Lichnerowicz inequality on foliated manifold with a parallel 2-form

M. A. Chaouch

Abstract

In this paper, we prove that if (M, g) is a closed orientable Riemannian manifold with a transversely oriented harmonic *g*-Riemannian foliation of codimension *q* on *M* and if there exists a parallel basic 2-form on *M* and a positive constant *k* such that the transversal Ricci curvature satisfies $Ric_{\nabla}(Z, Z) \ge k(q-1)|Z|^2$ for every transverse vector field *Z*, then the smallest nonzero eigenvalue λ_B of the basic Laplacian Δ_B satisfies $\lambda_B \ge 2k(q-1)$.

1 Introduction

In [1] the authors gave a foliated version of Lichnerowicz and Obata theorems. They proved that if *M* is a closed Riemannian manifold with a Riemannian foliation of codimension *q*, and if the normal Ricci curvature satisfies $Ric^{\perp}(X, X) \ge a(q-1)|X|^2$ for every *X* in the normal bundle for some fixed a > 0, then the smallest eigenvalue λ_B of the basic Laplacian satisfies $\lambda_B \ge aq$. In this paper, we assume that the manifold is endowed with a nontrivial parallel basic 2-form, and we give a new estimation of the first non zero eigenvalue of the basic Laplacian.

Bull. Belg. Math. Soc. Simon Stevin 19 (2012), 229-237

Received by the editors February 2009.

Communicated by S. Gutt.

²⁰⁰⁰ Mathematics Subject Classification : 53C12, 57R30.

Key words and phrases : harmonic foliation, Riemannian foliation, transverse vector field, basic Laplacian.

2 Preliminaries

Let (M, g) be a Riemannian manifold of dimension n with a foliation \mathcal{F} of codimension q. The foliation is given by an integrable sub-bundle L of the tangent bundle TM over M. Let L^{\perp} indicates the orthogonal complement bundle of L and $\pi : TM \longrightarrow L^{\perp}$ the projection of TM on L^{\perp} parallel to L. In what follows, for any sub-bundle E of TM we denote by ΓE the space of sections of E.

Let ∇^M be the Riemannian connection on (M, g). We can define an adapted connection ∇ on L^{\perp} by the following:

$$\nabla_X Z = \begin{cases} \pi([X, Z]) & \text{if } X \in \Gamma(L) \\ \pi(\nabla_X^M Z) & \text{if } X \in \Gamma(L^{\perp}) \end{cases}$$

for any $Z \in \Gamma(L^{\perp})$.

Let $X, Y \in \Gamma TM$, the *torsion* T_{∇} of ∇ is given by

$$T_{\nabla}(X,Y) = \nabla_X \pi(Y) - \nabla_Y \pi(X) - \pi([X,Y]),$$

and the *curvature* R_{∇} of ∇ is defined by

$$R_{\nabla}(X,Y) = \nabla_X \nabla_Y - \nabla_Y \nabla_X - \nabla_{[X,Y]}.$$

We know that $T_{\nabla} = 0$ and $R_{\nabla}(X, Y) = 0$ for $X, Y \in \Gamma L$ (see [7]).

A local orthonormal frame $(E_i)_{0 \le i \le n}$ of *TM* is adapted with respect to the foliation \mathcal{F} if $E_i \in \Gamma(L)$ for $0 \le i \le p$, and $E_i \in \Gamma(L^{\perp})$ for $p + 1 \le i \le n$ where p = n - q is the dimension of \mathcal{F} .

The tension field τ of the foliation \mathcal{F} is given by $\tau = \pi(\sum_{i=1}^{p} \nabla_{E_i}^M E_i).$

Let $Y, Z \in \Gamma(E^{\perp})$, the transversal Ricci operator and the transversal Ricci curvature are defined respectively by

$$\rho_{\nabla}(Z) = \sum_{i=p+1}^{n} R_{\nabla}(Z, E_i) E_i, \qquad Ric_{\nabla}(Z, Y) = g(\rho_{\nabla}(Z), Y).$$

The transversal divergence operator is given by

$$div_{\nabla}Z = \sum_{i=p+1}^{n} g(\nabla_{E_i}Z, E_i) = \sum_{i=p+1}^{n} g(\nabla_{E_i}^MZ, E_i).$$

If div_M is the standard divergence operator, then we have

$$div_M Z = div_\nabla Z - g(\tau, Z).$$

The foliation \mathcal{F} is harmonic if all the leaves of \mathcal{F} are minimal submanifolds of M, that is $\tau = 0$ [7]. The foliation \mathcal{F} is *g*-Riemannian if it is bundle like with respect to the metric *g*, that is $(\nabla_X g)(Y, Z) = 0$ for $X \in \Gamma(L)$ and $Y, Z \in \Gamma(L^{\perp})$. The set $\mathcal{V}^{\perp}(\mathcal{F}) = \{Z \in \Gamma L^{\perp} / \nabla_X Z = \pi[X, Z] = 0 \text{ for all } X \in \Gamma L\}$ is called the space of transverse fields. The set of basic forms is defined by

$$\Omega_B^*(\mathcal{F}) = \{ \omega \in \Omega^*(M) / i_X \omega = 0, L_X \omega = 0 \text{ for all } X \in \Gamma L \}.$$

It's an easy task to show that $Z \in \mathcal{V}^{\perp}(\mathcal{F})$ if and only if $\omega = i_Z g \in \Omega^1_{\mathcal{B}}(\mathcal{F})$. So $\mathcal{V}^{\perp}(\mathcal{F})$ is isomorph to $\Omega^1_{\mathcal{B}}(\mathcal{F})$.

A form $\omega \in \Omega_B^*(\mathcal{F})$ is parallel if $\nabla_X \omega = 0$ for all $X \in \Gamma L^{\perp}$. The exterior differential *d* restricts to $d_B : \Omega_B^*(\mathcal{F}) \longrightarrow \Omega_B^{*+1}(\mathcal{F})$. The adjoint of d_B , with respect to the induced scalar product $\langle ., . \rangle_B$ on $\Omega_B^*(\mathcal{F})$ is denoted by $\delta_B : \Omega_B^*(\mathcal{F}) \longrightarrow \Omega_B^{*-1}(\mathcal{F})$ and we have the basic Laplacian

$$\Delta_B = \delta_B d_B + d_B \delta_B.$$

For a transversely oriented harmonic *g*-Riemannian foliation \mathcal{F} , it follows from [2] and [3] that δ_B is given on $\omega \in \Omega^1_B(\mathcal{F})$ by the formula

$$\delta_B \omega = -\sum_{i=p+1}^n (\nabla_{E_i} \omega) E_i$$

which gives the Bochner-Weitzenbock formula

$$\Delta_B \omega = -tr_B \nabla^2 \omega + \rho_{\nabla}(\omega), \qquad (2.1)$$

where $tr_B \nabla^2 = \sum_{i=p+1}^n \nabla^2_{E_i, E_i}$

3 Some computational results.

In the following, for $Z \in \Gamma L^{\perp}$, we denote by A_Z the endomorphism of ΓL^{\perp} defined by $A_Z(Y) = \nabla_Y Z$.

Proposition 1. Let $Z \in \mathcal{V}^{\perp}(\mathcal{F})$ and $\alpha \in \Omega^2_B(\mathcal{F})$. Let Θ be the endomorphism of ΓL^{\perp} associated to α with respect to the metric g. If α is parallel, then we have

$$\sum_{i=p+1}^{n} \nabla_{E_i} (A_Z \circ \Theta)(E_i) = \frac{1}{2} \sum_{i=p+1}^{n} R(E_i, \Theta(E_i)) Z.$$
(3.2)

Proof. Since Θ is antisymmetric with respect to *g*, we have

$$\sum_{i=p+1}^{n} \nabla_{E_{i},\Theta(E_{i})}^{2} Z = \sum_{i,j=p+1}^{n} g(\Theta(E_{i}), E_{j}) \nabla_{E_{i},E_{j}}^{2} Z$$
$$- \sum_{i,j=p+1}^{n} g(\Theta(E_{j}), E_{i}) \nabla_{E_{i},E_{j}}^{2} Z$$
$$= -\sum_{j=p+1}^{n} \nabla_{\Theta(E_{j}),E_{j}}^{2} Z.$$

Furthermore Θ is parallel with respect to the connection ∇ , hence

$$\sum_{i=p+1}^{n} \nabla_{E_i} (A_Z \circ \Theta)(E_i) = \sum_{i=p+1}^{n} \nabla_{E_i} (A_Z) \Theta(E_i) = \sum_{i=p+1}^{n} \nabla_{E_i,\Theta(E_i)}^2 Z.$$
$$= \frac{1}{2} (\sum_{i=p+1}^{n} \nabla_{E_i,\Theta(E_i)}^2 Z - \sum_{i=p+1}^{n} \nabla_{\Theta(E_i),E_i}^2 Z)$$
$$= \frac{1}{2} \sum_{i=p+1}^{n} R(E_i,\Theta(E_i)) Z,$$

and we get the desired equality.

In the next, we assume that \mathcal{F} is *g*-Riemannian and we use the following special (orthonormal) moving frames on *M*. For $x \in M$, let $\{e_i\}_{i=1}^n \subset T_x M$ be an (oriented) orthonormal basis with $\{e_i\}_{i=1}^p \subset L_x$ and $\{e_i\}_{i=p+1}^n \subset L_x^{\perp}$. Let *U* be a distinguished (flat) neighborhood of *x* for \mathcal{F} with local (Riemannian) submersion $f : U \longrightarrow N$ (*N* is a Riemannian manifold of dimension *q*). For i = p + 1, ..., n, let $E_i \in \Gamma(U, L)$ be the pull back of the extension of f_*e_i to a vector field on *N* by parallel transport along geodesic segments emanating from f(x) (use [6] Prop 4.2). Then, we complete $\{E_i\}_{i=p+1}^n$ by the Gram-Schmidt process to a moving frame $\{E_i\}_{i=1}^n$ by adding $E_i \in \Gamma(U, L)$ with $(E_i)_x = e_i, i = 1, ..., p$. We have then for i, j = p + 1, ..., n:

$$\nabla_{e_i} E_j = (\nabla_{E_i} E_j)_x = 0. \tag{3.3}$$

Proposition 2. Under the assumptions of proposition 1, we have

$$|\Theta \circ A_Z|^2 = g(tr_B \nabla^2 Z, \Theta^2(Z)) - div_\nabla A_Z^* \circ \Theta^2(Z)$$
(3.4)

Proof. Let $x \in M$, we use the under orthonormal frame. Since $Z \in \mathcal{V}^{\perp}(\mathcal{F})$, we have $A_Z(E_k) = 0$ for k = 1, ..., p, hence

$$\begin{split} |\Theta \circ A_Z|^2 &= \sum_{k=p+1}^n g(\Theta \circ A_Z(E_k), \Theta \circ A_Z(E_k)) \\ &= \sum_{i,k=p+1}^n g(A_Z(E_k), E_i)g(\Theta(E_i), \Theta \circ A_Z(E_k)) \\ &= S+T, \end{split}$$

where

$$S = \sum_{i,k=p+1}^{n} E_k \cdot (g(Z, E_i)g(\Theta(E_i), \Theta \circ A_Z(E_k)))$$

and

$$T = -\sum_{i,j,k=p+1}^{n} (g(Z,E_i)E_k.(g(\nabla_{E_k}Z,E_j)g(\Theta(E_i),\Theta(E_j)))).$$

Observe that at the point *x*, we have

$$S = \sum_{k=p+1}^{n} E_k g(\Theta(Z), \Theta \circ A_Z(E_k))$$

=
$$-\sum_{k=p+1}^{n} E_k g(A_Z^* \circ \Theta^2(Z), E_k)$$

=
$$-div_{\nabla}(A_Z^* \circ \Theta^2(Z)),$$

and since Θ is parallel, we get

$$T = -\sum_{i,j,k=p+1}^{n} g(Z, E_i) (g(\nabla_{E_k} \nabla_{E_k} Z, E_j) g(\Theta(E_i), \Theta(E_j)))$$

= $g(tr_B \nabla^2 Z, \Theta^2(Z)).$

Hence the statement of the proposition follows.

Proposition 3. *Under the assumptions of proposition 1, we have*

$$tr(\Theta \circ A_Z^* \circ \Theta \circ A_Z) = g(\rho_\nabla(Z), \Theta^2(Z)) + div_\nabla \Theta \circ A_Z^* \circ \Theta(Z).$$
(3.5)

Proof. First we have

$$tr(\Theta \circ A_Z^* \circ \Theta \circ A_Z) = \sum_{k=p+1}^n g(\Theta \circ A_Z^* \circ \Theta \circ A_Z(E_k), E_k)$$

=
$$\sum_{i,k=p+1}^n g(A_Z(E_k), E_i)g(\Theta \circ A_Z^* \circ \Theta(E_i), E_k)$$

=
$$P + Q,$$

with

$$P = \sum_{i,k=p+1}^{n} E_k (g(Z, E_i)g(\Theta \circ A_Z^* \circ \Theta(E_i), E_k))$$

=
$$\sum_{k=p+1}^{n} E_k g(\Theta \circ A_Z^* \circ \Theta(Z), E_k))$$

=
$$div_{\nabla} \Theta \circ A_Z^* \circ \Theta(Z),$$

and

$$\begin{split} Q &= -\sum_{i,k=p+1}^{n} g(Z,E_{i})E_{k}.g(\Theta \circ A_{Z}^{*} \circ \Theta(E_{i}),E_{k})) \\ &= -\sum_{i,j,k=p+1}^{n} g(Z,E_{i})E_{k}.(g(\Theta(E_{i}),E_{j})g(\Theta \circ A_{Z}^{*}(E_{j}),E_{k}))) \\ &= \sum_{i,j,k=p+1}^{n} g(Z,E_{i})E_{k}.(g(\Theta(E_{i}),E_{j})g(A_{Z}^{*}(E_{j}),\Theta(E_{k})))) \\ &= \sum_{i,j,k=p+1}^{n} g(Z,E_{i})E_{k}.(g(\Theta(E_{i}),E_{j})g(E_{j},A_{Z} \circ \Theta(E_{k})))) \\ &= \sum_{i,j,k=p+1}^{n} g(Z,E_{i})E_{k}.(g(\Theta(E_{i}),E_{j})g(A_{Z}(E_{i}),E_{j})g(\Theta(E_{k}),E_{l}))) \\ &= \sum_{i,j,k=p+1}^{n} g(Z,E_{i})E_{k}.(g(A_{Z} \circ \Theta(E_{k}),E_{j})g(\Theta(E_{i}),E_{j})) \\ &= \sum_{i,j,k=p+1}^{n} g(Z,E_{i})g(\nabla_{E_{k}}(A_{Z} \circ \Theta(E_{k}),E_{j})g(\Theta(E_{i}),E_{j})) \\ &= \frac{1}{2}\sum_{k=p+1}^{n} g(R(E_{k},\Theta(E_{k}))Z,\Theta(Z)), \end{split}$$

where we use the formula (3.2) in the last equality.

233

Now, under the first Bianchi identity and by the vertu of both antisymmetry and parallelism of Θ we have

$$\sum_{k=p+1}^{n} R(E_k, \Theta(E_k))Z = 2 \sum_{k=p+1}^{n} R(E_k, Z)\Theta(E_k)$$
$$= 2\Theta(\sum_{k=p+1}^{n} R(E_k, Z)E_k) = -2\Theta(\rho_{\nabla}(Z)).$$

This completes the proof.

Proposition 4. Under the assumptions of proposition 1, we have

$$g(tr_B \nabla^2 Z + \rho_{\nabla}(Z), \Theta^2(Z)) \geq div_{\nabla} \Theta \circ A_Z^* \circ \Theta(Z)$$

$$- div_{\nabla} A_Z^* \circ \Theta^2(Z)$$
(3.6)

$$g(\rho_{\nabla}(Z), \Theta^{2}(Z)) = -Ric_{\nabla}(\Theta(Z), \Theta(Z))$$
(3.7)

Proof. i) By straightforward calculation, we have

$$\sum_{i,j=p+1}^{n} \left(g(\Theta \circ A_Z(E_i), E_j) + g(\Theta \circ A_Z(E_j), E_i) \right)^2 = |\Theta \circ A_Z|^2 + tr(\Theta \circ A_Z^* \circ \Theta \circ A_Z).$$

So the relation (3.6) follows from equations (3.4) and (3.5).

ii) Since Θ is parallel antisymmetric,

$$g(\rho_{\nabla}(Z), \Theta^{2}(Z)) = -\sum_{k=p+1}^{n} g(\Theta(R(Z, E_{k})E_{k}), \Theta(Z))$$

$$= -\sum_{k=p+1}^{n} g(R(Z, E_{k})\Theta(E_{k}), \Theta(Z))$$

$$= -\sum_{k=p+1}^{n} g(R(\Theta(E_{k}), \Theta(Z))Z, E_{k})$$

$$= \sum_{k=p+1}^{n} g(R(E_{k}, \Theta(Z))Z, \Theta(E_{k}))$$

$$= -\sum_{k=p+1}^{n} g(\Theta(R(E_{k}, \Theta(Z))Z, E_{k}))$$

$$= -Ric_{\nabla}(\Theta(Z), \Theta(Z)).$$

and the proof is complete

Remark 5. We know that $L_Z = \nabla_Z - A_Z$. If $\nabla \alpha = 0$ and $L_Z \alpha = 0$, then $\Theta \circ A_Z$ is symmetric. If furthermore $\omega = i_Z g$ is closed, then $\Theta \circ A_Z = -A_Z \circ \Theta$.

4 The main theorem.

Let $\Omega^0(M)$ be the space of smooth functions on M. The set of smooth basic function is given by $\Omega^0_B(\mathcal{F}) = \{f \in \Omega^0(M) / X.f = 0 \text{ for all } X \in \Gamma L\}$. The basic Laplacian Δ_B acting on $f \in \Omega^0_B(\mathcal{F})$ is given by $\Delta_B f = \delta_B d_B f$. For a harmonic *g*-Riemannian foliation we have $\Delta_B f \in \Omega^0_B(\mathcal{F})$.

Theorem 6. Let (M,g) be a closed orientable Riemannian manifold and let \mathcal{F} be a transversely oriented harmonic g-Riemannian foliation of codimension q on M. Suppose that there exists a nontrivial parallel 2-form $\alpha \in \Omega_B^2(\mathcal{F})$ and a positive constant k such that the transversal Ricci curvature satisfies $\operatorname{Ric}_{\nabla}(Z,Z) \geq k(q-1)|Z|^2$ for every $Z \in \mathcal{V}^{\perp}(\mathcal{F})$. Then the smallest nonzero eigenvalue λ_B of the basic Laplacian Δ_B satisfies

$$\lambda_B \geq 2k(q-1).$$

Proof. Let $Z \in \mathcal{V}^{\perp}(\mathcal{F})$ and $\omega = i_Z g$. Let Θ be the endomorphism of ΓL^{\perp} associated to α . By formula (2.1) and (3.7) we have

$$g(tr\nabla_B^2 Z + \rho_{\nabla} Z, \Theta^2(Z)) = tr_B \nabla^2 \omega(\Theta^2(Z)) - Ric_{\nabla}(\Theta(Z), B(Z))$$

$$\leq -\Delta_B \omega(\Theta^2(Z)) - 2k(q-1)|\Theta(Z)|^2.$$
(4.8)

Since \mathcal{F} is harmonic, by integrating the inequality (3.6) over M and by taking into account the inequality (4.8) we get

$$\int_{M} (-\Delta_B \omega(\Theta^2(Z)) - 2k(q-1)|\Theta(Z)|^2) d_M \ge 0.$$
(4.9)

Let *f* be an eigenfunction of Δ_B with eigenvalue $\lambda_B > 0$ and let $Z = \nabla f$ be the gradient of *f*. Since $\Delta_B d_B f = d_B \Delta_B f = \lambda_B d_B f$, hence from the inequality (4.9) we obtain

$$(\lambda_B - 2k(q-1)) \int_M |\Theta(\nabla f)|^2 d_M \ge 0.$$

and the theorem follows.

Let $\xi \in \mathcal{V}^{\perp}(\mathcal{F})$. We recall that ξ is a transverse Killing field if $L_{\xi}g(Y,Z) = 0$ for all $Y, Z \in \Gamma L^{\perp}$. Since $L_{\xi}g(Y,Z) = g(A_{\xi}(Y),Z) + g((Y,A_{\xi}(Z)))$, we have

Corollary 7. Let (M,g) be a closed Riemannian manifold and let \mathcal{F} be a harmonic *g*-Riemannian foliation of codimension *q* on *M*. Suppose that there exists a nontrivial transverse Killing field $\xi \in \mathcal{V}^{\perp}(\mathcal{F})$ such that $\nabla^2 \xi = 0$ and a positive constant *k* such that the transversal Ricci curvature satisfies $\operatorname{Ric}_{\nabla}(Z,Z) \ge k(q-1)|Z|^2$ for every $Z \in \mathcal{V}^{\perp}(\mathcal{F})$. Then the smallest nonzero eigenvalue λ_B of the basic Laplacian Δ_B satisfies

$$\lambda_B \geq 2k(q-1).$$

Corollary 8. Let (M,g) be a closed Riemannian manifold and let \mathcal{F} be a harmonic g-Riemannian foliation of codimension $q \geq 3$ on M. Suppose that there exists a positive constant k such that the transversal Ricci curvature satisfies $\operatorname{Ric}_{\nabla}(Z,Z) \geq k(q-1)|Z|^2$ for every $Z \in \mathcal{V}^{\perp}(\mathcal{F})$. If the smallest nonzero eigenvalue λ_B of the basic Laplacian Δ_B satisfies

$$kq \leq \lambda_B < 2k(q-1),$$

then any parallel 2-form $\alpha \in \Omega^2_B(\mathcal{F})$ is trivial. In particular any transverse Killing field ξ on M which satisfies $\nabla^2 \xi = 0$ is trivial.

Remark 9. If q = 2, then kq = 2k(q - 1), is our estimation coincides with that in [1].

Example 10. Let $(M_1, g_1, \mathcal{F}_1)$ be a g_1 -Riemannian harmonic foliation of codimension two on closed Riemannian manifold. There exists a basic function λ such that $\operatorname{Ric}_{\nabla^1} = \lambda g_1$ on M. Suppose that the transversal Ricci curvature $\operatorname{Ric}_{\nabla^1} > 0$. So the first non zero eigenvalue of the basic Laplacian satisfies $\lambda_B^1 \ge 2k$ where k > 0 is the minimum of the function λ . Let $v_1 = E_{p+1}^* \wedge E_{p+2}^*$ be the transversal volume form of \mathcal{F}_1 . The form v_1 is basic parallel. In fact let $X \in \Gamma(L_1)$, so

$$\begin{aligned} (L_X \nu_1)(E_{p+1}, E_{p+2}) &= X.\nu_1(E_{p+1}, E_{p+2}) - \nu_1([X, E_{p+1}], E_{p+2}) \\ &- \nu_1(E_{p+1}, [X, E_{p+2}]) \\ &= -g_1([X, E_{p+1}], E_{p+1}) - g_1, [X, E_{p+2}], (E_{p+2}) \\ &= -\frac{1}{2}((\nabla_X^1 g_1)(E_{p+1}, E_{p+1}) + (\nabla_X^1 g_1)(E_{p+2}, E_{p+2})) = 0, \end{aligned}$$

because \mathcal{F} *is* g_1 *-Riemannian. Now let* $Z \in \Gamma(L_1^{\perp})$ *so*

sal star operator, we have

$$(\nabla_Z \nu_1)(E_{p+1}, E_{p+2}) = -\nu(\nabla_Z^{M_1} E_{p+1}, E_{p+2}) - \nu_1(E_{p+1}, \nabla_Z^{M_1} E_{p+2}) = -g_1(\nabla_Z^{M_1} E_{p+1}, E_{p+1}) - g_1(\nabla_Z^{M_1} E_{p+2}, E_{p+2}) = 0.$$

Now let $(M_2, g_2, \mathcal{F}_2)$ be an other g_2 -Riemannian harmonic foliation of codimension $q-2 \ge 1$ with a transversal Ricci curvature $\operatorname{Ric}_{\nabla^2} \ge kg_2$ (for example, take \mathcal{F}_2 a transversely elliptic foliation). The product foliation $\mathcal{F} = \mathcal{F}_1 \times \mathcal{F}_2$ on $M = M_1 \times M_2$ is also $g_1 \times g_2$ -Riemannian harmonic of codimension q with transversal Ricci curvature $\operatorname{Ric}_{\nabla} \ge k(g_1 \times g_2)$. By the new estimation the smallest non zero eigenvalue of the basic Laplacian satisfies $\lambda_B \ge 2k$. Whereas the estimation given in [1] is $\lambda_B \ge \frac{q}{q-1}k$.

Example 11. Assume that \mathcal{F} is a Kähler foliation (see [4]). That is

i) \mathcal{F} is g-Riemannian, i.e. $\nabla g = 0$, ii) there is a holonomy invariant almost complex structure $J : L^{\perp} \longrightarrow L^{\perp}$, where dim $L^{\perp} = q = 2m$ (real dimension), with respect to which the metric g is transversely Hermitian, i.e. g(JX, JY) = g(X, Y) for $X, Y \in \Gamma(L^{\perp})$, iii) ∇ is almost complex structure, i.e. $\nabla J = 0$. Note that $\alpha(X, Y) =$ g(X, JY) for $X, Y \in \Gamma(L^{\perp})$ and $i_{\xi}\alpha = 0$ for $\xi \in \Gamma L$ defines a basic 2-form α , which is closed as a consequence of $\nabla g = 0$ and $\nabla J = 0$.

Clearly $\alpha^m \neq 0$ at all points of M. Let $f \in \Omega^0_B(\mathcal{F})$; in the one hand $L_{\nabla f} \alpha^m = \Delta_B f. \alpha^m$ and in the other hand $L_{\nabla f} \alpha^m = m L_{\nabla f} \alpha \wedge \alpha^{m-1}$. Consequently $L_{\nabla f} \alpha = \frac{1}{m} \Delta_B f. \alpha$. We deduce that

i) ∇f is a transversal Kähler field $(L_{\nabla f}\alpha = 0)$ if and only if the function f is harmonic. In this case $J \circ A_{\nabla f} = -A_{\nabla f} \circ J$. Let $x \in M$; since $(A_{\nabla f})_x$ is diagonalisable and J_x is antisymmetric anti-commuting with $(A_{\nabla f})_x$, hence $(A_{\nabla f})_x$ is of even rang. *ii)* ∇f is a transversal Liouville field $(L_{\nabla f}\alpha = \alpha)$ if and only if $\Delta_B f = m$.

Let $\chi_{\mathcal{F}}$ be the characteristic form of \mathcal{F} and let $\bar{*}: \Omega_B^r(\mathcal{F}) \longrightarrow \Omega_B^{q-r}(\mathcal{F})$ be the transver-

$$\bar{*}L_{\nabla f} = \frac{1}{m} \nabla_B f. \wedge \alpha^{m-1}, \quad \|L_{\nabla f}\|_{\Omega^*_B(\mathcal{F})}^2 = \int_M L_{\nabla f} \wedge \bar{*}L_{\nabla f} \wedge \chi_{\mathcal{F}} = \frac{\|\Delta_B f\|_2^2}{m^2}.$$

We deduce that if \mathcal{F} is a harmonic Kähler foliation of codimension q on a closed manifold such that $Ric_{\nabla} \geq k(q-1)$ and if f is an eigenfunction of Δ_B , then $\|L_{\nabla f}\|_{\Omega^*_B(\mathcal{F})} \geq \frac{4k(q-1)}{q}\|f\|_2$.

Now we give an example of a harmonic Kähler foliation with constant sectional curvature see [5] page 273. Let P^mC be the complex projective space. This is the quotient of the Euclidian sphere S^{2m+1} under the canonical S^1 -action. We obtain the Hopf fibration

$$S^1 \to S^{2m+1} \to P^m C = SU(m+1)/S(U(1) \times U(m)),$$

which gives rice naturally to a harmonic (and totally geodesic) Kähler (and symmetric) foliation on S^{2m+1} . The transversal holomorphic sectional curvature is 4; therefore $Ric_{\nabla} = 4q$ and $k = \frac{4q}{q-1}$. By the new estimation the smallest non zero eigenvalue of the basic Laplacian satisfies $\lambda_B \geq 8q$. Whereas the estimation given in [1] is $\lambda_B \geq \frac{4q^2}{q-1}$.

We end the paper by the following question. If in Theorem 6 the equality occurs, is the leaf space isometric to the space of orbit of a discrete subgroup of $O(q-2) \times O(2)$ acting on the standard product (q-2)-sphere with 2-sphere of constant curvature *k*?

Acknowledgement The author thanks the referee for helpful comments.

References

- [1] J. Lee and K. Richardson, *Lichnerowicz and Obata theorems for foliations*, Pacific. J. of Math; vol. 206, No. 2, 2002, 339-357.
- [2] F. W. Kamber and Ph. Tondeur, *Duality for Riemannian foliations*, Proc. Symp. Pure Math., Amer. Math. Soc., vol. 40 (1983); Part1, 609-618.
- [3] F. W. Kamber and Ph. Tondeur, *Foliations and metrics*, Proc. of a Year in differential Geometry, University of Maryland, Birkäuser, Progress in Mathematics vol 32 (1983), 103-152.
- [4] F. W. Kamber and Ph. Tondeur, *Transversal infinitesimal automortphisms for harmonic Kähler foliations*, Tôhoku Math. J. 40 (1988), 599-611.
- [5] S. Kobayashi and K. Nomizu, *Foundations of differential geometry*, John Wiley and Sons, Vol. II (1969).
- [6] B. L. Reinhart, *Differential Geometry of foliation*, Springer, Berlin, 1983.
- [7] Ph. Tondeur, *Foliations on Riemannian manifolds*, Universitext, springer Verlag, New York, 1988.

Faculté des Sciences de Bizerte. 7021 Zarzouna Tunisie. E-mail address: MohamedAli.Chaouch@fsb.rnu.tn