Lichnerowicz inequality on foliated manifold with a parallel 2 -form

M. A. Chaouch

Abstract

In this paper, we prove that if (M, g) is a closed orientable Riemannian manifold with a transversely oriented harmonic g-Riemannian foliation of codimension q on M and if there exists a parallel basic 2 -form on M and a positive constant k such that the transversal Ricci curvature satisfies $\operatorname{Ric}_{\nabla}(Z, Z) \geq k(q-1)|Z|^{2}$ for every transverse vector field Z, then the smallest nonzero eigenvalue λ_{B} of the basic Laplacian Δ_{B} satisfies $\lambda_{B} \geq 2 k(q-1)$.

1 Introduction

In [1] the authors gave a foliated version of Lichnerowicz and Obata theorems. They proved that if M is a closed Riemannian manifold with a Riemannian foliation of codimension q, and if the normal Ricci curvature satisfies $\operatorname{Ric}^{\perp}(X, X) \geq$ $a(q-1)|X|^{2}$ for every X in the normal bundle for some fixed $a>0$, then the smallest eigenvalue λ_{B} of the basic Laplacian satisfies $\lambda_{B} \geq a q$. In this paper, we assume that the manifold is endowed with a nontrivial parallel basic 2 -form, and we give a new estimation of the first non zero eigenvalue of the basic Laplacian.

[^0]
2 Preliminaries

Let (M, g) be a Riemannian manifold of dimension n with a foliation \mathcal{F} of codimension q. The foliation is given by an integrable sub-bundle L of the tangent bundle TM over M. Let L^{\perp} indicates the orthogonal complement bundle of L and $\pi: T M \longrightarrow L^{\perp}$ the projection of $T M$ on L^{\perp} parallel to L. In what follows, for any sub-bundle E of $T M$ we denote by ΓE the space of sections of E.

Let ∇^{M} be the Riemannian connection on (M, g). We can define an adapted connection ∇ on L^{\perp} by the following:

$$
\nabla_{X} Z= \begin{cases}\pi([X, Z]) & \text { if } X \in \Gamma(L) \\ \pi\left(\nabla_{X}^{M} Z\right) & \text { if } X \in \Gamma\left(L^{\perp}\right)\end{cases}
$$

for any $Z \in \Gamma\left(L^{\perp}\right)$.
Let $X, Y \in \Gamma T M$, the torsion T_{∇} of ∇ is given by

$$
T_{\nabla}(X, Y)=\nabla_{X} \pi(Y)-\nabla_{Y} \pi(X)-\pi([X, Y])
$$

and the curvature R_{∇} of ∇ is defined by

$$
R_{\nabla}(X, Y)=\nabla_{X} \nabla_{Y}-\nabla_{Y} \nabla_{X}-\nabla_{[X, Y]} .
$$

We know that $T_{\nabla}=0$ and $R_{\nabla}(X, Y)=0$ for $X, Y \in \Gamma L$ (see [7]).
A local orthonormal frame $\left(E_{i}\right)_{0 \leq i \leq n}$ of $T M$ is adapted with respect to the foliation \mathcal{F} if $E_{i} \in \Gamma(L)$ for $0 \leq i \leq \bar{p}$, and $E_{i} \in \Gamma\left(L^{\perp}\right)$ for $p+1 \leq i \leq n$ where $p=n-q$ is the dimension of \mathcal{F}.

The tension field τ of the foliation \mathcal{F} is given by $\tau=\pi\left(\sum_{i=1}^{p} \nabla_{E_{i}}^{M} E_{i}\right)$.
Let $Y, Z \in \Gamma\left(E^{\perp}\right)$, the transversal Ricci operator and the transversal Ricci curvature are defined respectively by

$$
\rho_{\nabla}(Z)=\sum_{i=p+1}^{n} R_{\nabla}\left(Z, E_{i}\right) E_{i}, \quad \operatorname{Ric}_{\nabla}(Z, Y)=g\left(\rho_{\nabla}(Z), Y\right)
$$

The transversal divergence operator is given by

$$
\operatorname{div}_{\nabla} Z=\sum_{i=p+1}^{n} g\left(\nabla_{E_{i}} Z, E_{i}\right)=\sum_{i=p+1}^{n} g\left(\nabla_{E_{i}}^{M} Z, E_{i}\right)
$$

If div_{M} is the standard divergence operator, then we have

$$
\operatorname{div}_{M} Z=\operatorname{div}_{\nabla} Z-g(\tau, Z) .
$$

The foliation \mathcal{F} is harmonic if all the leaves of \mathcal{F} are minimal submanifolds of M, that is $\tau=0$ [7]. The foliation \mathcal{F} is g-Riemannian if it is bundle like with respect to the metric g, that is $\left(\nabla_{X} g\right)(Y, Z)=0$ for $X \in \Gamma(L)$ and $Y, Z \in \Gamma\left(L^{\perp}\right)$. The set $\mathcal{V}^{\perp}(\mathcal{F})=\left\{Z \in \Gamma L^{\perp} / \nabla_{X} Z=\pi[X, Z]=0\right.$ for all $\left.X \in \Gamma L\right\}$ is called the space of transverse fields. The set of basic forms is defined by

$$
\Omega_{B}^{*}(\mathcal{F})=\left\{\omega \in \Omega^{*}(M) / i_{X} \omega=0, L_{X} \omega=0 \text { for all } X \in \Gamma L\right\} .
$$

It's an easy task to show that $Z \in \mathcal{V}^{\perp}(\mathcal{F})$ if and only if $\omega=i_{Z} g \in \Omega_{B}^{1}(\mathcal{F})$. So $\mathcal{V}^{\perp}(\mathcal{F})$ is isomorph to $\Omega_{B}^{1}(\mathcal{F})$.

A form $\omega \in \Omega_{B}^{*}(\mathcal{F})$ is parallel if $\nabla_{X} \omega=0$ for all $X \in \Gamma L^{\perp}$. The exterior differential d restricts to $d_{B}: \Omega_{B}^{*}(\mathcal{F}) \longrightarrow \Omega_{B}^{*+1}(\mathcal{F})$. The adjoint of d_{B}, with respect to the induced scalar product $\langle,, .\rangle_{B}$ on $\Omega_{B}^{*}(\mathcal{F})$ is denoted by $\delta_{B}: \Omega_{B}^{*}(\mathcal{F}) \longrightarrow$ $\Omega_{B}^{*-1}(\mathcal{F})$ and we have the basic Laplacian

$$
\Delta_{B}=\delta_{B} d_{B}+d_{B} \delta_{B}
$$

For a transversely oriented harmonic g-Riemannian foliation \mathcal{F}, it follows from [2] and [3] that δ_{B} is given on $\omega \in \Omega_{B}^{1}(\mathcal{F})$ by the formula

$$
\delta_{B} \omega=-\sum_{i=p+1}^{n}\left(\nabla_{E_{i}} \omega\right) E_{i}
$$

which gives the Bochner-Weitzenbock formula

$$
\begin{equation*}
\Delta_{B} \omega=-\operatorname{tr}_{B} \nabla^{2} \omega+\rho_{\nabla}(\omega), \tag{2.1}
\end{equation*}
$$

where $\operatorname{tr}_{B} \nabla^{2}=\sum_{i=p+1}^{n} \nabla_{E_{i}, E_{i}}^{2}$

3 Some computational results.

In the following, for $Z \in \Gamma L^{\perp}$, we denote by A_{Z} the endomorphism of ΓL^{\perp} defined by $A_{Z}(Y)=\nabla_{Y} Z$.
Proposition 1. Let $Z \in \mathcal{V}^{\perp}(\mathcal{F})$ and $\alpha \in \Omega_{B}^{2}(\mathcal{F})$. Let Θ be the endomorphism of ΓL^{\perp} associated to α with respect to the metric g. If α is parallel, then we have

$$
\begin{equation*}
\sum_{i=p+1}^{n} \nabla_{E_{i}}\left(A_{Z} \circ \Theta\right)\left(E_{i}\right)=\frac{1}{2} \sum_{i=p+1}^{n} R\left(E_{i}, \Theta\left(E_{i}\right)\right) Z . \tag{3.2}
\end{equation*}
$$

Proof. Since Θ is antisymmetric with respect to g, we have

$$
\begin{aligned}
\sum_{i=p+1}^{n} \nabla_{E_{i}, \Theta\left(E_{i}\right)}^{2} Z & =\sum_{i, j=p+1}^{n} g\left(\Theta\left(E_{i}\right), E_{j}\right) \nabla_{E_{i}, E_{j}}^{2} \mathrm{Z} \\
& -\sum_{i, j=p+1}^{n} g\left(\Theta\left(E_{j}\right), E_{i}\right) \nabla_{E_{i}, E_{j}}^{2} \mathrm{Z} \\
& =-\sum_{j=p+1}^{n} \nabla_{\Theta\left(E_{j}\right), E_{j}}^{2} \mathrm{Z} .
\end{aligned}
$$

Furthermore Θ is parallel with respect to the connection ∇, hence

$$
\begin{aligned}
\sum_{i=p+1}^{n} \nabla_{E_{i}}\left(A_{Z} \circ \Theta\right)\left(E_{i}\right) & =\sum_{i=p+1}^{n} \nabla_{E_{i}}\left(A_{Z}\right) \Theta\left(E_{i}\right)=\sum_{i=p+1}^{n} \nabla_{E_{i}, \Theta\left(E_{i}\right)}^{2} Z . \\
& =\frac{1}{2}\left(\sum_{i=p+1}^{n} \nabla_{E_{i}, \Theta\left(E_{i}\right)}^{2} Z-\sum_{i=p+1}^{n} \nabla_{\Theta\left(E_{i}\right), E_{i}}^{2} Z\right) \\
& =\frac{1}{2} \sum_{i=p+1}^{n} R\left(E_{i}, \Theta\left(E_{i}\right)\right) Z
\end{aligned}
$$

and we get the desired equality.

In the next, we assume that \mathcal{F} is g-Riemannian and we use the following special (orthonormal) moving frames on M. For $x \in M$, let $\left\{e_{i}\right\}_{i=1}^{n} \subset T_{x} M$ be an (oriented) orthonormal basis with $\left\{e_{i}\right\}_{i=1}^{p} \subset L_{x}$ and $\left\{e_{i}\right\}_{i=p+1}^{n} \subset L_{x}^{\perp}$. Let U be a distinguished (flat) neighborhood of x for \mathcal{F} with local (Riemannian) submersion $f: U \longrightarrow N(N$ is a Riemannian manifold of dimension q). For $i=p+1, \ldots, n$, let $E_{i} \in \Gamma(U, L)$ be the pull back of the extension of $f_{*} e_{i}$ to a vector field on N by parallel transport along geodesic segments emanating from $f(x)$ (use [6] Prop 4.2). Then, we complete $\left\{E_{i}\right\}_{i=p+1}^{n}$ by the Gram-Schmidt process to a moving frame $\left\{E_{i}\right\}_{i=1}^{n}$ by adding $E_{i} \in \Gamma(U, L)$ with $\left(E_{i}\right)_{x}=e_{i}, i=1, \ldots, p$. We have then for $i, j=p+1, \ldots, n$:

$$
\begin{equation*}
\nabla_{e_{i}} E_{j}=\left(\nabla_{E_{i}} E_{j}\right)_{x}=0 \tag{3.3}
\end{equation*}
$$

Proposition 2. Under the assumptions of proposition 1, we have

$$
\begin{equation*}
\left|\Theta \circ A_{Z}\right|^{2}=g\left(\operatorname{tr}_{B} \nabla^{2} Z, \Theta^{2}(Z)\right)-\operatorname{div}_{\nabla} A_{Z}^{*} \circ \Theta^{2}(Z) \tag{3.4}
\end{equation*}
$$

Proof. Let $x \in M$, we use the under orthonormal frame. Since $Z \in \mathcal{V}^{\perp}(\mathcal{F})$, we have $A_{Z}\left(E_{k}\right)=0$ for $k=1, \ldots, p$, hence

$$
\begin{aligned}
\left|\Theta \circ A_{Z}\right|^{2} & =\sum_{k=p+1}^{n} g\left(\Theta \circ A_{Z}\left(E_{k}\right), \Theta \circ A_{Z}\left(E_{k}\right)\right) \\
& =\sum_{i, k=p+1}^{n} g\left(A_{Z}\left(E_{k}\right), E_{i}\right) g\left(\Theta\left(E_{i}\right), \Theta \circ A_{Z}\left(E_{k}\right)\right) \\
& =S+T,
\end{aligned}
$$

where

$$
S=\sum_{i, k=p+1}^{n} E_{k} \cdot\left(g\left(Z, E_{i}\right) g\left(\Theta\left(E_{i}\right), \Theta \circ A_{Z}\left(E_{k}\right)\right)\right)
$$

and

$$
T=-\sum_{i, j, k=p+1}^{n}\left(g\left(Z, E_{i}\right) E_{k} \cdot\left(g\left(\nabla_{E_{k}} Z, E_{j}\right) g\left(\Theta\left(E_{i}\right), \Theta\left(E_{j}\right)\right)\right) .\right.
$$

Observe that at the point x, we have

$$
\begin{aligned}
S & =\sum_{k=p+1}^{n} E_{k} \cdot g\left(\Theta(Z), \Theta \circ A_{Z}\left(E_{k}\right)\right) \\
& =-\sum_{k=p+1}^{n} E_{k} \cdot g\left(A_{Z}^{*} \circ \Theta^{2}(Z), E_{k}\right) \\
& =-\operatorname{div}_{\nabla}\left(A_{Z}^{*} \circ \Theta^{2}(Z)\right),
\end{aligned}
$$

and since Θ is parallel, we get

$$
\begin{aligned}
T & =-\sum_{i, j, k=p+1}^{n} g\left(Z, E_{i}\right)\left(g\left(\nabla_{E_{k}} \nabla_{E_{k}} Z, E_{j}\right) g\left(\Theta\left(E_{i}\right), \Theta\left(E_{j}\right)\right)\right. \\
& =g\left(\operatorname{tr}_{B} \nabla^{2} Z, \Theta^{2}(Z)\right)
\end{aligned}
$$

Hence the statement of the proposition follows.

Proposition 3. Under the assumptions of proposition 1, we have

$$
\begin{align*}
\operatorname{tr}\left(\Theta \circ A_{Z}^{*} \circ \Theta \circ A_{Z}\right) & =g\left(\rho_{\nabla}(Z), \Theta^{2}(Z)\right) \tag{3.5}\\
& +\operatorname{div}_{\nabla} \Theta \circ A_{Z}^{*} \circ \Theta(Z)
\end{align*}
$$

Proof. First we have

$$
\begin{aligned}
\operatorname{tr}\left(\Theta \circ A_{Z}^{*} \circ \Theta \circ A_{Z}\right) & =\sum_{k=p+1}^{n} g\left(\Theta \circ A_{Z}^{*} \circ \Theta \circ A_{Z}\left(E_{k}\right), E_{k}\right) \\
& =\sum_{i, k=p+1}^{n} g\left(A_{Z}\left(E_{k}\right), E_{i}\right) g\left(\Theta \circ A_{Z}^{*} \circ \Theta\left(E_{i}\right), E_{k}\right) \\
& =P+Q
\end{aligned}
$$

with

$$
\begin{aligned}
P & =\sum_{i, k=p+1}^{n} E_{k} \cdot\left(g\left(Z, E_{i}\right) g\left(\Theta \circ A_{Z}^{*} \circ \Theta\left(E_{i}\right), E_{k}\right)\right) \\
& \left.=\sum_{k=p+1}^{n} E_{k} \cdot g\left(\Theta \circ A_{Z}^{*} \circ \Theta(Z), E_{k}\right)\right) \\
& =\operatorname{div}_{\nabla} \Theta \circ A_{Z}^{*} \circ \Theta(Z)
\end{aligned}
$$

and

$$
\begin{aligned}
Q & \left.=-\sum_{i, k=p+1}^{n} g\left(Z, E_{i}\right) E_{k} \cdot g\left(\Theta \circ A_{Z}^{*} \circ \Theta\left(E_{i}\right), E_{k}\right)\right) \\
& =-\sum_{i, j, k=p+1}^{n} g\left(Z, E_{i}\right) E_{k} \cdot\left(g\left(\Theta\left(E_{i}\right), E_{j}\right) g\left(\Theta \circ A_{Z}^{*}\left(E_{j}\right), E_{k}\right)\right) \\
& =\sum_{i, j, k=p+1}^{n} g\left(Z, E_{i}\right) E_{k} \cdot\left(g\left(\Theta\left(E_{i}\right), E_{j}\right) g\left(A_{Z}^{*}\left(E_{j}\right), \Theta\left(E_{k}\right)\right)\right) \\
& =\sum_{i, j, k=p+1}^{n} g\left(Z, E_{i}\right) E_{k} \cdot\left(g\left(\Theta\left(E_{i}\right), E_{j}\right) g\left(E_{j}, A_{Z} \circ \Theta\left(E_{k}\right)\right)\right) \\
& =\sum_{i, j, k, l=p+1}^{n} g\left(Z, E_{i}\right) E_{k} \cdot\left(g\left(\Theta\left(E_{i}\right), E_{j}\right) g\left(A_{Z}\left(E_{l}\right), E_{j}\right) g\left(\Theta\left(E_{k}\right), E_{l}\right)\right) \\
& =\sum_{i, j, k=p+1}^{n} g\left(Z, E_{i}\right) E_{k} \cdot\left(g\left(A_{Z} \circ \Theta\left(E_{k}\right), E_{j}\right) g\left(\Theta\left(E_{i}\right), E_{j}\right)\right) \\
& =\sum_{i, j, k=p+1}^{n} g\left(Z, E_{i}\right) g\left(\nabla_{E_{k}}\left(A_{Z} \circ \Theta\right)\left(E_{k}\right), E_{j}\right) g\left(\Theta\left(E_{i}\right), E_{j}\right) \\
& =\frac{1}{2} \sum_{k=p+1}^{n} g\left(R\left(E_{k}, \Theta\left(E_{k}\right)\right) Z, \Theta(Z)\right),
\end{aligned}
$$

where we use the formula (3.2) in the last equality.

Now, under the first Bianchi identity and by the vertu of both antisymmetry and parallelism of Θ we have

$$
\begin{aligned}
\sum_{k=p+1}^{n} R\left(E_{k}, \Theta\left(E_{k}\right)\right) Z & =2 \sum_{k=p+1}^{n} R\left(E_{k}, Z\right) \Theta\left(E_{k}\right) \\
& =2 \Theta\left(\sum_{k=p+1}^{n} R\left(E_{k}, Z\right) E_{k}\right)=-2 \Theta\left(\rho_{\nabla}(Z)\right)
\end{aligned}
$$

This completes the proof.
Proposition 4. Under the assumptions of proposition 1, we have

$$
\begin{align*}
& g\left(\operatorname{tr}_{B} \nabla^{2} Z+\rho_{\nabla}(Z), \Theta^{2}(Z)\right) \geq \operatorname{div}_{\nabla} \Theta \circ A_{Z}^{*} \circ \Theta(Z) \tag{3.6}\\
&-\operatorname{div}_{\nabla} A_{Z}^{*} \circ \Theta^{2}(Z) \\
& g\left(\rho_{\nabla}(Z), \Theta^{2}(Z)\right)=-\operatorname{Ric}_{\nabla}(\Theta(Z), \Theta(Z)) \tag{3.7}
\end{align*}
$$

Proof. i) By straightforward calculation, we have

$$
\begin{aligned}
\sum_{i, j=p+1}^{n}\left(g\left(\Theta \circ A_{Z}\left(E_{i}\right), E_{j}\right)+g\left(\Theta \circ A_{Z}\left(E_{j}\right), E_{i}\right)\right)^{2} & =\left|\Theta \circ A_{Z}\right|^{2} \\
& +\operatorname{tr}\left(\Theta \circ A_{Z}^{*} \circ \Theta \circ A_{Z}\right)
\end{aligned}
$$

So the relation (3.6) follows from equations (3.4) and (3.5).
ii) Since Θ is parallel antisymmetric,

$$
\begin{aligned}
g\left(\rho_{\nabla}(Z), \Theta^{2}(Z)\right) & =-\sum_{k=p+1}^{n} g\left(\Theta\left(R\left(Z, E_{k}\right) E_{k}\right), \Theta(Z)\right) \\
& =-\sum_{k=p+1}^{n} g\left(R\left(Z, E_{k}\right) \Theta\left(E_{k}\right), \Theta(Z)\right) \\
& =-\sum_{k=p+1}^{n} g\left(R\left(\Theta\left(E_{k}\right), \Theta(Z)\right) Z, E_{k}\right) \\
& =\sum_{k=p+1}^{n} g\left(R\left(E_{k}, \Theta(Z)\right) Z, \Theta\left(E_{k}\right)\right) \\
& =-\sum_{k=p+1}^{n} g\left(\Theta\left(R\left(E_{k}, \Theta(Z)\right) Z, E_{k}\right)\right. \\
& =-\operatorname{Ric}_{\nabla}(\Theta(Z), \Theta(Z))
\end{aligned}
$$

and the proof is complete
Remark 5. We know that $L_{Z}=\nabla_{Z}-A_{Z}$. If $\nabla \alpha=0$ and $L_{Z} \alpha=0$, then $\Theta \circ A_{Z}$ is symmetric. If furthermore $\omega=i_{Z} g$ is closed, then $\Theta \circ A_{Z}=-A_{Z} \circ \Theta$.

4 The main theorem.

Let $\Omega^{0}(M)$ be the space of smooth functions on M. The set of smooth basic function is given by $\Omega_{B}^{0}(\mathcal{F})=\left\{f \in \Omega^{0}(M) / X\right.$. $f=0$ for all $\left.X \in \Gamma L\right\}$. The basic Laplacian Δ_{B} acting on $f \in \Omega_{B}^{0}(\mathcal{F})$ is given by $\Delta_{B} f=\delta_{B} d_{B} f$. For a harmonic g-Riemannian foliation we have $\Delta_{B} f \in \Omega_{B}^{0}(\mathcal{F})$.
Theorem 6. Let (M, g) be a closed orientable Riemannian manifold and let \mathcal{F} be a transversely oriented harmonic g-Riemannian foliation of codimension q on M. Suppose that there exists a nontrivial parallel 2-form $\alpha \in \Omega_{B}^{2}(\mathcal{F})$ and a positive constant k such that the transversal Ricci curvature satisfies $\operatorname{Ric}_{\nabla}(Z, Z) \geq k(q-1)|Z|^{2}$ for every $Z \in \mathcal{V}^{\perp}(\mathcal{F})$. Then the smallest nonzero eigenvalue λ_{B} of the basic Laplacian Δ_{B} satisfies

$$
\lambda_{B} \geq 2 k(q-1)
$$

Proof. Let $Z \in \mathcal{V}^{\perp}(\mathcal{F})$ and $\omega=i_{Z} g$. Let Θ be the endomorphism of ΓL^{\perp} associated to α. By formula (2.1) and (3.7) we have

$$
\begin{align*}
g\left(\operatorname{tr} \nabla_{B}^{2} Z+\rho_{\nabla} Z, \Theta^{2}(Z)\right) & =\operatorname{tr}_{B} \nabla^{2} \omega\left(\Theta^{2}(Z)\right)-\operatorname{Ric}_{\nabla}(\Theta(Z), B(Z)) \\
& \leq-\Delta_{B} \omega\left(\Theta^{2}(Z)\right)-2 k(q-1)|\Theta(Z)|^{2} \tag{4.8}
\end{align*}
$$

Since \mathcal{F} is harmonic, by integrating the inequality (3.6) over M and by taking into account the inequality (4.8) we get

$$
\begin{equation*}
\int_{M}\left(-\Delta_{B} \omega\left(\Theta^{2}(Z)\right)-2 k(q-1)|\Theta(Z)|^{2}\right) d_{M} \geq 0 \tag{4.9}
\end{equation*}
$$

Let f be an eigenfunction of Δ_{B} with eigenvalue $\lambda_{B}>0$ and let $Z=\nabla f$ be the gradient of f. Since $\Delta_{B} d_{B} f=d_{B} \Delta_{B} f=\lambda_{B} d_{B} f$, hence from the inequality (4.9) we obtain

$$
\left(\lambda_{B}-2 k(q-1)\right) \int_{M}|\Theta(\nabla f)|^{2} d_{M} \geq 0
$$

and the theorem follows.
Let $\xi \in \mathcal{V}^{\perp}(\mathcal{F})$. We recall that ξ is a transverse Killing field if $L_{\xi} g(Y, Z)=0$ for all $Y, Z \in \Gamma L^{\perp}$. Since $L_{\xi} g(Y, Z)=g\left(A_{\xi}(Y), Z\right)+g\left(\left(Y, A_{\xi}(Z)\right)\right.$, we have
Corollary 7. Let (M, g) be a closed Riemannian manifold and let \mathcal{F} be a harmonic g Riemannian foliation of codimension q on M. Suppose that there exists a nontrivial transverse Killing field $\xi \in \mathcal{V}^{\perp}(\mathcal{F})$ such that $\nabla^{2} \xi=0$ and a positive constant k such that the transversal Ricci curvature satisfies $\operatorname{Ric}_{\nabla}(Z, Z) \geq k(q-1)|Z|^{2}$ for every $Z \in$ $\mathcal{V}^{\perp}(\mathcal{F})$. Then the smallest nonzero eigenvalue λ_{B} of the basic Laplacian Δ_{B} satisfies

$$
\lambda_{B} \geq 2 k(q-1)
$$

Corollary 8. Let (M, g) be a closed Riemannian manifold and let \mathcal{F} be a harmonic g Riemannian foliation of codimension $q \geq 3$ on M. Suppose that there exists a positive constant k such that the transversal Ricci curvature satisfies $\operatorname{Ric}_{\nabla}(Z, Z) \geq k(q-1)|Z|^{2}$ for every $Z \in \mathcal{V}^{\perp}(\mathcal{F})$. If the smallest nonzero eigenvalue λ_{B} of the basic Laplacian Δ_{B} satisfies

$$
k q \leq \lambda_{B}<2 k(q-1)
$$

then any parallel 2-form $\alpha \in \Omega_{B}^{2}(\mathcal{F})$ is trivial. In particular any transverse Killing field ξ on M which satisfies $\nabla^{2} \xi=0$ is trivial.

Remark 9. If $q=2$, then $k q=2 k(q-1)$, ie our estimation coincides with that in [1].
Example 10. Let $\left(M_{1}, g_{1}, \mathcal{F}_{1}\right)$ be a g_{1}-Riemannian harmonic foliation of codimension two on closed Riemannian manifold. There exists a basic function λ such that Ric $\nabla^{1}=$ λg_{1} on M. Suppose that the transversal Ricci curvature Ric $\nabla^{1}>0$. So the first non zero eigenvalue of the basic Laplacian satisfies $\lambda_{B}^{1} \geq 2 k$ where $k>0$ is the minimum of the function λ. Let $v_{1}=E_{p+1}^{*} \wedge E_{p+2}^{*}$ be the transversal volume form of \mathcal{F}_{1}. The form v_{1} is basic parallel. In fact let $X \in \Gamma\left(L_{1}\right)$, so

$$
\begin{aligned}
\left(L_{X} v_{1}\right)\left(E_{p+1}, E_{p+2}\right) & =X . v_{1}\left(E_{p+1}, E_{p+2}\right)-v_{1}\left(\left[X, E_{p+1}\right], E_{p+2}\right) \\
& -v_{1}\left(E_{p+1},\left[X, E_{p+2}\right]\right) \\
& =-g_{1}\left(\left[X, E_{p+1}\right], E_{p+1}\right)-g_{1},\left[X, E_{p+2}\right],\left(E_{p+2}\right) \\
& =-\frac{1}{2}\left(\left(\nabla_{X}^{1} g_{1}\right)\left(E_{p+1}, E_{p+1}\right)+\left(\nabla_{X}^{1} g_{1}\right)\left(E_{p+2}, E_{p+2}\right)\right)=0,
\end{aligned}
$$

because \mathcal{F} is g_{1}-Riemannian. Now let $Z \in \Gamma\left(L_{1}^{\perp}\right)$ so

$$
\begin{aligned}
\left(\nabla_{Z} v_{1}\right)\left(E_{p+1}, E_{p+2}\right) & =-v\left(\nabla_{Z}^{M_{1}} E_{p+1}, E_{p+2}\right)-v_{1}\left(E_{p+1}, \nabla_{Z}^{M_{1}} E_{p+2}\right) \\
& =-g_{1}\left(\nabla_{Z}^{M_{1}} E_{p+1}, E_{p+1}\right)-g_{1}\left(\nabla_{Z}^{M_{1}} E_{p+2}, E_{p+2}\right)=0 .
\end{aligned}
$$

Now let $\left(M_{2}, g_{2}, \mathcal{F}_{2}\right)$ be an other g_{2}-Riemannian harmonic foliation of codimension $q-2 \geq 1$ with a transversal Ricci curvature Ric $\nabla^{2} \geq \mathrm{kg}_{2}$ (for example, take \mathcal{F}_{2} a transversely elliptic foliation). The product foliation $\mathcal{F}=\mathcal{F}_{1} \times \mathcal{F}_{2}$ on $M=M_{1} \times M_{2}$ is also $g_{1} \times g_{2}$-Riemannian harmonic of codimension q with transversal Ricci curvature Ric $_{\nabla} \geq k\left(g_{1} \times g_{2}\right)$. By the new estimation the smallest non zero eigenvalue of the basic Laplacian satisfies $\lambda_{B} \geq 2 k$. Whereas the estimation given in [1] is $\lambda_{B} \geq \frac{q}{q-1} k$.

Example 11. Assume that \mathcal{F} is a Kähler foliation (see [4]). That is i) \mathcal{F} is g-Riemannian, i.e. $\nabla g=0$, ii) there is a holonomy invariant almost complex structure $J: L^{\perp} \longrightarrow L^{\perp}$, where $\operatorname{dim} L^{\perp}=q=2 m$ (real dimension), with respect to which the metric g is transversely Hermitian, i.e. $g(J X, J Y)=g(X, Y)$ for $X, Y \in \Gamma\left(L^{\perp}\right)$, iii) ∇ is almost complex structure, i.e. $\nabla J=0$. Note that $\alpha(X, Y)=$ $g(X, J Y)$ for $X, Y \in \Gamma\left(L^{\perp}\right)$ and $i_{\xi} \alpha=0$ for $\xi \in \Gamma L$ defines a basic 2 -form α, which is closed as a consequence of $\nabla g=0$ and $\nabla J=0$.

Clearly $\alpha^{m} \neq 0$ at all points of M. Let $f \in \Omega_{B}^{0}(\mathcal{F})$; in the one hand $L_{\nabla f} \alpha^{m}=$ $\Delta_{B} f . \alpha^{m}$ and in the other hand $L_{\nabla f} \alpha^{m}=m L_{\nabla f} \alpha \wedge \alpha^{m-1}$. Consequently $L_{\nabla f} \alpha=$ $\frac{1}{m} \Delta_{B} f . \alpha$. We deduce that
i) ∇f is a transversal Kähler field $\left(L_{\nabla f} \alpha=0\right)$ if and only if the function f is harmonic. In this case $J \circ A_{\nabla f}=-A_{\nabla f} \circ J$. Let $x \in M$; since $\left(A_{\nabla f}\right)_{x}$ is diagonalisable and J_{x} is antisymmetric anti-commuting with $\left(A_{\nabla f}\right)_{x}$, hence $\left(A_{\nabla f}\right)_{x}$ is of even rang.
ii) ∇f is a transversal Liouville field $\left(L_{\nabla f} \alpha=\alpha\right)$ if and only if $\Delta_{B} f=m$.

Let $\chi_{\mathcal{F}}$ be the characteristic form of \mathcal{F} and let $\bar{*}: \Omega_{B}^{r}(\mathcal{F}) \longrightarrow \Omega_{B}^{q-r}(\mathcal{F})$ be the transversal star operator, we have

$$
\bar{*} L_{\nabla f}=\frac{1}{m} \nabla_{B} f . \wedge \alpha^{m-1}, \quad\left\|L_{\nabla f}\right\|_{\Omega_{B}^{*}(\mathcal{F})}^{2}=\int_{M} L_{\nabla f} \wedge \bar{*} L_{\nabla f} \wedge \chi_{\mathcal{F}}=\frac{\left\|\Delta_{B} f\right\|_{2}^{2}}{m^{2}} .
$$

We deduce that if \mathcal{F} is a harmonic Kähler foliation of codimension q on a closed manifold such that $\operatorname{Ric}_{\nabla} \geq k(q-1)$ and if f is an eigenfunction of Δ_{B}, then $\left\|L_{\nabla f}\right\|_{\Omega_{B}^{*}(\mathcal{F})} \geq$ $\frac{4 k(q-1)}{q}\|f\|_{2}$.

Now we give an example of a harmonic Kähler foliation with constant sectional curvature see [5] page 273. Let $P^{m} C$ be the complex projective space. This is the quotient of the Euclidian sphere $S^{2 m+1}$ under the canonical S^{1}-action. We obtain the Hopf fibration

$$
S^{1} \rightarrow S^{2 m+1} \rightarrow P^{m} C=S U(m+1) / S(U(1) \times U(m))
$$

which gives rice naturally to a harmonic (and totally geodesic) Kähler (and symmetric) foliation on $S^{2 m+1}$. The transversal holomorphic sectional curvature is 4; therefore $\operatorname{Ric}_{\nabla}=4 q$ and $k=\frac{4 q}{q-1}$. By the new estimation the smallest non zero eigenvalue of the basic Laplacian satisfies $\lambda_{B} \geq 8 q$. Whereas the estimation given in [1] is $\lambda_{B} \geq \frac{4 q^{2}}{q-1}$.

We end the paper by the following question. If in Theorem 6 the equality occurs, is the leaf space isometric to the space of orbit of a discrete subgroup of $O(q-2) \times O(2)$ acting on the standard product $(q-2)$-sphere with 2 -sphere of constant curvature k ?
Acknowledgement The author thanks the referee for helpful comments.

References

[1] J. Lee and K. Richardson, Lichnerowicz and Obata theorems for foliations, Pacific. J. of Math; vol. 206, No. 2, 2002, 339-357.
[2] F. W. Kamber and Ph. Tondeur, Duality for Riemannian foliations, Proc. Symp. Pure Math., Amer. Math. Soc., vol. 40 (1983); Part1, 609-618.
[3] F. W. Kamber and Ph. Tondeur, Foliations and metrics, Proc. of a Year in differential Geometry, University of Maryland, Birkäuser, Progress in Mathematics vol 32 (1983), 103-152.
[4] F. W. Kamber and Ph. Tondeur, Transversal infinitesimal automortphisms for harmonic Kähler foliations, Tôhoku Math. J. 40 (1988), 599-611.
[5] S. Kobayashi and K. Nomizu, Foundations of differential geometry, John Wiley and Sons, Vol. II (1969).
[6] B. L. Reinhart, Differential Geometry of foliation, Springer, Berlin, 1983.
[7] Ph. Tondeur, Foliations on Riemannian manifolds, Universitext, springer Verlag, New York, 1988.

Faculté des Sciences de Bizerte.
7021 Zarzouna Tunisie.
E-mail address: MohamedAli.Chaouch@fsb.rnu.tn

[^0]: Received by the editors February 2009.
 Communicated by S. Gutt.
 2000 Mathematics Subject Classification : 53C12, 57R30.
 Key words and phrases : harmonic foliation, Riemannian foliation, transverse vector field, basic Laplacian.

