When does secat equal relcat ?
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Abstract

In [3] the authors introduced a relative category for a map that differ from
the sectional category by just one. The relative category has specific proper-
ties (for instance a homotopy pushout does not increase it) which make it a
convenient tool to study the sectional category. The question to know when
secatequals relcat arises. We give here some sufficient conditions. Applica-
tions are given to the topological complexity, which is nothing but the sectional
category of the diagonal.

In [3], we have introduced an approximation of James’ sectional category of a
map that we called relative category. For any continuous map ¢ : A — X, we
have secat (1) < relcat (1) < secat (1) + 1. It is an important information to know
whether secat (1) = relcat (1). For instance, when the equality holds, if C is the
homotopy cofibre of 1, we have cat (C) < secat (1) < cat (X), see Corollary 5. For
the null map Ox: * — X, the equality is trivial: secat (0x) = relcat (0x) = cat (X).
Here we establish the equality in three cases: the homotopy fibre of a map that
has a homotopy section, see Proposition 8; the diagonal map of a connected CW
H-space, see Theorem 11; and a (g — 1)-connected map ¢ : A — X where A is CW
with dim A < (secat (¢) +1)q — 1, see Theorem 14.

We work indifferently in the category of topological spaces Top or in the cat-
egory of well-pointed topological spaces Top" (well-pointed means that the inclu-
sion of the base point is a closed cofibration) [8]. We will denote these categories
ambiguously by 7. However for most applications (for instance when we speak
of homotopy fibre or cofibre) we need the category to be pointed (the zero object
will be denoted by *). Every constructions are made “up to homotopy’.
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We use the same notations as in [3]. The homotopy pullback of maps f: A —
Band g: C — Bisdenoted by A xpC. If thereare mapsp: D —+ Aandq: D — C
such that f o p ~ g o g, the “‘whisker’ map D — A xp C induced by the homotopy
pullback is denoted by (p,q). The homotopy pushout of maps v: U — V and
w: U — W is denoted by V vy W. If there are maps y: V — Xand z: W — X
such that yov ~ zow, the “‘whisker’ map V Vy W — X induced by the homotopy
pushout is denoted by (y,z). If W ~ x, then V Vi * is the homotopy cofibre
of v and is denoted by V/U. Finally the join of f and g is the whisker map
(f,g): AVpC — Bwhere P ~ A xp C; AVp Cis denoted by A < C. For basic
definitions and properties about homotopy pullbacks and pushouts, we refer to
[6] or [2].

1 Sectional and relative categories

Definition 1. For any map 1x: A — X of T, the Ganea construction of i1x is the
following sequence of homotopy commutative diagrams (i > 0):

/M

yx

where the outside square is a homotopy pullback, the inside square is a homotopy
pushout and the map g;11 = (gi,tx): Giy1 — X is the whisker map induced by
this homotopy pushout. The iteration starts with gg = 1x: A — X.

We denote G; by G;(1x), or by G;(X, A). If T is pointed, we write G;(X) =
Gl’ (X , *)
The sequence of homotopy commutative diagrams above extends to:

AT~ o Giy1 —Sin—= X

where ag = id 4. Since g; o a; ~ 1x, the outside square commutes up to homotopy
and the homotopy pullback F; induces the whisker map 6; = (a;,id4): A — F.
Notice also that y; o a; ~ a1 1.

Proposition 2. For any map 1x: A — X in T, we have G;(1x) ~ > A, ie. the
(i + 1)-fold join of A over X, and F;(1x) ~ ><a{1 Fy(1x).
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Proof. By definition, G; ~ Ddi;l A. From the Join theorem, see [1], which asserts
that, roughly speaking, the join of homotopy pullbacks is a homotopy pullback,
we deduce that the following square is a homotopy pullback:

N;H F, gi(1o) A

This means that F; ~ MZH K. ]

Definition 3. Letix: A — X be a map of 7.

1) The sectional category of 1x is the least integer n such that the map g,,: G, (1x) —
X has a homotopy section, i.e. there exists a map 0: X — Gu(ix) such that
gn o0 =~ idy.

2) The relative category of ix is the least integer n such that the map g, : G, (1x) —
X has a homotopy section ¢ and 0 o 1x =~ ay.

We denote the sectional category by secat (1x) or secat (X, A), and the relative
category by relcat (1x) or relcat (X, A). If T is pointed with * as zero object, we
write cat (X) = secat (X, ) = relcat (X, *). The integer cat (X) is the ‘normal-
ized’ version of the Lusternik-Schnirelmann category.

The following basic facts about secat and relcat are proved in [3]:

Proposition 4. Suppose we are given any homotopy commutative diagram in T :

B—2 .y
'
A X

Ix

1) If f has a homotopy section, then secat (1x) < secat (ky).
2) If f has a homotopy section s, ¢ has a homotopy section t, and s o 1x =~ Ky o t, then
relcat (1x) < relcat (xy).
3) If the square is a homotopy pullback, then
secat (ky) < secat (tx) and relcat (xy) < relcat (tx).
4) If the square is a homotopy pushout, then relcat (1x) < relcat (xy).
5) If f and { have homotopy inverses, then
secat (1x) = secat (ky) and relcat (1x) = relcat (ky).

Two particular cases (of statements 1 and 4) are worth to be remarked: For
any map (x: A — X, we have secat (1x) < cat(X) and cat (X/A) < relcat (1x).

The following immediate consequence inlights the importance of knowing
when sectional and relative categories coincide:

Corollary 5. For any map 1x: A — X with homotopy cofibre X/ A, if secatix =
relcat iy, then
cat (X/A) < secat (1x) < cat (X).
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Recall that in general cat (X/A) < cat(X) + 1. It is important to note that if
the sectional and relative categories of a map are equal, the category of its homo-
topy cofibre cannot be greater than the category of its target.

The following other consequence of Proposition 4 will be useful:

Proposition 6. Ifix: A — Xand f: Y — X aremaps of T, consider the following join
construction:

where the outside square is a homotopy pullback, the inside square is a homotopy pushout,
and the map j = (f,1x): ] — X is the whisker map induced by the homotopy pushout.
We have

relcat (1) < relcat (xy) < relcat (1x).

Moreover, if f has a homotopy section, then
relcat (1) = relcat (xy) = relcat (1x).

Proof. The inequalities are direct applications of Proposition 4, statements 3 and
4.

If s is a homotopy section of f, the Prism lemma (see [2] for instance) gives the
two homotopy pullbacks:

t 4

A——=B——A
lxl Kyl llx

and Jot ~idy. Wehave jogos ~ f os ~ idx, so g o s is a homotopy section of
j. Alsowehavegosoix ~ goxyot ~ ol ot~ i, and we obtain relcat (1x) <
relcat (1) by Proposition 4, statement 2. ]

An interesting particular case of Proposition 6 is this one:

Corollary 7. Leti: F — E be the homotopy fibre of f: E — B and E/F be the homotopy
cofibre of i. Then:
cat (E/F) < relcat (i) < cat(B).

2 Comparing sectional and relative categories

We obtain a first sufficient condition for the equality of sectional and relative cat-
egories of a map:

Proposition 8. Let i: F — E be the homotopy fibre of f: E — B. If f has a homotopy
section then cat (E/F) = relcat (i) = cat (B) = secat (i).
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Proof. The first two equalities are direct applications of Proposition 6. Proposi-
tion 4, statements 1 and 3, imply the third equality. m

Example 9. The map iny = (id,0): A — A x B is the (homotopy) fibre of
pr,: A X B — B, thus cat ((A x B)/A) = secat (in;) = relcat (in;) = cat (B).

For any X in 7, and m > 2, recall from [7], that the higher topological complexity
TC ,,(X) is defined as TC,,(X) = secat (Ay,), i.e. it is the sectional category of
the diagonal A,,: X — X™. Farber’s topological complexity TC (X) = TC,(X).
(Originally, there was a shift by one; we use here the ‘normalized” definition.)
Proposition 10. For any X in T, and m > 2, we have

cat (X" 1) < TC ,(X) < cat (X™).

Proof. Follows from Proposition 4, see [3]. [ |
Theorem 11. Let X be a connected, CW H-space. For any m > 2, we have

cat (X" /X) = TC u(X) = secat (A,;) = relcat (A,,) = cat (X" 1).

Proof. It is shown in [5] that for a connected CW H-space X, there is a homotopy
pullback:

m
X A X
‘/ lfml
* xm-1
and f,,_1 has an obvious homotopy section. Thus we obtain the desired equalities
by Proposition 8. n
Our own contribution here is the equality secat(A,,) = relcat (A,). The

equality secat (A,;) = cat (X"~ 1) is shown in [5] and the equality cat (X" /X) =
secat (Ay,) is shown in [4]; both these relations are linked to the fact that
secat (Ay,) = relcat (Ay).

We proved the next result indirectly in [3]. We give here a direct proof for
convenience.
Proposition 12. For any map 1x: A — X of T, we have:

secat (1x) < relcat (1x) < secat (1x) + 1.

Proof. Let secat(1x) < n. Consider any homotopy section c: X — G, of
¢n: Gy — X and let 0™ = 7y, o 0. Following the proof of Proposition 6, we have
that ¢ is a homotopy section of g, 11 and ¢ o 1x ~ 1. We have obtained that
relcat (1x) <n+1. ]
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Let be given any map tx: A — X with secat (1x) < n and any homotopy
sectiono: X — G, of g,: G, — X. Consider the following homotopy pullbacks:

P—7"-A
”’l el\
le ﬁnl llX

By the Prism lemma, we know that the homotopy pullback of ¢ and B, is indeed
A, and that 77, 07 ~ id4. Also notice that m ~ 7t/ since m ~ 5,060, 0m ~
podorm ~ .

Proposition 13. Let be given any map 1x: A — X with secat (1x) < n and any
homotopy section o: X — Gy(ix) of gn: Gu(tx) — X. With the same definitions and
notations as above, the following conditions are equivalent:

(i) ocoix ~ ay.

(ii) 7t has a homotopy section.
(iii) 7T is a homotopy epimorphism.
(iv) 0, ~ 0.

Proof. We have the following sequence of implications:

(i) = (i): Since coix ~ a, ~ B, 06, 0ids, we have a whisker map
(1x,ida): A — P induced by the homotopy pullback P which is a homotopy
section of 7.

(ii) = (iii): Obvious.

(iiil) = (iv): We have 0,, o m ~ 7 o 7t since w ~ 7. Thus 0,, ~ 7 since 7T is a
homotopy epimorphism.

(iv) = (i): Wehavecooix ~ B,00 ~ B, 00, >~ ay. [ |

Theorem 14. Let be given a CW-complex A and a (q — 1)-connected map 1x: A — X.
Ifdim A < (secatix +1)q — 1 then secatix = relcatix.

Proof. Recall that g; is the (i + 1)-fold join of ix. Thus by [6], Theorem 47, we
obtain that, for eachi > 0, g; : G; — X is (i + 1)g — 1-connected. As g; and
17; have the same homotopy fibre, the Five lemma implies that 77;: ; — A is
(i+1)g — 1-connected, too. By [9], Theorem IV.7.16, this means that for every CW-
complex K with dimK < (i +1)q — 1, #; induces a one-to-one correspondence
[K,F;] — [K,A]. Since 6, and ¢ are both homotopy sections of 7,,, we obtain
8, >~ 7, and Proposition 13 implies the desired result. n

Example 15. Let 11 S" — S™ withr > m. If r < 2m — 1, then relcat (1) = secat (1);
this is 1 except for the identity for which it is 0. In particular this means that
a1: S" — S pgm S” factorizes through ¢ up to homotopy.
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Example 16. Let 1 be any of the Hopf maps S® — S2, §7 — S* and S'° — S8,
Since they have a target of category 1 and a homotopy cofibre of category 2, we
have secath = 1 while relcath = 2. This is a counterexample which illustrates
that the inequality in the hypothesis of Theorem 14 is sharp, because in the three
cases we have exactly dim A = (secath +1)g — 1.

In [3], we have introduced the complexity of a map 1x: A — X; we write
TC (1) = secat (id 4, tx) where (idy, 1x): A — A x X is the whisker map induced
by the homotopy pullback. In particular the complexity of the null map * — X is
cat (X) (see Example 9) and the complexity of idy is secat (A) = TC (X). We will
also write relTC (1x) = relcat (id 4, 1x).

Proposition 17. For any map 1x: A — X in T, we have:
cat (X) < TC (1x) < TC(X) < cat(X x X).
Proof. Follows from Proposition 4, see [3]. [ |
Applying Theorem 14 to topological complexity, we obtain:

Corollary 18. Let be given any map 1x: A — X between CW-complexes, A connected
and X (q — 1)-connected. If dim A < (TC (1x) +1)q — 1, then

cat ((A x X)/A) < relTC (1x) = TC (1x) < cat (A x X)
where (A x X)/ A is the homotopy cofibre of (id 4, tx).

Proof. With the hypothesis, (id 4, 1x) is (§ — 1)-connected, and we may apply The-
orem 14 to obtain the equality. This implies the inequalities by Corollary 5. m

The first inequality is proved in [4] for the particular case 1x = idx.

Example 19. Consider the Hopf fibration S” — S* and factor by the action of
S! on S7 to get 1: CP?> — S*. We have shown in [3] that TC (1) = 2. We have
dimCP® =6 <34 —1= (TC(:) +1).g — 1, s0 relTC (1) = TC (1) = 2.

Example 20. More generally assume A is a connected CW-complex and consider
any map t: A — S™. Wehave TC (1) > cat (§") = 1and S™ is (m — 1)-connected.
Thus if dim A < 2m — 1, we have relTC (1) = TC (1).

For the particular case 1 = idgn, dim S < 2m — 1 for any m > 2, so we have
relTC (§™) = TC (S™) for any m > 2.

3 Open problems

Let be given a map 1x: A — X. Consider the map a;: A — Gj(1x) of the
Ganea construction 1. In [3], we showed that relcat (¢;) = secat(a;) = i for
i < secat (1x) and relcat (a;) = relcat (1x) for i > relcat (1x). We have no evidence
that relcat (¢;) = secat («;) for any i but we think it would be true:

Conjecture 21. For any map 1x: A — X, any i > 0, we have

secat (¢;) = relcat («;) = min{i, relcat (1x)}.
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Another more tricky conjecture is:

Conjecture 22. For any map 1x: A — X, if 1x has a homotopy retraction, then we have
secat (1x) = relcat (1x).

A positive answer to this question would imply that TC (X) = relTC (X) for
any X and even TC (1) = relTC (1) for any map 1x: A — X, since (id 4, 1x): A —
A x X has an obvious (homotopy) retraction pr;: A x X — A.
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