23. Cosheaves

By Yukiyosi KAWADA Department of Mathematics, University of Tokyo

(Comm. by Z. SUETUNA, M.J.A., March 12, 1960)

In this note we shall define a cosheaf on a paracompact space X, which is a dual concept of a sheaf (§1). If the base space X is a compact Hausdorff space we can develop a homology theory of X with coefficients in a cosheaf (§2). This homology theory is equivalent to the Čech homology theory and is dual to the cohomology theory with coefficients in a sheaf (§3).¹⁾

1. Let X be a paracompact space. We denote by $\mathfrak{U}(X)$ the family of all closed subsets of X. Let us suppose that a compact topological additive group $\mathfrak{F}(A)$ is associated with each $A \in \mathfrak{U}(X)$. In particular, let $\mathfrak{F}(\phi) = \{0\}$. For each pair (A, B) $(A, B \in \mathfrak{U}(X) \text{ and } A \supset B)$ let a continuous homomorphism $\iota_{A,B}$ of $\mathfrak{F}(B)$ into $\mathfrak{F}(A)$ be defined such that (i) $\iota_{A,A}$ is the identity mapping for each $A \in \mathfrak{U}(X)$, and (ii) $\iota_{A,C} = \iota_{A,B} \circ \iota_{B,C}$ holds for $A, B, C \in \mathfrak{U}(X)$ and $A \supset B \supset C$. Moreover, let $\mathfrak{U}(A)$ $(A \in \mathfrak{U}(X))$ be the family of all $B \in \mathfrak{U}(X)$ such that A is contained in the interior of B. Then $\mathfrak{U}(A)$ is a directed family of sets with respect to the inclusion relation and $\{\mathfrak{F}(B); B \in \mathfrak{U}(A)\}$ is an inverse system of compact additive groups with respect to the continuous homomorphisms $\{\iota\}$. Let us suppose further that

(1) $\mathfrak{F}(A) = \operatorname{inv} \lim \{\mathfrak{F}(B); B \in \mathfrak{U}(A)\}$ for $A \in \mathfrak{U}(X)$ hold. Then we call the system $\mathfrak{F} = \{\mathfrak{F}(A), \iota_{A,B}\}$ a precosheaf with the base space X.²⁾ If necessary we denote $\iota_{A,B}^{\mathfrak{F}}$ instead of $\iota_{A,B}$. In the following we fix a base space X.

A precosheaf $\mathfrak{G} = \{\mathfrak{G}(A), \iota_{A,B}^{\mathfrak{G}}\}$ is called a subprecosheaf if (i) for each $A \in \mathfrak{A}(X) \ \mathfrak{G}(A)$ is a closed subgroup of $\mathfrak{F}(A)$ with the relative topology, (ii) $\iota_{A,B}^{\mathfrak{G}} = \iota_{A,B}^{\mathfrak{F}} | \mathfrak{G}(B)$ for $A \supset B$ holds and (iii) $\mathfrak{G}(A) = \text{inv lim}$ $\{\mathfrak{G}(B); B \in \mathfrak{U}(A)\}$ holds for each $A \in \mathfrak{A}(X)$. Let \mathfrak{G} be a subprecosheaf of a precosheaf \mathfrak{F} . Let us put $\mathfrak{H}(A) = \mathfrak{F}(A)/\mathfrak{G}(A)$ with the quotient topology for each $A \in \mathfrak{A}(X)$ and let the homomorphism $\iota_{A,B}^{\mathfrak{G}}$ be induced from $\iota_{A,B}^{\mathfrak{F}}$. Then $\mathfrak{H} = \{\mathfrak{H}(A), \iota_{A,B}^{\mathfrak{G}}\}$ is a precosheaf. We call \mathfrak{H} the quotient precosheaf of \mathfrak{F} by \mathfrak{G} .

Let $\mathfrak{F}, \mathfrak{G}$ be two precosheaves. Let φ_A be a continuous homomorphism of $\mathfrak{F}(A)$ into $\mathfrak{G}(A)$ for each $A \in \mathfrak{A}(X)$ and let us assume that

¹⁾ In this note we shall only sketch our results. The details and further developments will be discussed in another paper.

²⁾ This definition is dual to that of a sheaf used in Cartan [1], XII: Faisceaux et carapaces.

Y. KAWADA

 $\iota_{A,B}^{\mathfrak{G}}\circ\varphi_{B}=\varphi_{A}\circ\iota_{A,B}^{\mathfrak{F}}$ holds for each pair (A, B) $(A, B\in\mathfrak{A}(X)$ and $A\supset B)$. Then we call the system $\varphi=\{\varphi_{A}; A\in\mathfrak{A}(X)\}$ a homomorphism of \mathfrak{F} into \mathfrak{G} and we denote $\varphi:\mathfrak{F}\to\mathfrak{G}$. The image of φ and the kernel of φ can be defined naturally which are subprecosheaves of \mathfrak{G} and \mathfrak{F} respectively.

A precosheaf \mathfrak{F} is called *locally zero* if the following condition is satisfied: Let $s \in \mathfrak{F}(A)$, $A \in \mathfrak{A}(X)$. If $s \in \sum_{i=1}^{n} \iota_{A,A_i} \mathfrak{F}(A_i)$ holds for any finite closed covering $\{A_1, \dots, A_n\}$ of A, then s=0.

A precosheaf \mathfrak{F} is called a *cosheaf* if the following two conditions (F1) and (F2) are satisfied.

(F1) Let $\{A_1, \dots, A_n\}$ be a finite closed covering of $A \in \mathfrak{A}(X)$. Then

$$\mathfrak{F}(A) = \sum_{i=1}^{n} \iota_{A,A_i} \mathfrak{F}(A_i)$$

holds.

(F2) Let $\{A_1, \dots, A_n\}$ be a finite closed covering of $A \in \mathfrak{A}(X)$. If $s_i \in \mathfrak{F}(A_i)$ $(i=1,\dots,n)$ satisfy the equality $\sum_{i=1}^n \iota_{A,A_i} s_i = 0$, then there exist $s_{ij} \in F(A_i \cap A_j)$ $(i, j=1,\dots,n)$ such that (i) $s_{ii}=0$, (ii) $s_{ij}=-s_{ji}$ and (iii) $s_i = \sum_{j=1}^n \iota_{A_i,A_i \cap A_j} s_{ji}$ hold for $i, j=1,\dots, n$.

PROPOSITION 1. Let \mathfrak{F} be an arbitrary precosheaf. Then there exist precosheaves $\mathfrak{F}_0, \mathfrak{F}_1, \mathfrak{F}_2, \mathfrak{F}_3$ such that (i) $0 \to \mathfrak{F}_1 \to \mathfrak{F} \to \mathfrak{F}_0 \to 0$ and $0 \to \mathfrak{F}_3 \to \mathfrak{F}_2 \to \mathfrak{F}_1 \to 0$ are exact sequences, (ii) $\mathfrak{F}_0, \mathfrak{F}_3$ are locally zero precosheaves, (iii) \mathfrak{F}_1 satisfies the condition (F1) and (iv) \mathfrak{F}_2 is a cosheaf. Moreover, these precosheaves \mathfrak{F}_i (i=0, 1, 2, 3) are uniquely determined by \mathfrak{F} up to isomorphism.

We denote then $\mathfrak{F}_2 = \Gamma \mathfrak{F}$ and $\Gamma \mathfrak{F}$ is called the *cosheaf generated* by \mathfrak{F} .

Let $\mathfrak{F}, \mathfrak{G}$ be cosheaves and let $\varphi: \mathfrak{F} \to \mathfrak{G}$ be a homomorphism such that image $\varphi = \mathfrak{G}$ holds. Then kernel $\varphi = \mathfrak{F}'$ is a precosheaf satisfying the condition (F1) but not necessarily (F2). Let $\mathfrak{F} = \Gamma \mathfrak{F}'$ be the cosheaf generated by \mathfrak{F}' . We denote then

(2) $0 \longrightarrow \mathfrak{H} \longrightarrow \mathfrak{H} \longrightarrow \mathfrak{H} \longrightarrow \mathfrak{H} \longrightarrow \mathfrak{H}$ (exact). Namely, (2) is equivalent to an exact sequence of precosheaves: (3) $0 \longrightarrow \mathfrak{H}_0 \longrightarrow \mathfrak{H} \longrightarrow \mathfrak{H} \longrightarrow \mathfrak{H} \longrightarrow \mathfrak{H}$ where \mathfrak{H}_0 is a locally zero precosheaf.

In general, let $\{\mathfrak{F}_n\}$ be a sequence of cosheaves and let $\{\varphi_n : \mathfrak{F}_n \to \mathfrak{F}_{n-1}\}$ be a sequence of homomorphisms. We denote then

 $\cdots \longrightarrow \widetilde{\mathfrak{V}}_{n+1} \xrightarrow{\varphi_{n+1}} \widetilde{\mathfrak{V}}_n \xrightarrow{\varphi_n} \widetilde{\mathfrak{V}}_{n-1} \longrightarrow \cdots \qquad \text{(exact)}$

if (i) image $\varphi_n = \mathfrak{G}_n$ are all cosheaves and (ii) $0 \to \mathfrak{G}_{n+1} \longrightarrow \mathfrak{F}_n \to \mathfrak{G}_n \to 0$ are exact sequences in the sense of (2) for all n.

The stalk of a precosheaf \mathfrak{F} at $x \ (x \in X)$ is simply $\mathfrak{F}(\{x\})$ which we denote by $\mathfrak{F}(x)$. Then we see easily the following properties on stalks. (i) Let \mathfrak{F} be an arbitrary precosheaf. Then for every $x \in X \ \mathfrak{F}(x) \cong \Gamma \mathfrak{F}(x)$ holds. (ii) If \mathfrak{F} is locally zero then $\mathfrak{F}(x) = \{0\}$ for every $x \in X$. (iii) Let $\mathfrak{F}, \mathfrak{G}$ and \mathfrak{G} be cosheaves such that $0 \to \mathfrak{F} \longrightarrow \mathfrak{G} \to \mathfrak{O}$ (exact).

82

Cosheaves

Then for every $x \in X$ we have an induced exact sequence $0 \to \mathfrak{F}(x) \to \mathfrak{F}(x) \to \mathfrak{F}(x) \to \mathfrak{F}(x) \to \mathfrak{F}(x) \to \mathfrak{F}(x)$.

2. In the following we assume always that the base space X is a compact Hausdorff space. A precosheaf \mathfrak{F} is called complete³⁾ if every $\iota_{A,B}(A, B \in \mathfrak{A}(X) \text{ and } A \supset B)$ is a monomorphism. If we identify $\mathfrak{F}(A)$ with the subgroup $\iota_{X,A}\mathfrak{F}(A)$ of $\mathfrak{F}(X)$ then a complete precosheaf $\mathfrak{F} = \{\mathfrak{F}(A); A \in \mathfrak{A}(X)\}$ consists of a family of closed subgroups of $\mathfrak{F}(X)$ such that $A \supset B$ implies $\mathfrak{F}(A) \supset \mathfrak{F}(B)$ and (1) holds.

Now we shall define a complete cosheaf $\tilde{\mathfrak{F}}$ which is canonically associated with a given cosheaf \mathfrak{F} . Let $\mathfrak{F}^*(X)$ be the direct sum of (abstract) additive groups $\mathfrak{F}(x)$ for all $x \in X$. Then we shall define a precompact topology in $\mathfrak{F}^*(X)$ as follows. Let $s = \sum_i s_{x_i}, s_{x_i} \in \mathfrak{F}(x_i),$ $x_i \in X$ be an element of $\mathfrak{F}^*(X)$. Let us take arbitrarily a finite number of continuous characters $\chi_x^{(k)}$ $(k=1,\cdots,n)$ of the compact additive group $\mathfrak{F}(x)$ for each $x \in X$ and let us put $\chi^{(k)} = \{\chi_x^{(k)}; x \in X\}$. Let $\varepsilon > 0$. Then the neighbourhood $U(s; \chi^{(1)}, \cdots, \chi^{(n)}, \varepsilon)$ of $s \in \mathfrak{F}^*(X)$ be defined as the totality of all $t = \sum_j t_{y_j} \in \mathfrak{F}^*(X)$ $(t_{y_j} \in \mathfrak{F}(y_j), y_j \in X)$ such that

$$\sum_{i} \chi_{x_{i}}^{(k)}(s_{x_{i}}) - \sum_{i} \chi_{y_{j}}^{(k)}(t_{y_{j}}) \left| < \varepsilon \right|$$
 $(k=1,\cdots,n)$

hold. If we take all these $U(s; \chi^{(1)}, \dots, \chi^{(n)}, \varepsilon)$ as the fundamental system of neighbourhoods of s in $\mathfrak{F}^*(X)$ we see that $\mathfrak{F}^*(X)$ is a precompact topological group. Then we define the compact additive group $\mathfrak{F}(X)$ as the completion of $\mathfrak{F}^*(X)$. For $A \in \mathfrak{N}(X)$ we define the closed subgroup $\mathfrak{F}(A)$ of $\mathfrak{F}(X)$ as follows. Let $\{\chi_x; x \in X\}$ be a system of continuous characters of $\mathfrak{F}(x)$ ($x \in X$) such that $\chi_x = 0$ hold for all $x \in U$ where U is some open set containing A. We denote by $\mathfrak{F}(A)$ the set of all such systems $\{\chi_x\}$. Then $\mathfrak{F}(A)$ is the closed subgroup of $\mathfrak{F}(X)$ consisting of all elements which annihilate $\mathfrak{F}(A)$. We can verify that $\mathfrak{F} = \{\mathfrak{F}(A); A \in \mathfrak{N}(X)\}$ is a precosheaf.

PROPOSITION 2. The above defined precosheaf \mathfrak{F} is a complete cosheaf, and there exists a canonical homomorphism $\varphi: \mathfrak{F} \to \mathfrak{F}$ such that image $\varphi = \mathfrak{F}$ holds.

By a complete resolution of a cosheaf \mathfrak{F} we mean an exact sequence of cosheaves \mathfrak{F}_n and homomorphisms $\varphi_n: \mathfrak{F}_n \to \mathfrak{F}_{n-1}$:

 $(4) \qquad \cdots \longrightarrow \mathfrak{F}_{n} \longrightarrow \mathfrak{F}_{n-1} \longrightarrow \cdots \longrightarrow \mathfrak{F}_{1} \longrightarrow \mathfrak{F}_{0} \longrightarrow \mathfrak{F} \longrightarrow 0 \quad (\text{exact})$

where \mathfrak{F}_n $(n=0, 1, 2, \cdots)$ are all complete. The existence of such a complete resolution of a given cosheaf \mathfrak{F} follows from Proposition 2. Let (4) be a complete resolution of a given cosheaf \mathfrak{F} . Then the sequence of compact additive groups $\mathfrak{F}_n(X)$ and continuous homomorphisms $\partial_n: \mathfrak{F}_n(X) \to \mathfrak{F}_{n-1}(X)$ $(\partial_n = (\varphi_n)_X)$:

No. 3]

³⁾ The concept of a complete precosheaf is the dual of "faisceau mou" of Godement [2]. We use the terminology "complete" after Sato [4].

T. KAWADA

[Vol. 36,

$$\cdots \longrightarrow \widetilde{\mathfrak{F}}_{n}(X) \xrightarrow{\partial_{n}} \widetilde{\mathfrak{F}}_{n-1}(X) \longrightarrow \cdots \longrightarrow \widetilde{\mathfrak{F}}_{1}(X) \xrightarrow{\partial_{1}} \widetilde{\mathfrak{F}}_{0}(X) \xrightarrow{\partial_{0}} 0$$

satisfies $\partial_{n-1} \circ \partial_n = 0$ $(n=1, 2, \cdots)$. Hence we can define the homology groups of X with coefficients in a cosheaf \mathfrak{F} by

$$H_n(X, \mathfrak{F}) = \text{kernel } \partial_n/\text{image } \partial_{n+1} \qquad (n = 0, 1, 2, \cdots)$$

which are compact groups.

PROPOSITION 3. (i) The above defined homology groups $H_n(X, \mathfrak{F})$ for a cosheaf \mathfrak{F} are independent of the choice of a complete resolution (4) of \mathfrak{F} .

(ii)
$$H_0(X, \mathfrak{F}) \cong \mathfrak{F}(X).$$

(iii) If \mathfrak{F} is a complete cosheaf then $H_n(X,\mathfrak{F})=0$ for $n=1, 2, \cdots$.

(iv) Each homomorphism $\varphi: \mathfrak{F} \to \mathfrak{G}$ of cosheaves induces continuous homomorphisms

$$\varphi_n^*: H_n(X, \mathfrak{F}) \to H_n(X, \mathfrak{G}) \qquad (n = 0, 1, 2, \cdots)$$

such that (a) φ_n^* is the identity of $H_n(X, \mathfrak{F})$ if φ is the identity of \mathfrak{F} and (β) for two homomorphisms $\varphi : \mathfrak{F} \to \mathfrak{G}$ and $\psi : \mathfrak{G} \to \mathfrak{H}$ ($\psi \circ \varphi)_n^* = \psi_n^* \circ \varphi_n^*$ holds.

(v) Let $\mathfrak{F}, \mathfrak{G}, \mathfrak{H}$ be cosheaves such that $0 \to \mathfrak{F} \longrightarrow \mathfrak{G} \to \mathfrak{H} \to \mathfrak{O}$ (exact). Then there exist continuous homomorphisms

$$\hat{\sigma}_n^*: H_n(X, \mathfrak{H}) \longrightarrow H_{n-1}(X, \mathfrak{F}) \qquad (n=1, 2, \cdots)$$

such that

$$\cdots \longrightarrow H_n(X, \mathfrak{F}) \longrightarrow H_n(X, \mathfrak{F}) \longrightarrow H_n(X, \mathfrak{F}) \longrightarrow H_n(X, \mathfrak{F}) \longrightarrow H_{n-1}(X, \mathfrak{F}) \longrightarrow \cdots$$
$$\longrightarrow H_1(X, \mathfrak{F}) \longrightarrow H_0(X, \mathfrak{F}) \longrightarrow H_0(X, \mathfrak{F}) \longrightarrow H_0(X, \mathfrak{F}) \longrightarrow 0$$

is an exact sequence.

(vi) If

$$\begin{array}{cccc} 0 \longrightarrow \mathfrak{F}_{1} \longrightarrow \mathfrak{G}_{1} \longrightarrow \mathfrak{H}_{1} \longrightarrow \mathfrak{H}_{1} \longrightarrow 0 & (exact) \\ & & \downarrow & \downarrow & \downarrow \\ 0 \longrightarrow \mathfrak{F}_{2} \longrightarrow \mathfrak{G}_{2} \longrightarrow \mathfrak{H}_{2} \longrightarrow \mathfrak{H}_{2} \longrightarrow 0 & (exact) \end{array}$$

is a commutative diagram of cosheaves then

is also a commutative diagram.

(vii) The compact homology groups $H_n(X, \mathfrak{F})$ $(n=0, 1, 2, \cdots)$ associated with each cosheaf \mathfrak{F} are uniquely determined by the properties (ii)– (vi).

3. Here we assume also that the base space X is a compact Hausdorff space. For any precosheaf \mathfrak{F} we can naturally define the compact Čech homology groups $\check{H}_n(X,\mathfrak{F})$ of the space X with coefficients in \mathfrak{F} just as in the case of compact constant coefficient groups with necessary modifications (cf. e.g. Eilenberg and Steenrod [3]).

Cosheaves

No. 3]

PROPOSITION 4. If \mathfrak{F} is a locally zero precosheaf then $\check{H}_n(X,\mathfrak{F})=0$ for $n=0, 1, 2, \cdots$.

PROPOSITION 5. The Cech homology groups $\dot{H}_n(X, \mathfrak{F})$ $(n=0, 1, 2, \cdots)$ with coefficients in a cosheaf \mathfrak{F} satisfy all the properties (ii)-(vi) of Proposition 3. Hence we have the isomorphisms

$$\dot{H}_n(X,\mathfrak{F})\cong H_n(X,\mathfrak{F}) \qquad (n=0,1,2,\cdots).$$

Now let \mathfrak{S} be a sheaf of additive groups on X and let $\mathfrak{S}(U)$ be the discrete additive group associated with each open subset U of X (cf. e.g. Godement [2]). For any closed set A the discrete additive group $\mathfrak{S}(A) = \Gamma(A, \mathfrak{S})$ of sections of \mathfrak{S} over A is isomorphic to the direct limit group of the system { $\mathfrak{S}(U)$; $U \supseteq A$ }. Let us consider the system of compact character groups

 $\mathfrak{F}(A) = \text{character group of } \mathfrak{S}(A) \qquad (A \in \mathfrak{N}(X))$ with naturally defined continuous homomorphisms $\iota_{A,B}$ for $A \supset B$. Then it is easy to see that $\mathfrak{F} = \{\mathfrak{F}(A); \iota_{A,B}\}$ is a cosheaf. We shall call \mathfrak{F} the dual cosheaf of the sheaf \mathfrak{S} .

PROPOSITION 6. Let \mathfrak{S} be a sheaf of discrete additive groups on X and let \mathfrak{F} be the dual cosheaf of \mathfrak{S} . Then each of the discrete cohomology group $H^n(X,\mathfrak{S})$ with coefficients in a sheaf \mathfrak{S} and the compact homology group $H_n(X,\mathfrak{F})$ with coefficients in the dual cosheaf \mathfrak{F} is the character group of the other $(n=0, 1, 2, \cdots)$.

REMARK. If we assume that each $\mathfrak{F}(A)$ $(A \in \mathfrak{A}(X))$ is a linearly compact vector space over a field K and each $\iota_{A,B}$ is a K-linear mapping then we have the similar results as above.

Added in proof. M. Sato has also developed the theory of cosheaves from a different point of view. Also the author has found a paper on the theory of precosheaves in the recent number of Arch. d. Math., R. Kultze: Dualität von Homologieund Cohomologiegruppen in der Garbentheorie, Arch. d. Math., **10**, 438-442 (1959). This paper refers to a paper of E. Luft: Eine Verallgemeinerung der Čechschen Homologietheorie, Bonner math. Schriften, nr. 8 (1959).

References

- [1] H. Cartan: Séminaire de topologie algébrique (1948-1949).
- [2] R. Godement: Topologie Algébrique et Théorie des Faisceaux, Hermann, Paris (1958).
- [3] S. Eilenberg and N. Steenrod: Foundations of Algebraic Topology, Princeton (1952).
- [4] M. Sato: On a generalization of the concept of functions. II, Proc. Japan Acad., 34, 604-608 (1958).