Carleman Type Approximation Theorem in the Quaternionic Setting and Applications

Sorin G. Gal* Irene Sabadini

Abstract

In this paper we prove Carleman's approximation type theorems in the framework of slice regular functions of a quaternionic variable. Specifically, we show that any continuous function defined on \mathbb{R} and quaternion valued, can be approximated by an entire slice regular function, uniformly on \mathbb{R}, with an arbitrary continuous "error" function. As a byproduct, one immediately obtains result on uniform approximation by polynomials on compact subintervals of \mathbb{R}. We also prove an approximation result for both a quaternion valued function and its derivative and, finally, we show some applications.

1 Introduction and Preliminaries

Carleman's approximation theorem in complex setting was proved in Carleman [2] and can be stated as follows.

Theorem 1.1. Let $f: \mathbb{R} \rightarrow \mathbb{C}$ and $\varepsilon: \mathbb{R} \rightarrow(0,+\infty)$ be continuous on \mathbb{R}. Then there exists an entire function $G: \mathbb{C} \rightarrow \mathbb{C}$ such that

$$
|f(x)-G(x)|<\varepsilon(x), \text { for all } x \in \mathbb{R} .
$$

The Carleman's theorem is a pointwise approximation result which generalizes the Weierstrass result on uniform approximation by polynomials in compact

[^0]intervals, since on any compact subinterval of \mathbb{R}, the entire function can in turn be approximated uniformly by polynomials, more exactly by the partial sums of is power series (see Remark 2.9 for the quaternionic setting).

A natural question is to ask what kind of approximation results one can obtain in the quaternionic setting. In the literature, there are approximation results obtained on balls, see [6], [7], [8], [9] and also Runge theorems, see [4], on uniform approximation for slice regular functions by using rational functions or polynomials.
The goal of the present paper is to extend Theorem 1.1 and other Carleman-type results to the case of entire functions of a quaternionic variable. The class of functions we will consider are expressed by converging power series of the quaternion variable q. This class is a subset of the class of the so-called slice regular functions, see e.g. [3] for a systematic treatment of these functions as well as their applications to the construction of a quaternionic functional calculus. To the best of our knowledge, a Carleman-type theorem has never proved neither for Cauchy-Fueter regular functions of a quaternionic variable nor for monogenic functions with values in a Clifford algebra.

In order to introduce the framework in which we will work, let us introduce some preliminary notations and definitions.

The noncommutative field \mathbb{H} of quaternions consists of elements of the form $q=x_{0}+x_{1} i+x_{2} j+x_{3} k, x_{i} \in \mathbb{R}, i=0,1,2,3$, where the imaginary units i, j, k satisfy

$$
i^{2}=j^{2}=k^{2}=-1, i j=-j i=k, j k=-k j=i, k i=-i k=j .
$$

The real number x_{0} is called real part of q, and is denoted by $\operatorname{Re}(q)$, while $x_{1} i+x_{2} j+x_{3} k$ is called imaginary part of q and is denoted by $\operatorname{Im}(q)$. We define the norm of a quaternion q as $\|q\|=\sqrt{x_{0}^{2}+x_{1}^{2}+x_{2}^{2}+x_{3}^{3}}$. By S we denote the unit sphere of purely imaginary quaternion, i.e.

$$
\mathrm{S}=\left\{q=i x_{1}+j x_{2}+k x_{3}, \text { such that } x_{1}^{2}+x_{2}^{2}+x_{3}^{3}=1\right\} .
$$

Note that if $I \in \mathrm{~S}$, then $I^{2}=-1$. For any fixed $I \in \mathrm{~S}$ we define $\mathbb{C}_{I}:=$ $\{x+I y ; \mid x, y \in \mathbb{R}\}$, which can be can be identified with a complex plane. Obviously, the real axis belongs to \mathbb{C}_{I} for every $I \in S$. Any non real quaternion q is uniquely associated to the element $I_{q} \in \mathrm{~S}$ defined by $I_{q}:=\left(i x_{1}+j x_{2}+\right.$ $\left.k x_{3}\right) /\left\|i x_{1}+j x_{2}+k x_{3}\right\|$ and so q belongs to the complex plane $\mathbb{C}_{I_{q}}$.

The functions we will consider are entire in a suitable sense of analyticity, the so called left slice regularity (or left slice hyperholomorphy) for functions of a quaternion variable, see [5].

Definition 1.2. Let U be an open set in \mathbb{H} and let $f: U \rightarrow \mathbb{H}$ be real differentiable. The function f is called left slice regular if for every $I \in S$, its restriction f_{I} to the complex plane $\mathbb{C}_{I}=\mathbb{R}+I \mathbb{R}$ satisfies

$$
\bar{\partial}_{I} f(x+I y):=\frac{1}{2}\left(\frac{\partial}{\partial x}+I \frac{\partial}{\partial y}\right) f_{I}(x+I y)=0, \quad \text { on } U \cap \mathbb{C}_{I} .
$$

The following result allows to look at slice regular functions as power series of the variable q with quaternionic coefficients on the right (see [5]):

Theorem 1.3. Let $\mathbb{B}_{R}=\{q \in \mathbb{H} ;\|q\|<R\}$. A function $f: \mathbb{B}_{R} \rightarrow \mathbb{H}$ is left slice regular on \mathbb{B}_{R} if and only if it has a series representation of the form

$$
\begin{equation*}
f(q)=\sum_{n=0}^{\infty} q^{n} a_{n}, \quad a_{n} \in \mathbb{H} \tag{1}
\end{equation*}
$$

uniformly convergent on \mathbb{B}_{R}.
Unless otherwise stated, the entire functions considered in this paper will be power series of the form (1) converging for any $R>0$.

Definition 1.4. The functions which, on a ball \mathbb{B}_{R}, admit a series expansion of the form (1) with real coefficients a_{n} are called quaternionic intrinsic. They form a class denoted by $\mathcal{N}\left(\mathbb{B}_{R}\right)$.

To complete the preliminary notions we note that for any slice regular function we have

$$
\frac{\partial}{\partial x} f(x+I y)=-I \frac{\partial}{\partial y} f(x+I y) \quad \forall I \in \mathrm{~S}
$$

and therefore, analogously to what happens in the complex case, for all $I \in S$ the following equality holds:

$$
\frac{1}{2}\left(\frac{\partial}{\partial x}+I \frac{\partial}{\partial y}\right) f(x+I y)=\partial_{x}(f)(x+I y)
$$

By setting $q=x+$ Iy we will write $f^{\prime}(q)$ instead of $\partial_{x}(f)(q)$. For a discussion of the relation between $f^{\prime}(q)$ and the so-called slice derivative of a slice regular function, we refer the interested reader to [3], p.115.

The plan of the present paper goes as follows. In Section 2 we prove the Carleman's approximation theorem i.e. a pointwise approximation for the class of slice regular functions. In Section 3 we prove a simultaneous approximation result, namely an approximation for both a quaternion valued function and its derivative. Finally, in Section 4 we discuss some applications.

2 Carleman Approximation Theorem

The first main result of this section is the following.
Theorem 2.1. Let $f: \mathbb{R} \rightarrow \mathbb{H}$ and $\varepsilon: \mathbb{R} \rightarrow(0,+\infty)$ be continuous on \mathbb{R}. Then there exists an entire function $G: \mathbb{H} \rightarrow \mathbb{H}$ such that

$$
\|f(x)-G(x)\|<\varepsilon(x), \text { for all } x \in \mathbb{R}
$$

The proof of Theorem 2.1 requires some auxiliary results and follows the ideas in the complex case in Hoischen's paper [10], see also Burckel's book [1], pp. 273276.

Lemma 2.2. Let $f: \mathbb{R} \rightarrow \mathbb{H}$ be continuous on \mathbb{R}. There exists a zero free entire function $g: \mathbb{H} \rightarrow \mathbb{H}$ such that $g(x) \in \mathbb{R}$ for all $x \in \mathbb{R}$ and $g(x)>\|f(x)\|$, for all $x \in \mathbb{R}$.

Proof. For $n \in \mathbb{N}$ denote $M_{n}=\max \{\|f(x)\| ;|x| \leq n+1\}$ and choose a natural number $k_{n} \geq n$ such that $\left(\frac{n^{2}}{n+1}\right)^{k_{n}}>M_{n}$. If $q \in \mathbb{H}$ is such that $\|q\| \leq N$, then $\left\|q^{2} /(n+1)\right\|<1 / 2$ for all $n \geq 2 N^{2}$, which implies that the power series in quaternions $h(q)=M_{0}+\sum_{n=1}^{\infty}\left(\frac{q^{2}}{n+1}\right)^{k_{n}}$ converges uniformly in any closed ball $\overline{B(0 ; N)}$, with arbitrary $N>0$, which shows that h is entire on \mathbb{H}. Also, note that the coefficients in the series development are all real (and positive).

Evidently $h(x) \geq 0$ for all $x \in \mathbb{R}$. Then for $|x|<1$ we have $h(x) \geq M_{0} \geq$ $\|f(x)\|$, while for $1 \leq n \leq|x|<n+1$ we have $h(x)>\left(\frac{x^{2}}{n+1}\right)^{k_{n}} \geq\left(\frac{n^{2}}{n+1}\right)^{k_{n}}>$ $M_{n} \geq\|f(x)\|$, which implies $h(x) \geq\|f(x)\|$, for all $x \in \mathbb{R}$. Finally, $\operatorname{set} g(q)=e^{h(q)}$ to get the required entire function. Here a comment is in order: in general the composition $f \circ h$ of two slice regular functions f and h is not, in general, slice regular, but it is so when h is quaternionic intrinsic, see [3]. It also worth noting that $g \in \mathcal{N}(B(0 ; R))$ for all $R>0$, i.e. the coefficients in its series development are all real.

Lemma 2.3. Let $I=[a, b]$ be an interval in \mathbb{R} and let $f: I: \rightarrow \mathbb{H}$ be a continuous function. For any $k \in \mathbb{N}$ define

$$
\begin{equation*}
f_{k}(x)=\frac{k}{C} \int_{a}^{b} e^{-k^{2}(x-t)^{2}} f(t) d t, \quad x \in \mathbb{R} \tag{2}
\end{equation*}
$$

where $C=\int_{-\infty}^{+\infty} e^{-x^{2}} d x$. Then for every $\varepsilon>0$

$$
\lim _{k \rightarrow+\infty} f_{k}(x)=\left\{\begin{array}{l}
f(x) \text { uniformly for } x \in[a+\varepsilon, b-\varepsilon] \\
0 \text { uniformly for } x \in \mathbb{R} \backslash[a+\varepsilon, b-\varepsilon]
\end{array}\right.
$$

Proof. Let us choose a basis $\{1, i, j, k\}$, with $i^{2}=j^{2}=k^{2}=-1, i j=-j i=k$ for the (real) vector space of quaternions. Let us write $f(x)=f_{0}(x)+f_{1}(x) i+f_{2}(x) j+$ $f_{3}(x) k=\varphi(x)+\psi(x) j$ where the functions $\varphi(x)=f_{0}(x)+f_{1}(x) i, \psi(x)=f_{2}(x)+$ $f_{3}(x) i$ have values in the complex plane $z=x+i y$. Since the result holds true for complex valued functions, see e.g. [1, Exercise 8.26 (ii)], we can define, for each $k \in \mathbb{N}$, the functions $\varphi_{k}(x)$ and $\psi_{k}(x)$ as in formula (2) by writing $\varphi(t), \psi(t)$ instead of $f(t)$ in the integrand. Then for every $\varepsilon>0$ we have that, uniformly, $\lim _{k \rightarrow+\infty} \varphi_{k}(x)$ is $\varphi(x)$ in $[a+\varepsilon, b-\varepsilon]$ and is 0 outside. In an analogous way, we have that, uniformly, $\lim _{k \rightarrow+\infty} \psi_{k}(x)$ is $\psi(x)$ in $[a+\varepsilon, b-\varepsilon]$ and is 0 outside. By setting $f_{k}(x)=\varphi_{k}(x)+\psi_{k}(x)$ we obtain the statement.

Lemma 2.4. Let $f: \mathbb{R} \rightarrow \mathbb{H}$ be continuous on \mathbb{R}. Then for each $n \in \mathbb{Z}$, there exists a continuous function $f_{n}: \mathbb{R} \rightarrow \mathbb{H}$ with support in $[-1,1]$, such that for all $x \in \mathbb{R}$ we have $f(x)=\sum_{n=-\infty}^{+\infty} f_{n}(x-n)$.

Proof. We write the function $f(x)$ as $\varphi(x)+\psi(x) j$ as we have done in the proof of Lemma 2.3. Since the result is true for complex valued functions, see e. g.
[1, Exercise 8.28 (i)], we have

$$
\begin{aligned}
& \varphi(x)=\sum_{n=-\infty}^{+\infty} \varphi_{n}(x-n) \\
& \psi(x)=\sum_{n=-\infty}^{+\infty} \psi_{n}(x-n)
\end{aligned}
$$

and by setting $f_{n}(x-n)=\varphi_{n}(x-n)+\psi_{n}(x-n) j$ the result follows.
Remark 2.5. It is interesting for the sequel to explicitly construct the functions $\varphi_{n}(x-n), \psi_{n}(x-n)$ following [1]. Let $\sigma(x)$ be a piecewise linear function which is equal 1 on $(-1 / 2,1 / 2)$ and is 0 outside $(-1,1)$ and let

$$
\Sigma(x)=\sum_{n=-\infty}^{\infty} \sigma(x-n), x \in \mathbb{R}
$$

Then the functions $\varphi_{n}(x)$ can be constructed as

$$
\varphi_{n}(x)=\frac{\sigma(n) \varphi(x+n)}{\Sigma(x+n)}, n \in \mathbb{N}
$$

and similarly we can construct $\psi_{n}(x)$.
Lemma 2.6. Let $f: \mathbb{R} \rightarrow \mathbb{H}$ be continuous on \mathbb{R} and having compact support in $[-1,1]$. Set

$$
T=\{q \in \mathbb{H}:|\operatorname{Re}(q)|>3 \text { and }|\operatorname{Re}(q)|>2\|\operatorname{Im}(q)\|\}
$$

For any number $\varepsilon>0$, there exists an entire function $F: \mathbb{H} \rightarrow \mathbb{H}$, such that $\|f(x)-F(x)\|<\varepsilon$ for all $x \in \mathbb{R}$ and $\|F(q)\|<\varepsilon$ for all $q \in T$.

Proof. For any $k \in \mathbb{N}$ let us define

$$
f_{k}(q)=\frac{k}{C} \int_{-1}^{1} e^{-k^{2}(q-t)^{2}} f(t) d t, \quad q \in \mathbb{H}
$$

where $C=\int_{-\infty}^{+\infty} e^{-x^{2}} d x$. First of all note that the function $e^{-k^{2}(q-t)^{2}}$ is slice regular and when we multiply it on the right by the quaternion valued function $f(t)$ it remains slice regular, since slice regular functions form a right vector space over \mathbb{H}, and with compact support in $[-1,1]$, since so is f. If we expand the exponential in power series, by the uniform convergence we can exchange the series and the integral, thus $f_{k}(q)$ can be written as power series and so it is an entire slice regular function for all $k \in \mathbb{N}$. If we apply Lemma 2.3 to the function $f(x)$ by choosing $a=-2, b=2$ we obtain that $f_{k} \rightarrow f$ uniformly in $[-3 / 2,3 / 2]$ while, by choosing $a=-1, b=1$ we have that $f \rightarrow 0$ uniformly in $\mathbb{R} \backslash[-3 / 2,3 / 2]$ and so $f_{k} \rightarrow f$ uniformly on \mathbb{R}. Let $q \in T$ and $t \in[-1,1]$ and write $q=x_{0}+\operatorname{Im}(q)$. Easy computations show that

$$
\operatorname{Re}\left(k^{2}(q-t)^{2}\right)=k^{2}\left(\left(x_{0}-t\right)^{2}-\|\operatorname{Im}(q)\|^{2}\right)>\frac{3}{4} k^{2}
$$

On each interval $[a, b]$, the function $f_{k}(x)$, that we can write in real components as $f_{k}=f_{k 0}+f_{k 1} i+f_{k 2} j+f_{k 3} k$, is such that

$$
\left\|\int_{a}^{b} f_{k}(x) d x\right\| \leq \sqrt{\sum_{n=0}^{3}\left(\int_{a}^{b} f_{k n}(x) d x\right)^{2}} \leq \sum_{n=0}^{3} \int_{a}^{b}\left\|f_{k n}(x)\right\| d x \leq 4 \int_{a}^{b}\left\|f_{k}(x)\right\| d x
$$

Then, for all $q \in T$, we have

$$
\begin{align*}
\left\|f_{k}(q)\right\| & \leq 4 \frac{k}{C} \int_{-1}^{1}\left\|e^{-k^{2}(q-t)^{2}} f(t)\right\| d t \\
& \leq 4 \frac{k}{C} \int_{-1}^{1} e^{-\operatorname{Re}\left(-k^{2}(q-t)^{2}\right)}\|f(t)\| d t \tag{3}\\
& \leq 4 \frac{k}{C} e^{-\frac{3}{4} k^{2}} \int_{-1}^{1}\|f(t)\| d t \leq \frac{k}{C} \frac{16}{3 k^{2}} M
\end{align*}
$$

where $M=\int_{-1}^{1}\|f(t)\| d t$. If we choose $F(q)=f_{k}(q)$ for k large we have that $\|f(x)-F(x)\|<\varepsilon$ for $x \in \mathbb{R}$ since $f_{k} \rightarrow f$ uniformly on \mathbb{R}, moreover $\|F(q)\|<\varepsilon$ for $q \in T$ by the estimate (3).

Lemma 2.7. Let $f: \mathbb{R} \rightarrow \mathbb{H}$ be continuous on \mathbb{R}. There exists an entire function $F: \mathbb{H} \rightarrow \mathbb{H}$, such that $\|f(x)-F(x)\|<1$ for all $x \in \mathbb{R}$.
Proof. Let f_{n} be as in Lemma 2.4, for $n \in \mathbb{Z}$. By Lemma 2.6 we can associate to each f_{n} an entire function F_{n} such that $\left\|f_{n}(x)-F_{n}(x)\right\|<2^{-|n|-2},\left\|F_{n}(x)\right\|<$ $2^{-|n|}$. Let $N \in \mathbb{N}$, then choose q such that $\|q\| \leq N$ and $n \in \mathbb{Z}$ such that $|n|>$ $3 N+3$. We have

$$
|\operatorname{Re}(q-n)| \geq|n|-|\operatorname{Re}(q)|>3
$$

and

$$
\|\operatorname{Im}(q-n)\|=\|\operatorname{Im}(q)\| \leq N<\frac{1}{3}(|n|-N) \leq \frac{1}{2}|\operatorname{Re}(q-n)| .
$$

The above inequalities allows to conclude that $q-n$ belongs to the set T defined in Lemma 2.6. Our assumption allows to obtain

$$
\left\|F_{n}(q-n)\right\|<2^{-|n|} \quad \text { for }\|q\| \leq N,|n|>3 N+3 .
$$

The estimate implies that the series $\sum_{n=-\infty}^{+\infty} F_{n}(q-n)$ converges uniformly for any q such that $\|q\| \leq N$, for any $N \in \mathbb{N}$. Thus the sequence $s_{m}(q)=\sum_{n=-m}^{m} F_{n}(q-n)$ converges uniformly to a function F, as well as its restrictions to any complex plane \mathbb{C}_{I}, for all $I \in S$. Thus we have that
$\left(\partial_{x}+I \partial_{y}\right) F(x+I y)=\left(\partial_{x}+I \partial_{y}\right) \lim _{m \rightarrow \infty} s_{m}(x+I y)=\lim _{m \rightarrow \infty}\left(\partial_{x}+I \partial_{y}\right) s_{m}(x+I y)=0$, for any q such that $\|q\| \leq N$, for any $N \in \mathbb{N}$ and and so F is an entire function. Moreover for any $x \in \mathbb{R}$ we have

$$
\begin{aligned}
\|F(x)-f(x)\| & \leq\left\|\sum_{n=-\infty}^{+\infty} F_{n}(x-n)-f_{n}(x-n)\right\| \\
& \leq \sum_{n=-\infty}^{+\infty}\left\|F_{n}(x)-f_{n}(x)\right\|<\sum_{n=-\infty}^{+\infty} 2^{-|n|-2}<1
\end{aligned}
$$

and this concludes the proof.

Proof of Theorem 2.1. By Lemma 2.2 there exists a zero free entire function $h: \mathbb{H} \rightarrow \mathbb{H}$, with all the coefficients in its series development being real numbers, such that $h(x)>\frac{1}{\varepsilon(x)}$, for all $x \in \mathbb{R}$. Then, Lemma 2.7 gives an entire function $F: \mathbb{H} \rightarrow \mathbb{H}$ such that $\|h(x) f(x)-F(x)\|<1$, for all $x \in \mathbb{R}$. Since $h(x)$ is real valued, this implies

$$
\left\|f(x)-\frac{F(x)}{h(x)}\right\|<\frac{1}{h(x)}<\varepsilon(x), \text { for all } x \in \mathbb{R}
$$

Then the proof follows by choosing $G(q)=[h(q)]^{-1} \cdot F(q)$.
Remark 2.8. Note that if the function $h(q) \notin \mathcal{N}(\mathbb{H})$ then one would have chosen $G(q)=[h(q)]^{-*} * F(q)$ where $*$ denotes the star multiplication, see [3], i.e. a multiplication which preserves slice regularity.
Remark 2.9. The Weierstrass result on uniform approximation by polynomials on compact subintervals of \mathbb{R} easily follows from Theorem 2.1. Indeed, choose $[A, B] \subset \mathbb{R}$ and an arbitrary small constant $\varepsilon(x):=\varepsilon / 2>0$, for all $x \in \mathbb{R}$. By Theorem 2.1, there exists an entire function $G(q)=\sum_{k=0}^{\infty} q^{k} a_{k}$, such that $\|f(x)-G(x)\|<\varepsilon / 2$, for all $x \in[A, B]$. But from the uniform convergence of the series $G(q)$ in a closed ball $\overline{B(0 ; R)}$ that includes $[A, B]$, clearly there exists n_{0} such that for all $n \geq n_{0}$ we have $\left\|G(q)-\sum_{k=0}^{n} q^{k} a_{k}\right\|<\varepsilon / 2$, for all $q \in \overline{B(0 ; R)}$, which implies

$$
\left\|f(x)-\sum_{k=0}^{n} x^{k} a_{k}\right\| \leq\|f(x)-G(x)\|+\left\|G(x)-\sum_{k=0}^{n} x^{k} a_{k}\right\|<\varepsilon / 2+\varepsilon / 2=\varepsilon,
$$

for all $x \in[A, B]$ and all $n \geq n_{0}$.

3 Carleman-Type Theorem on Simultaneous Approximation

In this section we derive the following Carleman-type result on simultaneous approximation generalizing those obtained in Kaplan [11] in the complex case.
Theorem 3.1. Let $f: \mathbb{R} \rightarrow \mathbb{H}$ having a continuous derivative on \mathbb{R} and $E: \mathbb{R} \rightarrow$ $(0,+\infty)$ be continuous on \mathbb{R}. Then there exists an entire function $G: \mathbb{H} \rightarrow \mathbb{H}$ such that simultaneously we have

$$
\|f(x)-G(x)\|<E(x),\left\|f^{\prime}(x)-G^{\prime}(x)\right\|<E(x), \text { for all } x \in \mathbb{R}
$$

We will adapt the proof of [11, Theorem 3] which holds in the case of a complex variable to our setting. That proof is based on Lemma 1 and Lemma 2 in the same paper. Since Lemma 1 refers only to real valued functions of real variable, it will remain unchanged. Therefore we have to deal just with the analogue of Lemma 2 in the quaternionic setting. We have:
Lemma 3.2. Let $E_{1}: \mathbb{R} \rightarrow \mathbb{R}_{+}$be continuous, satisfying $E_{1}(x)=E_{1}(-x)$, for all $x \in$ \mathbb{R} and such that $k=\int_{-\infty}^{+\infty} E_{1}(t) d t$ is finite. Let $A, B \in \mathbb{H}$ be satisfying $\|A-B\|<2 k$. Then there exists an entire function $h: \mathbb{H} \rightarrow \mathbb{H}$, such that

$$
\left\|h^{\prime}(x)\right\|<E_{1}(x), \text { for all } x \in \mathbb{R}, \text { and } \lim _{x \rightarrow-\infty} h(x)=A, \lim _{x \rightarrow+\infty} h(x)=B
$$

Proof. If $A=B$, then clearly we can choose $h(q)=A$, for all $q \in \mathbb{H}$. If $A \neq B$, denote $r=\|A-B\| /(2 k)$ and $s=(1-r) /(2(1+r))$. By Theorem 2.1, there exists an entire function $G: \mathbb{H} \rightarrow \mathbb{H}$, such that for all $x \in \mathbb{R}$ we have $\left\|G(x)-E_{1}(x)\right\|<$ $s E_{1}(x)$.

Now, if $G(q)=\sum_{n=0}^{\infty} q^{n} a_{n}$ then $h_{0}(q)=\sum_{n=0}^{\infty} q^{n+1} \cdot \frac{a_{n}}{n+1}$ remains a convergent series with the same ray of convergence as G, therefore h_{0} is also entire. In addition, it is clear that $\partial_{s} h_{0}(q)=G(q)$ for all q. Therefore, we get that there exists an entire function $h_{0}: \mathbb{H} \rightarrow \mathbb{H}$, such that

$$
\left\|h_{0}^{\prime}(x)-E_{1}(x)\right\|<s E_{1}(x), \text { for all } x \in \mathbb{R}
$$

This last inequality implies $\left\|h^{\prime}(x)\right\| \leq(1+s) E_{1}(x)$ and therefore by the LeibnizNewton formula $h_{0}(x)=\int_{0}^{x} h^{\prime}(t) d t+h_{0}(0)$, we get that the next two limits exist (in \mathbb{H})

$$
\begin{aligned}
\lim _{x \rightarrow+\infty} h_{0}(x) & =\int_{0}^{+\infty} h_{0}^{\prime}(t) d t+h_{0}(0):=B_{0} \\
\lim _{x \rightarrow-\infty} h_{0}(x) & =\int_{0}^{-\infty} h_{0}^{\prime}(t) d t+h_{0}(0):=A_{0}
\end{aligned}
$$

In addition, we easily get $\operatorname{Re}\left[h^{\prime}(x)\right]>(1-s) E_{1}(x)$ for all $x \in \mathbb{R}$ and therefore

$$
\left\|A_{0}-B_{0}\right\|=\left\|\int_{-\infty}^{+\infty} h^{\prime}(x) d x\right\|>\int_{-\infty}^{+\infty} \operatorname{Re}\left[h^{\prime}(x)\right] d x>2 k(1-s)
$$

Choosing now the constants $a, b \in \mathbb{H}$ such that $a A_{0}+b=A, a B_{0}+b=B$ and defining $h(q)=a h_{0}(q)+b$, by similar reasonings with those in the proof of Lemma 2 in [11] we get the desired conclusion.

Proof of Theorem 3.1. Without loss of generality, we may suppose that $E(x)=E(-x)$, for all $x \in \mathbb{R}$ (this is due to the simple fact for any positive function $E(x)$ on \mathbb{R}, we can define $E^{*}(x)=\min (E(x), E(-x))$, which is now an even function on \mathbb{R}). Let $E_{1}(x)$ (depending on $E(x)$ as in Lemma 1 in [11]) so that E_{1} is also an even function. By Theorem 2.1, there exists an entire function G_{1} such that $\left\|G_{1}(x)-f^{\prime}(x)\right\|<E_{1}(x)$, for all $x \in \mathbb{R}$.

Set $g(x)=\int_{0}^{x}\left[G_{1}(t)-f^{\prime}(t)\right] d t$. By the choice of $E_{1}(x)$, there exist (in \mathbb{H}) the limits $\lim _{x \rightarrow+\infty} g(x)=B, \lim _{x \rightarrow-\infty} g(x)=A$ and $\|A-B\|<\int_{-\infty}^{+\infty} E_{1}(x) d x:=2 k$. For these A, B and $E_{1}(x)$, let h the entire function given by the above Lemma 3.2.

Define now $G(q)=\int_{0}^{q} G_{1}(t) d t+f(0)-h(q), q \in \mathbb{H}$. The conclusion of the theorem follows as in the proof of Theorem 3 in [11].

4 Applications

The first application of Theorem 2.1 is the following.
Theorem 4.1. Let $f:(-1,1) \rightarrow \mathbb{H}$ and $\varepsilon:(-1,1) \rightarrow(0,+\infty)$ be continuous on $(-1,1)$. Then there exists a power series $P(u)=\sum_{n=0}^{\infty} u^{n} a_{n}$, with $a_{n} \in \mathbb{H}$, such that

$$
\|f(u)-P(u)\|<\varepsilon(u), \text { for all } u \in(-1,1) .
$$

In addition, if f is real-valued on $(-1,1)$ then also P can be chosen real-valued on $(-1,1)$.

Proof. It is an immediate consequence of Theorem 2.1 by using the entire function $w \in \mathcal{N}(B(0 ; R))$ for all $R>0$, defined by

$$
\begin{aligned}
w(q)= & \tan \left(\frac{\pi}{2} q\right)=\sum_{n=1}^{\infty} q^{2 n-1} \cdot \frac{(-1)^{n-1} 2^{2 n}\left(2^{2 n}-1\right) B_{2 n}}{(2 n)!} \\
& =q+q^{3} \cdot \frac{1}{3}+q^{5} \cdot \frac{2}{15}+q^{7} \cdot \frac{17}{315}+\ldots+
\end{aligned}
$$

where B_{n} denotes the nth Bernoulli number.
Indeed, defining $F: \mathbb{R} \rightarrow \mathbb{H}$ by $F(x)=f((2 / \pi) \arctan (x))$, clearly F is continuous on \mathbb{R} and then by Theorem 2.1, for the continuous function $E: \mathbb{R} \rightarrow \mathbb{R}_{+}$ defined by $E(x)=\varepsilon((2 / \pi) \arctan (x))$, there exists an entire function $G: \mathbb{H} \rightarrow \mathbb{H}$, such that $\|F(x)-G(x)\|<E(x)$, for all $x \in \mathbb{R}$, i.e. $\| f((2 / \pi) \arctan (x))-$ $G(x) \|<E(x)$ for all $x \in \mathbb{R}$.

Denoting $(2 / \pi) \arctan (x)=u$ and replacing in the last inequality, we obtain

$$
\|f(u)-G(\tan (\pi u / 2))\|<E(\tan (\pi u / 2))=\varepsilon(u), \text { for all } u \in(-1,1) .
$$

Denoting now $P(q)=G(w(q))$, since $w \in \mathcal{N}(B(0 ; R))$ for all $R>0$ it follows that P is an entire function on \mathbb{H} and therefore we can write $P(q)=\sum_{n=0}^{\infty} q^{n} a_{n}$, for all $q \in \mathbb{H}$ and the statement follows.

Similar to the case of complex variable of Theorem 7 in Kaplan [11], one can prove the following.

Corollary 4.2. Let $f: \partial(B(0 ; 1)) \rightarrow \mathbb{R}$ be real-valued and measurable. Then there exists a function $u: \overline{B(0 ; 1)} \rightarrow \mathbb{H}$, harmonic in $B(0 ; 1)$ (that is if $u(q)=u(x+I y)$ then $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0$, for all $\left.\|q\|<1\right)$, such that for any $I \in \mathrm{~S}$ we have $u\left(r e^{I \varphi}\right) \rightarrow f\left(e^{I \varphi}\right)$ as $r \nearrow 1$, for almost everywhere φ.

References

[1] R.B. Burckel, An Introduction to Classical Complex Analysis. Volume 1, Pure and Applied Mathematics, 82. Academic Press, Inc., New York-London, 1979.
[2] T. Carleman, Sur un théorème de Weierstrass, Ark. Mat. Astr. Fys. 20B, 4(1927), 1-5.
[3] F. Colombo, I. Sabadini, D. C. Struppa, Noncommutative functional calculus. Theory and applications of slice hyperholomorphic functions., Progress in Mathematics, 289, Birkhäuser/Springer Basel AG, Basel, 2011.
[4] F. Colombo, I. Sabadini, D. C. Struppa, The Runge theorem for slice hyperholomorphic functions, Proc. Amer. Math. Soc., 139(2011), 1787-1803.
[5] G. Gentili, D.C. Struppa, A new approach to Cullen-regular functions of a quaternionic variable, C. R. Math. Acad. Sci. Paris, 342(2006), 741-744.
[6] S. G. Gal, Approximation by quaternion q-Bernstein polynomials, $q>1$, Adv. Appl. Clifford Algebr., 22(2012), 313-319.
[7] S. G. Gal, Voronovskaja-type results in compact disks for quaternion q-Bernstein operators, $q \geq 1$, Complex Anal. Oper. Theory, 6(2012), 515-527.
[8] S. G. Gal, Approximation by complex Bernstein and convolution type operators, Series on Concrete and Applicable Mathematics, Vol. 8, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2009.
[9] S. G. Gal, I. Sabadini, Approximation in compact balls by convolution operators of quaternion and paravector variable, Bull. Belgian Math. Soc., 20, No. 3, 2013, 481-501.
[10] L. Hoischen, A note on the approximation theorem of continuous functions by integral functions, J. London Math. Soc., 42(1967), 351-354.
[11] W. Kaplan, Approximation by entire functions, Michigan Math. J., 3(1955-1956), 43-52.

University of Oradea
Department of Mathematics and Computer Science
Str. Universitatii Nr. 1
410087 Oradea, Romania
galso@uoradea.ro
Dipartimento di Matematica
Politecnico di Milano
Via Bonardi 9
20133 Milano, Italy
irene.sabadini@polimi.it

[^0]: *This paper has been written during a stay of the first author at the Politecnico di Milano.
 Received by the editors in February 2013 - In revised form in June 2013.
 Communicated by H. De Schepper.
 2010 Mathematics Subject Classification : Primary : 30G35 ; Secondary : 30E10.
 Key words and phrases : slice regular functions, entire functions, Carleman approximation theorem.

