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Abstract

For a locally compact group G, Lau [6] and Ghaffari [3] provided many re-
sults about G-invariant subsets of G-modules, and the relationship between
G-module maps, L1(G)-module maps and M(G)- module maps. In both pa-
pers their results were specified for one module action. In this paper we
extend many of their results to arbitrary Banach G-modules and G-module
maps.

1 Introduction

Let G always denote a locally compact group with a Haar measure λ and mod-
ular function ∆. Let Lp(G), 1 ≤ p ≤ ∞, be the Banach space of λ-measurable
functions f : G → C, such that ‖ f‖p < ∞ and when s ∈ G, we let δs denote the
Dirac measure at s. In addition, we let C0(G) denote the set of all continuous func-
tions f : X → C vanishing at ∞ and denote the set of all complex regular Borel
measures on G by M(G) ∼= C0(G)∗. Define the convolution product between two
measures µ, ν in M(G) by

〈µ ∗ ν, f 〉 =
∫∫

f (xy)dµ(x)dν(y) ( f ∈ C0(G)).

The group algebra (L1(G), ∗), where for f , g ∈ L1(G),

( f ∗ g)(x) =
∫

f (y)g(y−1x)dλ(y),
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is a closed ideal of the measure algebra via f 7→ µ f where 〈µ f , φ〉 =
∫

φ(s) f (s)ds
whenever φ ∈ C0(G).

Our definitions of a Banach G-module and of a Banach A-module for a Banach
algebra A, follow [5]; also see [7]. Definitions of dual modules and the relation-
ship between Banach G-modules, Banach M(G)-modules and Banach
L1(G)-modules are found in [5] and [7].

The main purpose of this paper is to generalize many of the results from Lau
and Ghaffari’s papers [6] and [3] respectively. Both Lau and Ghaffari’s results
were about G-invariant subsets of G-modules and the relation between G-module
maps, L1(G)-module maps and M(G)-module maps. Lau’s results were specified
for the G-module action s · f = δs ∗ f where s ∈ G, f ∈ Lp(G), 1 ≤ p < ∞, and
Ghaffari’s results were specified for the G-module action s · f (t) = δs ⋆ f (t) =

∆(s)
1
p f (s−1ts) whenever s ∈ G, f ∈ Lp(G), 1 ≤ p < ∞. In this paper we will

obtain many of the results proved for specific actions in [6] and [3] for arbitrary
Banach G-modules and dual G-modules. We also correct an inaccurate statement
found in [3]. The ideas of our proofs combine those of Lau, Ghaffari and our own.

This paper will be a part of the author’s M.Sc. thesis, written under the super-
vision of Ross Stokke. The author would like to express her deep gratitude to Dr.
Stokke for his support, encouragement and helpful academic advice.

2 G-Module Maps Between Left Banach G-Modules

Let X be a left Banach G-module. Recall that X is a unital left Banach M(G)-
module and a neo-unital left Banach L1(G)-module with respect to the weak in-
tegral

µ · x =
∫

G
s · xdµ(s) (x ∈ X, µ ∈ M(G)).

Definition 2.1. Let X and Y be left Banach G-modules, and let T : X → Y be a
(bounded, linear) operator. Then we will say that T is a G-module map if

T(s · x) = s · Tx (s ∈ G, x ∈ X).

Similarly, we can define right G-module maps, (right) M(G)-module maps and (right)
L1(G)-module maps.

The following two theorems generalize [3, Theorem 2.1].

Theorem 2.2. Let X and Y be left Banach G-modules and T : X → Y a bounded linear
map. Then the following statements are equivalent:

(i) T is a G-module map.

(ii) T is an M(G)-module map.

(iii) T is an L1(G)-module map.
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Proof. (i) ⇒ (ii) Let X and Y be left Banach G-modules and suppose that T : X →
Y is a bounded linear G-module map and T∗ : Y∗ → X∗ is its adjoint operator.
For µ ∈ M(G), x ∈ X and φ ∈ Y∗,

〈T(µ · x), φ〉 =
∫

〈s · x, T∗φ〉dµ(s) =
∫

〈T(s · x), φ〉dµ(s) =
∫

〈s · Tx, φ〉dµ(s) = 〈µ · Tx, φ〉.

Since Y∗ separates points of Y, T(µ · x) = µ · Tx.

(ii) ⇒ (iii) This is obvious since L1(G) ⊂ M(G).

(iii) ⇒ (i) Suppose that T : X → Y is a bounded linear L1(G)-module map.
Let s ∈ G, x ∈ X, and let (eα)α be a bounded approximate identity (BAI) for
L1(G). Then (eα)α is a BAI for both the neo-unital L1(G)-modules X and Y, so

s · Tx = δs · Tx = lim (δs ∗ eα)
︸ ︷︷ ︸

∈L1(G)

·Tx = lim T((δs ∗ eα) · x) = T(δs · x) = T(s · x).

Note that because X∗ and Y∗ are not necessarily right Banach G-modules (e.g.
L1(G)∗ = L∞(G), s · f = δs ∗ f ), the next result is not immediately contained in
the right module version of Theorem 2.2.

Theorem 2.3. Let X and Y be left Banach G-modules and suppose that T : Y∗ → X∗ is
linear, bounded and w∗ − w∗ continuous. Then the following statements are equivalent:

(i) T is a right G-module map.

(ii) T is a right M(G)-module map.

(iii) T is a right L1(G)-module map.

Proof. As T : Y∗ → X∗ is linear, bounded and w∗−w∗ continuous, T is the adjoint
operator of some L : X → Y.
(i) ⇒ (ii) Suppose that T is a right G-module map. Then for s ∈ G, x ∈ X and
φ ∈ Y∗,

〈φ, L(s · x)〉 = 〈T(φ · s), x〉 = 〈φ, s · (Lx)〉,

So L is a G-module map. Hence by Theorem 2.2, L is an M(G)-module map and
therefore, for x ∈ X, φ ∈ Y∗, and µ ∈ M(G),

〈x, T(φ · µ)〉 = 〈L(µ · x), φ〉 = 〈x, Tφ · µ〉.

Hence, T is M(G)-module map. This proves (i) ⇒ (ii) and (ii) ⇒ (iii) is obvious.
That (iii) ⇒ (i) follows the argument used to prove (i) ⇒ (ii).

The following corollary [4, Theorem 35.5] is an immediate consequence of
Theorem 2.2 applied to the Banach G-module action s · h = δs ∗ h of G on L1(G).
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Corollary 2.4. Let G be a locally compact group and let T : L1(G) → L1(G) be a
bounded linear operator. Then the following are equivalent:

(i) T(δs ∗ h) = δs ∗ Th whenever s ∈ G, and h ∈ L1(G).

(ii) T(µ ∗ h) = µ ∗ Th whenever µ ∈ M(G), and h ∈ L1(G).

(iii) T( f ∗ h) = f ∗ Th whenever f , h ∈ L1(G).

Let X be a left Banach G-module and define UC(X∗) by the following:

UC(X∗) := {φ ∈ X∗ : s 7→ φ · s : G → (X∗, ‖ · ‖) is continuous}.

It is easy to see that UC(X∗) is a closed linear subspace of X∗. The next obser-
vation can be found in a forthcoming paper by Y. Choi, E. Samei and R. Stokke.
Related results are found in the author’s thesis.

Lemma 2.5. Let X be a left Banach G-module. Then UC(X∗) is a right Banach
G-submodule of X∗. Moreover, as we already noted, X∗ itself is not necessarily a right
Banach G-module. If we let φ • µ and φ · µ respectively denote the corresponding M(G)-
module action on UC(X∗), and dual M(G)-module action on X∗ restricted to UC(X∗),
then φ •µ = φ ·µ. Hence the notation φ ·µ is unambiguous and UC(X∗) = X∗ · L1(G).

Now by the above Lemma, we can obtain the following corollary, which in-
cludes [3, Theorem 2.4], as an immediate corollary to the right module version of
Theorem 2.2.

Corollary 2.6. Let X and Y be left Banach G-modules, and let T : UC(X∗) → UC(Y∗)
be a bounded linear operator. Then the following statements are equivalent:

(i) T(φ · s) = Tφ · s where φ ∈ UC(X∗), s ∈ G.

(ii) T(φ · µ) = Tφ · µ where φ ∈ UC(X∗), µ ∈ M(G).

(iii) T(φ · f ) = Tφ · f where φ ∈ UC(X∗), f ∈ L1(G).

3 Closed Convex G-Invariant Subsets of Left

Banach G-modules

Definition 3.1. Let X be a left Banach G-module. If C is a convex subset of X, then
C is called G-invariant if s · x ∈ C whenever s ∈ G, x ∈ C. Similarly, we can define
L1(G)-invariant, and M(G)-invariant convex sets.

We denote the probability measures in M(G) by M(G)+1 and let L1(G)+1 =

M(G)+1 ∩ L1(G). The following theorem includes [6, Theorem 4.1(a)]. Note that
by [1, V. Corollary 1.5], a convex subset of a Banach space is closed if and only if
it is weakly closed.
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Theorem 3.2. Let X be a left Banach G-module and C a closed convex subset of X. Then
the following are equivalent:

(i) C is G-invariant.

(ii) C is M(G)+1 -invariant.

(iii) C is L1(G)+1 -invariant.

Proof. (i) ⇒ (ii) Let µ ∈ M(G)+1 , x ∈ C and suppose that C is G-invariant.
Suppose µ · x 6∈ C. Then by the Hahn-Banach Separation Theorem, there is
x∗ ∈ X∗, γ ∈ R, and ǫ > 0, such that

Re〈x∗, c〉 ≤ γ < γ + ǫ ≤ Re〈x∗, µ · x〉 (c ∈ C),

so

Re〈x∗, s · x〉 ≤ γ < γ + ǫ ≤ Re〈x∗, µ · x〉 (s ∈ G).

But

Re〈x∗, µ · x〉 = Re
∫

〈x∗, s · x〉dµ(s) =
∫

Re〈x∗, s · x〉dµ(s)

≤
∫

γdµ(s) = γµ(G) = γ,

a contradiction. Hence, µ · x ∈ C.

(ii) ⇒ (iii) This is obvious.

(iii) ⇒ (i) Let s ∈ G, x ∈ C and suppose that C is L1(G)+1 -invariant. Let (eα)α ⊆

L1(G)+1 be a BAI for L1(G). Then eα · (s · x) = eα · (δs · x) = (eα ∗ δs)
︸ ︷︷ ︸

∈L1(G)+1

·x ∈ C.

Since s · x ∈ X, and X is a neo-unital Banach L1(G)-module, eα · (s · x) → s · x, so
s · x ∈ C because C is closed.

The following theorem includes [3, Theorem 2.5] and [6, Theorem 4.1(b)]. The
proof is similar to that of Theorem 3.2.

Theorem 3.3. Let X be a left Banach G-module, L a w∗-closed convex subset of X∗.
Then the following are equivalent:

(i) L is G-invariant.

(ii) L is M(G)+1 -invariant.

(iii) L is L1(G)+1 -invariant.

If A is a subset of X, co(A) denotes the convex hull of A. The next corollary
includes [6, Corollary 4.2].
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Corollary 3.4. Let X be a left Banach G-module, x ∈ X and φ ∈ X∗. Then the following
statements hold:

(i) co{s · x : s ∈ G} = { f · x : f ∈ L1(G)+1 } = {µ · x : µ ∈ M(G)+1 }.

(ii) cow∗
{φ · s : s ∈ G} = {φ · f : f ∈ L1(G)+1 }

w∗

= {φ · µ : µ ∈ M(G)+1 }
w∗

.

Proof. We establish (i); the proof of (ii) is similar. Let x ∈ X, C1 = co{s · x :

s ∈ G}, C2 = {µ · x : µ ∈ M(G)+1 }, and C3 = { f · x : f ∈ L1(G)+1 }. Obviously
co{s · x : s ∈ G} is G-invariant, so continuity of y 7→ s · y : X → X (s ∈ G) gives
G-invariance of C1. Hence by Theorem 3.2, C1 is M(G)+1 -invariant and L1(G)+1 -
invariant. Since x = e · x ∈ C1, {µ · x : µ ∈ M(G)+1 } ⊆ C1. As C1 is closed,

C2 = {µ · x : µ ∈ M(G)+1 } ⊆ C1, and clearly C3 ⊆ C2. Now let (eα)α ⊆ L1(G)+1
be a BAI for L1(G). Then eα · x → x, so x ∈ C3. But C3 is closed, convex and
L1(G)+1 -invariant so by Theorem 3.2, C3 is G-invariant. Hence C1 ⊆ C3.

4 G-Module Maps Between Closed Convex

G-Invariant Subsets of Left Banach G-Modules

Let X, Y be normed spaces, and C, D convex subsets of X, Y respectively. Recall
that a map f : C → D is called affine if for all x, y ∈ C and α ∈ [0, 1],

f (αx + (1 − α)y) = α f (x) + (1 − α) f (y).

Definition 4.1. Let τ be the locally convex topology on M(G) generated by the collection
of seminorms {Pf : f ∈ CB(G)}, such that

Pf (µ) = |〈µ, f 〉| = |
∫

f dµ| (µ ∈ M(G)).

So µα
τ
−→ µ means that whenever f ∈ CB(G),

∫
f dµα →

∫
f dµ.

The following theorem contains [6, Theorem 5.1].

Theorem 4.2. Let X, Y be left Banach G-modules, and B, C be closed G-invariant convex
subsets of X and Y respectively. If T : B → C is continuous and affine, then the following
are equivalent:

(i) T(s · x) = s · Tx whenever s ∈ G, x ∈ B.

(ii) T(µ · x) = µ · Tx whenever µ ∈ M(G)+1 , x ∈ B.

(iii) T( f · x) = f · Tx whenever f ∈ L1(G)+1 , x ∈ B.

Proof. Note that by Theorem 3.2, B and C are M(G)+1 -invariant and

L1(G)+1 -invariant.
(i) ⇒ (ii) Let x ∈ B and suppose T(s · x) = s · Tx (s ∈ G). Let µ ∈ M(G)+1 ,

(µα) = (
nα

∑
i=1

λα
i δsα

i
) ⊆ co{δs : s ∈ G} be a net converging to µ in τ−topology; see
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[6, Lemma 3.1]. Let φ ∈ X∗. Then noting that f ∈ CB(G) where f (s) = 〈φ, s · x〉
(s ∈ G), we obtain

〈φ, µα · x〉 =
∫

〈φ, s · x〉dµα(s) →
∫

〈φ, s · x〉dµ(s) = 〈φ, µ · x〉.

Therefore, µα · x → µ · x weakly in X; also µα · Tx → µ · Tx weakly in Y. By [2,
Remark 2], T is continuous when A and B have their respective weak topologies.
This, and our assumption(i), give

T(µ · x) = w − lim T(µα · x) = w − lim T(
nα

∑
i=1

λα
i (s

α
i · x))

= w − lim(
nα

∑
i=1

λα
i (s

α
i · Tx))

= w − lim µα · Tx = µ · Tx.

(ii) ⇒ (iii) This is obvious.

(iii) ⇒ (i) Let s ∈ G, x ∈ B and suppose that T( f · x) = f · Tx for every
f ∈ L1(G)+1 . Letting (eα)α ⊆ L1(G)+1 be a BAI for L1(G), (eα)α is a BAI for both X
and Y, so

s · Tx = δs · Tx = lim((δs ∗ eα)
︸ ︷︷ ︸

L1(G)+1

·Tx) = lim T((δs ∗ eα) · x) = T(δs · x) = T(s · x),

as needed.

The next theorem contains [3, Theorem 2.6] and [6, Theorem 5.2]. The proof is
similar to the proof of Theorem 4.2.

Theorem 4.3. Let X, Y be left Banach G-modules and let L, K be w∗-closed G-invariant
convex subsets of X∗ and Y∗ respectively. If T : L → K is w∗ − w∗ continuous and
affine, then the following are equivalent:

(i) T(φ · s) = Tφ · s whenever s ∈ G, φ ∈ L.

(ii) T(φ · µ) = Tφ · µ whenever µ ∈ M(G)+1 , φ ∈ L.

(iii) T(φ · f ) = Tφ · f whenever f ∈ L1(G)+1 , φ ∈ L.

In the next two theorems L1(G) is viewed as a left Banach G-module via
s · f = δs ∗ f . We first observe that [6, Theorem 5.3] can be generalized as fol-
lows:

Theorem 4.4. Let G be a locally compact non-compact group. Let B be a non-empty
closed convex left G-invariant subset of L1(G), and C a non-empty weakly compact closed
convex left G-invariant subset of a left Banach G-module X. If T : C → B is a continuous
affine G-module map, then T( f ) = 0 for every f ∈ C.
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Proof. By [2, Remark 2], T is affine continuous when C and B have their respective
weak topologies, so T(C) is a weakly compact convex left G-invariant subset of
L1(G). Hence by [6, Theorem 4.6], T(C) = {0}.

Also [6, Theorem 5.5], can be made more general:

Theorem 4.5. Let G be any locally compact group, let C be a weakly compact closed
bounded left G-invariant subset of a left Banach G-module X. Also let T : L1(G)+1 → C
be a continuous affine map. Then the following are equivalent:

(i) T is a G-module map.

(ii) There is x ∈ C, such that T(u) = u · x whenever u ∈ L1(G)+1 .

Proof. (i) ⇒ (ii) Let s ∈ G and suppose T(s · u) = s · Tu whenever u ∈ L1(G)+1 .

Observe that L1(G)+1 is a G-invariant weakly closed convex subset of L1(G), so
by Theorem 4.2, we have

T( f ∗ u) = f · Tu ( f , u ∈ L1(G)+1 ).

Suppose (uα)α ⊆ L1(G)+1 is a BAI for L1(G). Since T(uα) ∈ C for each α and C is
weakly compact, there is an x ∈ C such that by passing to a subnet if necessary,
T(uα) → x in the weak topology. Hence, for φ ∈ X∗,

〈u · x, φ〉 = lim〈Tuα, φ · u〉 = lim〈u · Tuα, φ〉 = lim〈T (u ∗ uα)
︸ ︷︷ ︸

∈L1(G)+1

, φ〉 = 〈Tu, φ〉.

(ii) ⇒ (i) Let s ∈ G and suppose there is an x ∈ C, such that T(u) = u · x for
all u ∈ L1(G)+1 . Then

T(s · u) = (s · u) · x = s · (u · x) = s · Tu.

Ghaffari’s action of L1(G) on Lp(G) (1 ≤ p < ∞) in his paper [3] is

f ⋆ h(t) = f · h(t) =
∫

∆(s)
1
p h(s−1ts) f (s)ds ( f ∈ L1(G), h ∈ Lp(G), s, t ∈ G);

the corresponding G-module action is s ⋆ h(t) = ∆(s)
1
p h(s−1ts). In that paper

it is stated that (L1(G), ⋆) is a Banach algebra. Unfortunately ⋆ is not always
associative on L1(G).

Theorem 4.6. Let G be any non-abelian discrete group. Then ⋆ is not associative on
L1(G) = ℓ1(G).

Proof. Observe that δx ⋆ δy = δxyx−1 whenever x, y ∈ G. Suppose G is a non-

abelian discrete group, and choose s, t, r ∈ G, such that tr 6= rt. If ⋆ is associative
on ℓ1(G), then

δrst(rs)−1 = δr ⋆ (δs ⋆ δt) = (δr ⋆ δs) ⋆ δt = δ(rsr−1)t(rsr−1)−1 .

So rsts−1r−1 = rsr−1trs−1r−1 and hence t = r−1tr; therefore rt = tr, a contradic-
tion. Hence ⋆ is not associative.
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Proposition 4.7. Let G be a locally compact group. If G is abelian, then ⋆ is associative
on L1(G).

Proof. Let G be an abelian locally compact group, and let f , g ∈ L1(G). Then

f ⋆ g(t) =
∫

∆(s)
︸︷︷︸

=1

g(s−1ts
︸ ︷︷ ︸

=t

) f (s)ds =
∫

g(t) f (s)ds =

(∫

f (s)ds

)

g(t).

Now let h ∈ L1(G). Then

( f ⋆ g) ⋆ h(t) =

(∫

( f ⋆ g)(s)ds

)

h(t)

=

(∫ (∫

f (r)dr

)

g(s)ds

)

h(t)

=
∫

f (r)dr

(∫

g(s)dsh(t)

)

=
∫

f (r)dr(g ⋆ h(t))

= f ⋆ (g ⋆ h)(t).

Corollary 4.8. Let G be a discrete group. Then ⋆ is associative on ℓ1(G) if and only if G
is abelian.
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