=U,(f*(w)) in f-(G—G,). Then
D(U,(2))<m(D(U,(z))). Let V,(2) be a harmonic function in R—D,—F,,
such that V,(2)=0 on dD,, V,(2)=1 on 4F,, and V,(2) has the minimal
Dirichlet integral, where F;, =E[z¢R: dist (2, F)<4,] and F, Cf !(G,).
Then by the Dirichlet principle D(T,(2))=D(V,(2)). Let n—>oo. Then
D(V (2))—>0. This means that F' is a set of capacity zero relative R.
This is a contradiction. Hence we have the theorem.

Theorem 4. Let D, be a simply connected domain in the z-plane.
Let E, be a closed set of positive logarithmic capacity. Suppose at
every point z of E,, there exists a sector S(z) such that int S(2)CD.
Map D conformally onto |w|<1. Then the image E, of E, is also
of positive logarithmic capacity.

Let w=f(z) be the mapping function. Let 2(CD) be a simply
connected domain in the proof of Theorem 1. Put E=0Q2NE,. Then
E is closed and is of positive capacity relative 2. Then £ is mapped
onto a domain f(£2) in the circle [w|<1. Let I(p)(C2):peE be a path
tending to p. Then f(I(p)) tends to a point ¢ on |w|=1 by Riesz’s
theorem. Let E! be the set of points ¢ such that there exists a curve
(2D)l(p) : peE and 111’151 f()=q. Then E/ is closed. In fact, F,

2E€U(p)
=f@Q)NI:I'=[|w|=1] is closed. Clearly E/CF,. Let g be a point
of F',. Then there exists a sequence {w}:w,=f(z;,), w,cf(2) and
liim w,=q. Consider f '(w,)C£2. Then f *(w,) has limit points only
on E. Choose a subsequence f~'(w}) of {f *(w,)} such that f~'(w,)
—>2z,¢E. Since every point of 3£ is accessible, connect f~*(w)), f~*(w)- - -
by a curve ICC . Then f(2) has limit ¢ as z tends to 2, along [. Hence
F,CE.. Nextweshow (| 7() =El, where E,=E| z:dist (s, E)=—- |

n>0 2&(E,N2)

It is clear E,C H(f(2)). Let w,e H(f(2)). Then there exists a sequence
{z;} such that {z,} tends to £ and f(2;)—>w, Since E is closed, we can
find a point z,¢E and a subsequence {zi} of {z,]} such that liim 2i=z,.
Connect 2; by a curve ! in 2 such that ! tends to 2, for every point
of 99 is accessible in 2. Then f(2)—~>w, as 2—z along . Hence w,c E,
and E;=H(f(z)). Now E(CE,) is a set of positive capacity relative
2 by Theorem 1, since E is a set of positive logarithmic capacity.
Hence E. is of positive logarithmic capacity by Theorem 3. Hence
the image E, (DE)) of E, is of positive logarithmic capacity.



