
On exceptional systems of random
integers.

Peter Hilton Bruce Love Jean Pedersen

1 Background, notation and terminology.

We collect together here the concepts and results which we will need in the sequel;
details and proofs are to be found in [HP 1, 2].

Let X1, X2, · · · , Xk be independently distributed random integer variables such
that Xj takes values in the range 1 ≤ Xj ≤ nj with equal likelihood. Let m be a fixed
but arbitrary modulus. We refer to (n1, n2, · · · , nk;m), abbreviated to (n, k;m), as
a system. Let 0 ≤ u ≤ m − 1; then we say that the system (n, k;m) is u-good,

abbreviated to
(n, k;m) ∈ Gu, (1.1)

if

prob (Σ =
k∑
j=1

Xj ≡ u mod m) =
1

m
(1.2)

If u = 0, we abbreviate 0-good to good and then write

(n, k;m) ∈ G. (1.3)

Let f = f(n, k) be the polynomial

f =
xk
∏
j(x

nj − 1)

(x− 1)k
. (1.4)
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Then f is the frequency generating function for Σ. Let Rm : Z[x] → Z[x] be
reduction mod (xm − 1). Then r = Rm(f) is the residue (mod m) frequency

generation function, or residue polynomial. If

r =
m−1∑
u=0

rux
u, (1.5)

then

Proposition 1.1 (n, k;m) ∈ Gu if and only if ru =
n1n2 · · ·nk

m
.

We say that the system (n, k;m) is standard if (n, k;m) ∈ Gu for all u in
0 ≤ u ≤ 1. Then (Theorem 1.3 of [HP2])

Theorem 1.2 (n, k;m) is standard if and only if m|nj for some j in 1 ≤ j ≤ k.

If (n, k;m) is good but not standard we say that it is sporadic. We will be
entirely interested in sporadic systems in this paper, since standard systems are
completely understood. Of course, Proposition 1.1 immediately implies

Proposition 1.3 If (n, k;m) is u-good for any u in 0 ≤ u ≤ m − 1, then
m|n1n2 · · ·nk.

We write n ≡ n′ mod m if nj ≡ n′j mod m for all j in 1 ≤ j ≤ k. Then (Theorem

1.4 of [HP2])

Theorem 1.4 If n ≡ n′ mod m, then

(n, k;m) ∈ Gu ⇔ (n′, k;m) ∈ Gu

for any u in 0 ≤ u ≤ m− 1.

In the light of Theorem 1.4 we may henceforth always assume, in our search for
sporadic systems, that

0 < nj < m for all j in 1 ≤ j ≤ k. (1.6)

Thus we will assume (1.6) throughout the rest of this paper. In [HP2] we found a

systematic recipe for constructing sporadic systems. Let m admit the factorization

m = a1a2 · · · ak, (1.7)

where each aj is strictly less than m; we will call this a proper k-factorization of
m. We then set nj = m− aj and call (n, k;m) a factor system.

Now given any system (n, k;m), set

ū =
∑
j

nj − (k − 1)m + k. (1.8)
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Then ū ≤ m, and ū = m if and only if each nj = m − 1. Of course, in the latter
case, (n, k;m) cannot be u-good for any u, so we will exclude it henceforth. Thus

we may conclude that

ū ≤ m− 1. (1.9)

Then the main theorem of [HP2] (actually expressed in Corollary 2.5 of that paper)
is the following :

Theorem 1.5 (n, k;m) is a factor system if and only if the following 2 conditions
hold:

(i) ū ≥ 1; (ii) (n, k;m) ∈ G.

Moreover, we then also have (n, k;m) ∈ Gū.

It is thus natural to ask whether there are any sporadic systems which are not

factor systems; equivalently, whether there are sporadic systems for which ū ≤ 0.
As we showed in [HP2], there are such systems. However we first give two results in
the opposite direction. Recall that we are concerned only to detect sporadic (good)
systems subject to condition (1.6).

First, from the complete analysis of the case k = 2 in [HP2] we easily infer

Theorem 1.6 Let k = 2. Then (n, k;m) is good if and only if it is a factor system.

Second, let us describe the system (n, k;m) as homogeneous if n1 = n2 = · · · =
nk =, say, n. We will then write (n; k;m) instead of (n, k;m). Theorem 3.1 of [HP1]
immediately implies

Theorem 1.7 Let k = 3. Then the homogeneous system (n; k;m) is good if and

only if it is a factor system.

On the other hand, we gave two examples in [HP2] of families of inhomogeneous
systems (n, 3;m) which are good but not factor systems. Thus Examples 4.1, 4.2 of

[HP2] may be described as follows.

Theorem 1.8 Let d ≥ 1. Then the systems

(d, d + 1, d+ 2; 2d + 4) and (2, 2d − 1, d+ 2; 2d + 4)

are good. Of course, neither is a factor system – in fact, ū = −d−2 for each system.

That there are sporadic systems which are not factor systems for all k ≥ 3 now
follows from Theorem 4.3 of [HP2], namely,

Theorem 1.9 Let (n, k;m) be a system and let (n+, k + 1;m) be formed from

(n, k;m) by adjoining the component m − 1. Then ū is unchanged in passing to
the augmented system and (n, k;m) is u-good if and only if (n+, k+ 1;m) is u-good,
for any u in 0 ≤ u ≤ m− 1.
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We will obtain in Section 2 a family of homogeneous sporadic systems which
are not factor systems and which involve variable values of k; among these systems

there will be, as special cases, homogeneous systems with k = 4, so that Theorem
1.7 fails for higher values of k. In Section 3 we will obtain a very general result
which includes Theorem 1.8 and shows that, in fact, the two systems described in
the statement of that theorem are at the two extremes of a family comprising the

only possible examples of sporadic, non-factor systems of a certain type.
Although, as we have said, our main interest in this paper is in sporadic, that

is, 0-good systems, we are obviously also concerned with u-good systems for values
of u 6= 0. In an appendix (Section 4) we prove a theorem about the coefficients ru
of (1.5) which explains the final assertion of Theorem 1.5 and Proposition 2.3, and

provides a supplement to Theorem 3.1.
We point out that the properties of the families described in Sections 2 and 3

were suspected as a result of computer experiments carried out to detect sporadic,
non-factor systems. These experiments, which are described briefly in Appendix 2
(Section 5), have thrown up other examples which we have not yet succeeded in
explaining.

2 On a family of homogeneous sporadic systems.

In this section s is an arbitrary even positive integer and v is an arbitrary odd

positive integer.

Theorem 2.1 The homogeneous system (s; vs; 2s) is good.

Note that ū = s(v + 2− vs). Thus the system (s; vs; 2s) is a factor system only

if s = 2, v = 1. Note also that (4; 4; 8) constitutes a homogeneous sporadic system
with k = 4 which is not a factor system.

Before proceeding with the proof, we state a preliminary lemma whose proof may
be left to the reader. Recall that p ∈ Z[x] is antisymmetric if p(x) = −xdp( 1

x
),

where d = deg p.

Lemma 2.2 Given a > b, with a odd, b even, then

(xr − 1)a

(x− 1)b

is an antisymmetric polynomial of degree ar − b.

Proof of Theorem 2.1
Let

f =
xvs(xs − 1)vs

(x− 1)vs
,

g =
xs(xs − 1)vs

(x− 1)vs
,
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h =
(xs − 1)vs

(x− 1)vs
,

Then f is the frequency generating function for the system (s; vs; 2s). Moreover,

R2s(f) = R2s(g), (2.1)

since x2s − 1|f − g; recall that v is odd. We must therefore show that

R2s(g)(0) =
1

2
svs−1, (2.2)

according to Proposition 1.1.
Let cm be the (cyclotomic) polynomial

cm = 1 + x+ x2 + · · ·+ xm−1.

Since h = cvss it follows that

h = q(xs − 1) + λcs,

where λ = h(1)
s

= svs−1 . Thus

h = q(xs − 1) + svs−1cs, (2.3)

whence

g + h = (xs + 1)h = q(x2s − 1) + svs−1c2s. (2.4)

It follows that
R2s(g) +R2s(h) = svs−1c2s. (2.5)

Now consider g − h =
(xs − 1)vs+1

(x− 1)vs
. By Lemma 2.2, g − h is an antisymmetric

polynomial of degree 2st, where t = 1
2
vs− 1

2
(v − 1). Let al be the coefficient of x2ls

in this polynomial, l = 0, 1, · · · , t. Then

R2s(g − h)(0) =
t∑
l=0

al.

However, by the antisymmetry of g − h,

al = −at−l,

so that
R2s(g − h)(0) = 0. (2.6)

Moreover, R2s(g − h) = R2s(g)− R2s(h), so that

R2s(g − h)(0) = R2s(g)(0) − R2s(h)(0);

thus
R2s(g)(0) = R2s(h)(0). (2.7)
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However, it follows immediately from (2.5) that

R2s(g)(0) +R2s(h)(0) = svs−1. (2.8)

Of course, (2.7) and (2.8) together imply (2.2), so that the theorem is proved.

Remark Notice that g = xsh. Thus

if R2s(f) =
2s−1∑
u=0

rux
u, then R2s(g) =

2s−1∑
u=0

rux
u, by (2.1),

and

R2s(h) =
2s−1∑
u=0

r′ux
u,

where

r′u =
{
rs+u, 0 ≤ u ≤ s− 1

r−s+u, s ≤ u ≤ 2s− 1
(2.9)

Thus, by (2.5), the polynomial R2s(f) has the property

ru + rs+u = svs−1, 0 ≤ u ≤ s− 1. (2.10)

In particular, since r0 = 1
2
svs−1, it follows that rs = 1

2
svs−1, so that we conclude

Proposition 2.3 The homogeneous system (s; vs; 2s) is s-good.

Of course, we can use Theorem 1.9 to construct new sporadic systems which will
fail to be factor systems except in the case s = 2, v = 1. However, the systems we

construct in this way will not themselves be homogeneous.

3 On sporadic, non-factor systems.

In this section we prove a theorem which provides both a generalization and a
converse of Theorem 1.8. We consider systems (a, b, c; 2c), so that k = 3. We may
assume, without loss of generality, that a ≤ b. It is easy to see that, if (a, b, c; 2c) is

a factor system, then a = 2c− 2, b = 2c− 1. We now assume that (a, b, c; 2c) is not
a factor system and prove

Theorem 3.1 Assume (a, b, c; 2c) is not a factor system. Then

(a, b, c; 2c) ∈ G ⇔ 2c = a+ b+ 3.

Proof We first show that

(a, b, c; 2c) ∈ G and a + b ≤ 2c− 1⇔ 2c = a + b+ 3. (3.1)

Now, since a ≤ b, the frequency generating function f is given by
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f = (x2+2x3+· · ·+axa+1+· · · axb+1+(a−1)xb+2+· · ·+xa+b)(x+x2+· · ·+xc) (3.2)

If a + b < c, then (in the notation of (1.5)) r0 = 0, so (a, b, c; 2c) /∈ G. If
c ≤ a+ b ≤ 2c− 1, then r0 is the coefficient of x2c in (3.2). Moreover, c ≥ a+ 1. If,

further, c ≤ b+ 1, then

r0 = (b− c+ 2)a + 1 + 2 + · · ·+ (a− 1) = (b− c+ 2)a +
a(a− 1)

2
.

Thus

(a, b, c; 2c) ∈ G ⇔ r0 =
ab

2
⇔ 2b− 2c+ 4 + a− 1 = b⇔ 2c = a + b+ 3 (3.3)

Now suppose c ≤ a + b ≤ 2c − 1 and c > b+ 1. Then, from (3.2)

r0 = 1 + 2 + · · ·+ (a + b+ 1− c) =
1

2
(a+ b+ 1− c)(a + b+ 2− c) (3.4)

But a + b+ 1 − c < a, a + b + 2− c ≤ a, so, by (3.4), r0 <
1
2
a2 ≤ 1

2
ab, whence

(a, b, c; 2c) /∈ G. We have proved that if (a, b, c; 2c) ∈ G and a + b ≤ 2c − 1, then
c ≤ b + 1, and 2c = a + b + 3. But, conversely, if 2c = a + b + 3, then, trivially,
a+ b ≤ 2c−1 and a < b, since a, b have opposite parity. Thus 2c ≤ 2b+ 2, c ≤ b+ 1,

so that, by (3.3), (a, b, c; 2c) ∈ G. Thus (3.1) is proved.
Next we calculate ū, obtaining

ū = a + b+ c− 4c+ 3 = a + b− 3c+ 3.

Thus
ū ≥ 1⇔ a+ b ≥ 3c − 2. (3.5)

It thus follows from Theorem 1.5 that if a + b ≥ 3c − 2 and (a, b, c; 2c) ∈ G then
(a, b, c; 2c) is a factor system, contrary to hypothesis. The proof of the theorem will

therefore be completed when we have shown that

2c ≤ a + b < 3c − 2⇒ (a, b, c; 2c) /∈ G. (3.6)

We divide the proof of (3.6) into 2 cases, as follows.
Case 1: a < c ≤ b
It follows from the fact that a+ b < 3c− 2 that to calculate r0 we again seek the

coefficient of x2c in (3.2). Thus

r0 = (b−c+2)a+(a−1)+· · ·+(a+b+2−2c) = (b−c+2)a+
1

2
(2c−b−2)(2a+b+1−2c).

Trivial algebraic manipulation1 now tells us that

2(r0 −
1

2
ab) = (2c − b)(a + b− 2c + 3)− 2.

1Not trivial, however, to a computer endowed with the capacity for symbolic manipulation!
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But 2c− b ≥ 1, by our assumption (1.6), and a+ b− 2c+ 3 ≥ 3, so 2(r0− 1
2
ab) ≥ 1,

and hence r0 6= 1
2
ab. Equivalently, (a, b, c; 2c) /∈ G.

Case 2: c ≤ a
Again we seek the coefficient of x2c in (3.2). Thus

r0 = (c− 1) + · · · + (a− 1) + (b− a + 1)a +
1

2
(2c − b− 2)(2a + b+ 1− 2c)

– taking advantage of the calculation in Case 1.
Hence

r0 =
1

2
(a− c+ 1)(a + c − 2) − (a− c+ 1)a + (b− c+ 2)a

+
1

2
(2c− b− 2)(2a + b+ 1− 2c)

= −1

2
(a− c+ 1)(a− c+ 2) + (b− c+ 2)a +

1

2
(2c− b− 2)(2a + b+ 1− 2c).

Again taking advantage of the calculation in Case 1, we conclude that

2(r0 −
1

2
ab) = (2c− b)(a+ b− 2c+ 3) − 2− (a− c+ 1)(a− c+ 2). (3.7)

Now set a− c+ 1 = q. Then q ≥ 1. Moreover,

2c− b > a− c+ 2 = q + 1

and

a + b− 2c+ 3− (a− c+ 1) = b− c+ 2 ≥ 2,

so

a + b− 2c+ 3 ≥ q + 2,

Thus, from (3.7),

2(r0 −
1

2
ab) ≥ (q + 2)2 − 2− q(q + 1) = 3q + 2 ≥ 5.

Certainly r0 6= 1
2
ab and (a, b, c; 2c) /∈ G. The proof of (3.6) is complete; and, with it,

the proof of Theorem 3.1.

Remarks (i) Theorem 3.1 plainly incorporates Theorem 1.8, since it asserts
that

(a, b, d+ 2; 2d + 4) is good provided 2d + 4 = a + b+ 3, a + b = 2d + 1.

Except for the case (1, 2d, d + 2; 2d + 4), the systems described in Theorem 1.8 are
the extremal cases a = 2, a = d. The exclusion of the case a = 1 was due to a

reluctance to admit ‘dice with only one face’ !2 It is reasonable to have insisted that

2It is obvious that if r̄ is the residue polynomial obtained by adjoining a ‘die with only one
face’, then r̄0 = rm−1, r̄u = ru−1, 1 ≤ u ≤ m − 1. Thus the situation with k = 3 and n1 = 1 is
immediately and entirely deducible from our complete analysis in [HP2] of the case k = 2.
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d ≥ 1 (so that c ≥ 3) in Theorem 1.8, since the equation 2c = a + b + 3 implies
c ≥ 3.

(ii) Notice that it follows from Theorem 3.1 that if (a, b, c; 2c) is good, then a, b
have opposite parity. It is immediately plain from Proposition 1.1 that if (a, b, c; 2c)
is good then ab is even, but the stronger statement above is not at all obvious.

4 Appendix 1: On the shape of the residue co-
efficient curve.

In Proposition 2.3 we saw that (s; vs; 2s) was not only good but also s-good. We
also noted in the fundamental Theorem 1.5 that a factor system (n, k;m) is not only

good but ū-good. In this appendix we will prove that, for any system (n, k;m), if it
is good then it is also µ-good for a special µ in 0 ≤ µ ≤ m− 1.

We do this by studying the way the coefficients ru of the residue frequency
generating function r = Rm(f) vary with u. This study was encapsulated, in the
case k = 2, in Figure 1 of [HP2], and we will see that, in general, this variation was

presaged in that figure, which we reproduce below.

The plot of ru against u if m ≤ n1 + n2 (writing x for u and y for ru).

(a)

The plot of ru against u if m ≥ n1 + n2 (writing x for u and y for ru).

(b)

(Figures (a) and (b) are drawn with the same value of n1 and of n2.)

Figure 1.

Given a system (n, k;m), we define µ to be the remainder when
∑
nj + k is

divided by m. We prove
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Theorem 4.1 In the residue polynomial r =
∑m−1
u=0 rux

u we have

ru = rµ−u, u = 0, 1, · · · , µ; ru = rm+µ−u, u = µ+ 1, µ + 2, · · · , m− 1.

Proof We have

xk
∏

(xnj − 1)

(x− 1)k
= q(x)(xm − 1) +

µ∑
u=0

rux
u +

m−1∑
u=µ+1

rux
u. (4.1)

Hence

x−k
∏

(x−nj − 1)

(x−1 − 1)k
= q(x−1)(x−m − 1) +

µ∑
u=0

rux
−u +

m−1∑
u=µ+1

rux
−u. (4.2)

Notice that q(x) is the zero polynomial if
∑
nj < m, and otherwise a polynomial of

degree
∑
nj −m. We multiply through in (4.2) by x

∑
nj+k, obtaining

xk
∏

(xnj − 1)

(x− 1)k
= −x

∑
nj+k−mq(x−1)(xm − 1) + x

∑
nj+k−µ

µ∑
u=0

rux
µ−u

+x
∑

nj+k−µ−m
m−1∑
u=µ+1

rux
m+µ−u (4.3)

Now x
∑

nj+k−µ ≡ 1 mod (xm − 1) and x
∑

nj+k−µ−m ≡ 1 mod (xm − 1).

Thus we deduce from (4.3) that, calculating mod (xm − 1),

xk
∏

(xnj − 1)

(x− 1)k
=

µ∑
u=0

rµ−ux
u +

m−1∑
u=µ+1

rm+µ−ux
u (4.4)

Comparing (4.1) with (4.4), we deduce from the uniqueness of the remainder that

ru = rµ−u, u = 0, 1, · · · , µ; ru = rm+µ−u, u = µ+ 1, µ + 2, · · · , m− 1.

Corollary 4.2 Suppose that (n, k;m) is good. Then it is also µ-good.

Notice that it is, of course, possible that µ = 0, in which case Corollary 4.2 gives
us no information. However, we may generalize Corollary 4.2 as follows: then even
the case µ = 0 is informative.

Theorem 4.3

(n, k;m) is µ− good ⇔ (n, k;m) is (µ− u)− good , 0 ≤ u ≤ µ

and

(n, k;m) is µ− good ⇔ (n, k;m) is (m + µ − u)− good , µ + 1 ≤ u ≤ m− 1.
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Example 4.4 Suppose that (n, k;m) is a factor system. Then 1 ≤ ū ≤ m− 1
where, by (1.8),

ū =
∑
j

nj − (k − 1)m + k.

Thus ū = µ, so that Corollary 4.2 yields the final statement of Theorem 1.5.

Example 4.5 We consider the homogeneous system (s; vs; 2s) of Theorem
2.1. The remainder on dividing vs2 + vs ( v odd, s even) by 2s is s. Thus, since

(s; vs; 2s) is good, we infer from Corollary 4.2 that (s; vs; 2s) is s-good, as asserted
in Proposition 2.3.

Example 4.6 We consider the sporadic system (a, b, c; 2c) of Theorem 3.1 with
2c = a+ b+ 3 . The remainder on dividing a+ b+ c+ 3 by 2c, that is, 3c by 2c, is c.

Thus we infer from Corollary 4.2 that, if 2c = a+ b+ 3, then the system (a, b, c; 2c)
is c -good.

Notice that, under the augmentation process described in Theorem 1.9, not only
ū but also µ remains unchanged. It would be interesting to study further the ‘curve’

ru, that is, the dependence of ru on u, in qualitative terms. It appears that we have
a parabolic shape between u = 0 and u = µ and a second parabolic shape between
u = µ+ 1 and u = m− 1. One of these parabolas, we believe, has a maximum and
the other a minimum. We hope to revert to this matter in a later paper.

5 Appendix 2: How the computer data was ob-
tained.

We include here a brief description of how Theorem 2.1 came to be conjectured.

Working with a Macintosh Centris 650, a program consisting of two levels was
designed to generate solutions for the homogeneous case. The outer level was written
in C and used nested loops which fed the inner level the number of dice (k) and the

number of faces on each die (n). It also created an empty array (A) representing the
frequency table for possible results of adding the values of k dice. This array was
created for A0 to Akn, although the initial entries from A0 to Ak−1 were not used.

The inner loop was written in Assembler Language to maximize speed. Use
was made of a 1-1-correspondence between the numbers 0 to nk − 1 and the sum

of the values on the dice using base n. A 32-bit register was used as the primary
counter. Each value of this register was successively divided by n and the remainders
accumulated. The final sum was adjusted to compensate for the faces of the dice
being numbered from 1 to n, instead of (what is more natural in assembler language

and in modular arithmetic) 0 to n−1. The frequency table was then incremented at
the appropriate position. This method had the limitation that nk < 232. However
this limitation never became important because time to complete the simulation was

a more limiting factor.

The final table was then passed back to the outer level. All multiples of the
table’s index were accumulated so that rm =

∑
j Amj. Then the program examined

the table for values of m for which mrm = nk and these were printed out.

The program was eventually changed, to accommodate the inhomogeneous case,
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using a formula to calculate values in the table rather than create them from scratch,
with the arithmetic changed to work up to 64 bits. More data were created in the

process, but no new phenomena were revealed.
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