Bialgebra structures on a real semisimple Lie algebra.

Véronique Chloup

Abstract

We describe some results on the classification of bialgebra structures on a real semisimple Lie algebra. We first describe the possible Manin algebras (i.e. big algebra in the Manin triple) for such a bialgebra structure. We then determine all the bialgebra structures on a real semisimple Lie algebra for the nonzero standard modified Yang-Baxter equation. Finally we consider the case of a real simple Lie algebra the complexification of which is not simple and we give some partial results about the bialgebra structures for any nonzero modified Yang-Baxter equation.

1 Definitions and notations.

Our work is a continuation of a paper from M. Cahen, S. Gutt and J. Rawnsley [1]; we use the same notations as theirs which we now recall.

Definition 1. (cf[3]) A Lie bialgebra (\mathfrak{g}, p) is a Lie algebra \mathfrak{g} with a 1-cocycle $p: \mathfrak{g} \rightarrow \Lambda^{2} \mathfrak{g}$ (relative to the adjoint action) such that $p^{*}: \mathfrak{g}^{*} \times \mathfrak{g}^{*} \rightarrow \mathfrak{g}^{*}(\xi, \eta) \rightarrow$ $[\xi, \eta]$ with

$$
\langle[\xi, \eta], X\rangle=\langle\xi \wedge \eta, p(X)\rangle
$$

is a Lie bracket on \mathfrak{g}^{*}. One also denotes the bialgebra by $\left(\mathfrak{g}, \mathfrak{g}^{*}\right)$.
A Lie bialgebra (\mathfrak{g}, p) is said to be exact if the 1-cocycle p is a coboundary, $p=\partial Q$, for $Q \in \Lambda^{2} \mathfrak{g}$.

This means that $\partial Q_{X}=[X, Q]$ and then the condition for $(\mathfrak{g}, \partial Q)$ to be a Lie bialgebra is that the bracket $[Q, Q]$ be invariant under the adjoint action in $\Lambda^{3} \mathfrak{g}$.

Received by the editors November 1994
Communicated by Y. Félix
AMS Mathematics Subject Classification : 53C15, 58F05.
Keywords : Bialgebras, Manin algebras, modified Yang-Baxter equation.

Definition 2. (cf [3]) A Manin triple consists of three Lie algebras ($\mathfrak{L}, \mathfrak{g}_{1}, \mathfrak{g}_{2}$) and a nondegenerate invariant symmetric bilinear form \ll, \gg on \mathfrak{L} such that

1) \mathfrak{g}_{1} and \mathfrak{g}_{2} are subalgebras of \mathfrak{L};
2) $\mathfrak{L}=\mathfrak{g}_{1}+\mathfrak{g}_{2}$ as vector spaces;
3) \mathfrak{g}_{1} and \mathfrak{g}_{2} are isotropic for \ll, \gg.

We shall call the Lie algebra \mathfrak{L} the associated Manin algebra.
Proposition 1. (cf [3]) There is a bijective correspondance between Lie bialgebras and Manin triples.

Notation. Let \mathfrak{g} be a Lie algebra of dimension n. Consider any vector space \mathfrak{L} of dimension $2 n$ with a nondegenerate symmetric bilinear form $\ll,>$ and a skewsymmetric bilinear map [,]: $\mathfrak{L} \times \mathfrak{L} \rightarrow \mathfrak{L}$ such that
i) \mathfrak{L} contains \mathfrak{g};
ii) the bracket restricted to $\mathfrak{g} \times \mathfrak{g}$ is the Lie bracket of \mathfrak{g};
iii) \mathfrak{g} is isotropic;
iv) $\ll[X, Y], Z \gg+\ll Y,[X, Z] \gg=0, \forall X, Y, Z \in \mathfrak{L}$.

Then, choosing an isotropic subspace supplementary to \mathfrak{g} in \mathfrak{L} and identifying it with \mathfrak{g}^{*} via $\ll, \gg, \mathfrak{L}=\mathfrak{g}+\mathfrak{g}^{*}$ as vector spaces and one has :

1) $\ll(X, \alpha),(Y, \nu) \gg=\langle\alpha, Y\rangle+\langle\nu, X\rangle ;$
2) $[(X, \alpha),(Y, \nu)]=\left([X, Y]+C_{1}(\alpha, Y)-C_{1}(\nu, X)+\bar{S}(\alpha, \nu), a d_{X}^{*} \nu-a d_{Y}^{*} \alpha+\right.$ $T(\alpha, \nu))$.

The invariance condition reads:
3) $\mathrm{S}(\alpha, \nu, \gamma)=\langle\gamma, \bar{S}(\alpha, \nu)\rangle$ is totally skewsymmetric;
4) $\langle T(\alpha, \nu), Z\rangle=\left\langle\alpha, C_{1}(\nu, Z)\right\rangle$.

We denote by $\mathfrak{L}_{S, p}$ where $p={ }^{t} T: \mathfrak{g} \rightarrow \Lambda^{2} \mathfrak{g}$, the space $\mathfrak{L}=\mathfrak{g}+\mathfrak{g}^{*}$ with \ll, \gg and [,] defined by 1 and 2 with the conditions 3 and 4 .

Definition 3. (cf [4]) A Manin pair is a pair of Lie algebras ($\mathfrak{L}, \mathfrak{g}$) and a nondegenerate symmetric bilinear form \ll, \gg on \mathfrak{L} such that the conditions i),ii),iii),iv) are satisfied.

So if $(\mathfrak{L}, \mathfrak{g})$ is a Manin pair, then a choice of an isotropic subspace in \mathfrak{L} supplementary to \mathfrak{g} identifies \mathfrak{L} with a Lie algebra $\mathfrak{L}_{S, p}$

Remark that the bracket defined on \mathfrak{L} is a Lie bracket (i.e. satisfies Jacobi's identity) if and only if :
5) $\partial p=0$ where $p={ }^{t} T: \mathfrak{g} \rightarrow \Lambda^{2} \mathfrak{g}$;
6) $\left.[\mathrm{X}, \mathrm{S}](\alpha, \nu, \gamma)+\left\langle\Sigma_{\alpha \nu \gamma} T(T(\alpha, \nu), \gamma)\right), X\right\rangle=0$ where Σ denotes the sum over cyclic permutations;
7) $\Sigma_{\alpha \eta \gamma}(S(T(\alpha, \eta), \gamma, \nu)+S(T(\alpha, \nu), \eta, \gamma))=0$.

Definition 4. A map $\phi: \mathfrak{L}_{S, p} \rightarrow \mathfrak{L}_{S^{\prime}, p^{\prime}}$ which is linear, maps \mathfrak{g} to \mathfrak{g}, preserves \ll, \gg and is such that $\phi[(X, \alpha),(Y, \nu)]_{S, p}=[\phi(X, \alpha), \phi(Y, \nu)]_{S^{\prime}, p^{\prime}}$ is called an isomorphism of Manin pair.
Remark that it is of the form $\phi(X, \alpha)=\left(A(X+\hat{Q}(\alpha)),{ }^{t} A^{-1}(\alpha)\right)$ where
i) $A: \mathfrak{g} \rightarrow \mathfrak{g}$ is Lie automorphism of \mathfrak{g} and $\hat{Q}: \mathfrak{g}^{*} \rightarrow \mathfrak{g}$ is induced by an element
$Q \in \Lambda^{2} \mathfrak{g}$ through $\langle\nu, \hat{Q}(\alpha)\rangle=Q(\alpha, \nu)$ such that
ii) $A^{-1} \cdot p^{\prime}-p=-\partial Q$;
iii) $\left(A^{-1} \cdot S^{\prime}-S\right)(\alpha, \nu, \gamma)=\Sigma_{\alpha \nu \gamma}(Q(T(\alpha, \nu), \gamma)+\langle\alpha,[\hat{Q}(\nu), \hat{Q}(\gamma)]\rangle)$

$$
=1 / 2[Q, Q](\alpha, \nu, \gamma)+\Sigma_{\alpha \nu \gamma}(T(\alpha, \nu), \gamma)
$$

where $\left(A \cdot p^{\prime}\right)_{X}(\alpha, \nu)=p_{A^{-1}(X)}^{\prime}\left({ }^{t} A \alpha,{ }^{t} A \nu\right)$ and $(A \cdot S)(\alpha, \nu, \gamma)=S\left({ }^{t} A \alpha,{ }^{t} A \nu,{ }^{t} A \gamma\right)$. We then say that $\mathfrak{L}_{S, p}$ and $\mathfrak{L}_{S^{\prime}, p^{\prime}}$ are isomorphic under ϕ.

Remark 1. A Manin pair $(\mathfrak{L}, \mathfrak{g})$ yields a Manin triple $\left(\mathfrak{L}, \mathfrak{g}, \mathfrak{g}^{*}\right)$ if and only if there is an isotropic subspace supplementary to \mathfrak{g} in \mathfrak{L} which is a subalgebra of \mathfrak{L}. Hence a bialgebra structure on \mathfrak{g} yields as its corresponding Manin algebra an algebra $\mathfrak{L}_{S, p^{\prime}}$ which is isomorphic to a Lie algebra $\mathfrak{L}_{0, p}$ and vice versa.

Definition 5. (cf [1]) We shall say that two Manin algebras \mathfrak{L} and \mathfrak{L} are isomorphic if there exists a map $\phi: \mathfrak{L} \rightarrow \mathfrak{L}^{\prime}$ which

- is an isomorphism of Lie algebras,
- maps \mathfrak{g} to \mathfrak{g},
- is a homothetic transformation from \mathfrak{L} to \mathfrak{L}^{\prime}, i.e. $\ll \phi(X), \phi(Y)>^{\prime}=s \ll$ $X, Y \gg \forall X, Y \in \mathfrak{L}$ for some nonzero real s.

Lemma 1. (cf [1]) Two Lie bialgebra structures on a given Lie algebra \mathfrak{g}, (\mathfrak{g}, p) and $\left(\mathfrak{g}, p^{\prime}\right)$ yield isomorphic Manin algebras if and only if there are $Q \in \Lambda^{2} \mathfrak{g}, A$ an automorphism of \mathfrak{g} and s a nonzero real number such that

$$
\left\{\begin{array}{l}
p^{\prime}=s A(p-\partial Q) \\
1 / 2[Q, Q](\alpha, \nu, \gamma)+\Sigma_{\alpha, \nu, \gamma} Q\left({ }^{t} p(\alpha, \nu), \gamma\right)=0
\end{array}\right.
$$

In particular, two exact Lie bialgebra structures on $\mathfrak{g},(\mathfrak{g}, \partial Q)$ and $\left(\mathfrak{g}, \partial Q^{\prime}\right)$ yield isomorphic Manin algebras if and only if $[Q, Q]=s^{2} A\left[Q^{\prime}, Q^{\prime}\right]$ for some automorphism A of \mathfrak{g} and some $s \neq 0 \in \mathbb{R}$.

Lemma 2. If \mathfrak{g} is a (real or complex) semisimple Lie algebra and β its Killing form, the linear map $\rho:\left(S^{2} \mathfrak{g}^{*}\right)^{\text {inv }} \rightarrow\left(\Lambda^{3} \mathfrak{g}\right)^{\text {inv }}$ defined by $\beta^{(3)}\langle\rho B, X \wedge Y \wedge Z)=$ $B([X, Y], Z)$ for $X, Y, Z \in \mathfrak{g}$ is a linear isomorphism.

Hence any bialgebra structure one \mathfrak{g} is defined by a $Q \in \Lambda^{2} \mathfrak{g}$ such that $[Q, Q]=$ ρB where $B \in\left(S^{2} \mathfrak{g}^{*}\right)^{i n v}$ is of the form $B(X, Y)=\beta(M X, Y)$.

Suppose \mathfrak{g} has a nondegenerate invariant symmetric bilinear form β. Then Q determines a linear map $\widetilde{Q}: \mathfrak{g} \rightarrow \mathfrak{g}$ defined by $\langle\alpha, \widetilde{Q}(X)\rangle=\beta(\hat{Q}(\alpha), X)$
or equivalentely $\beta(\widetilde{Q}(Y), X)=\beta^{(2)}(Q, X \wedge Y)=Q(\hat{\beta}(X), \hat{\beta}(Y))$
where $\hat{\beta}: \mathfrak{g} \rightarrow \mathfrak{g}^{*}$ is such that $\langle\hat{\beta}(X), Y\rangle=\beta(X, Y)$.
Remark 2. If \mathfrak{g}_{0} is a simple real Lie algebra such that $\mathfrak{g}=\mathfrak{g}_{0}{ }^{\mathbb{C}}$ is simple then $\left(\Lambda^{3} \mathfrak{g}_{0}\right)^{i n v}$ is 1- dimensional. Hence any exact Lie bialgebra structure on \mathfrak{g}_{0} is of the form $\left(\mathfrak{g}_{0}, p\right)$ where $p=\partial Q$ with $Q \in \Lambda^{2} \mathfrak{g}_{0}$ and $[Q, Q]=\lambda \Omega$ such that

$$
\beta^{(3)}(X \wedge Y \wedge Z, \Omega)=\beta(X,[Y, Z])
$$

Corollary 1. When we look at all the Lie bialgebra structures on a simple real Lie algebra \mathfrak{g}_{0} such that $\mathfrak{g}=\mathfrak{g}_{0}{ }^{\mathbb{C}}$ is simple there are only three cases up to isomorphism:

- $\lambda=0$;
- $\lambda>0$;
- $\lambda<0$.

2 The Manin algebras associated to a real semisimple Lie algebra

Aim: we determine the Manin algebra \mathfrak{L} which is associated to the Lie bialgebra structure $\left(\mathfrak{g}_{0}, p\right)$ where \mathfrak{g}_{0} is a semisimple real Lie algebra, p satisfies $p=\partial Q$ and $[Q, Q]=\rho B$ where $B \in\left(S^{2} \mathfrak{g}^{*}\right)^{\text {inv }}$, hence $B(X, Y)=\beta(M X, Y)$ where $M \circ a d X=$ $a d X \circ M \quad \forall X \in \mathfrak{g}_{0}$.

Theorem 1.Up to isomorphism the Manin algebra \mathfrak{L} associated to a real semisimple Lie algebra \mathfrak{g}_{0} which can be writen $\mathfrak{g}_{0}=\underset{1 \leq k \leq p}{\oplus} \mathfrak{I}_{k}$ where \mathfrak{I}_{k} are simple ideals of \mathfrak{g}_{0}, is of the form $\mathfrak{L}=\underset{1 \leq k \leq p}{\oplus} \mathfrak{L}_{k}$ where \mathfrak{L}_{k} is one of the following:

$$
\left\{\begin{array}{l}
\mathfrak{L}_{k}=\operatorname{Lie}\left(T^{*}\left(I_{k}\right)\right) \text { where } I_{k} \text { is the Lie group associated to the Lie algebra } \mathfrak{I}_{k} ; \\
\mathfrak{L}_{k}=\left(\mathfrak{I}_{k}\right)^{\mathbb{C}} ; \\
\mathfrak{L}_{k}=\mathfrak{I}_{k} \oplus \mathfrak{I}_{k} .
\end{array}\right.
$$

The rest of this paragraph is devoted to the proof of the theorem 1.
The Manin algebra we consider is given by $\mathfrak{L}_{0, \partial Q}$ which is isomorphic to $\mathfrak{L}_{-1 / 2[Q, Q], 0}=$ \mathfrak{L}.
So $\mathfrak{L}=\mathfrak{g}_{0}+\mathfrak{g}_{0}{ }^{*}$ as vector spaces with the duality $\ll(X, \alpha),(Y, \nu)>_{M}=\langle\alpha, Y\rangle+\langle\nu, X\rangle$ and the bracket :

$$
\begin{equation*}
[(X, \alpha),(Y, \nu)]_{M}=\left([X, Y]+\bar{S}(\alpha, \nu), a d_{X}^{*} \nu-a d_{Y}^{*} \alpha\right) \tag{1}
\end{equation*}
$$

where $S=-1 / 2[Q, Q]=-1 / 2 \rho B$ so that $\beta^{(3)}\langle S, X \wedge Y \wedge Z)=-1 / 2 \beta(M[X, Y], Z)$ and $M \circ a d X=a d X \circ M \forall X \in \mathfrak{g}_{0}$. So we have $M\left[X_{k}, Y_{k}\right]=\left[X_{k}, M Y_{k}\right]$ for $1 \leq k \leq p$, this implies $M\left(\mathfrak{I}_{k}\right) \subset \mathfrak{I}_{k}$
Thus we write $M\left(\sum_{1 \leq k \leq p} X_{k}\right)=\sum_{1 \leq k \leq p} M_{k}\left(X_{k}\right)$
Proposition 1. Suppose \mathfrak{g} is a real semisimple Lie algebra and $S=0$ then $\mathfrak{L}=$ Lie $\left(T^{*} G\right)$.
proof: We first identify $T^{*} G$ with $G \times \mathfrak{g}^{*}:$ to $\alpha \in T^{*} G$ we associate the couple $(g, \widetilde{\alpha})$ such that $\widetilde{\alpha}=L^{*}{ }_{g} \alpha_{g}$.
We define the product on $T^{*} G$ by $\alpha_{g} \cdot \nu_{g^{\prime}}=\left(R_{g^{\prime-1}}^{*} \alpha_{g}+L_{g^{-1}}^{*} \nu_{g^{\prime}}\right)$, so it is given on $G \times \mathfrak{g}^{*}$ by $(g, \widetilde{\alpha}) \cdot\left(g^{\prime}, \widetilde{\nu}\right)=\left(g g^{\prime}, A d_{g^{\prime-1}}^{*} \widetilde{\alpha}+\widetilde{\nu}\right)$.
The bracket on $\operatorname{Lie}\left(T^{*} G\right)$ reads: $a d(X, \widetilde{\alpha}) \cdot(Y, \widetilde{\nu})=\left([X, Y],-a d_{Y}^{*} \widetilde{\alpha}+a d_{X}^{*} \widetilde{\nu}\right)$ which is the bracket (1) when $S \equiv 0$.

Remark that in what follows the hypothesis that \mathfrak{g}_{0} is semisimple is too strong, it's sufficient that \mathfrak{g}_{0} possesses a nondegenerate invariant bilinear form.
We identify $\mathfrak{g}_{0}+\mathfrak{g}_{0}^{*}$ with $\mathfrak{g}_{0}+\mathfrak{g}_{0}$ by $\Psi: \mathfrak{g}_{0}+\mathfrak{g}_{0}^{*} \rightarrow \mathfrak{g}_{0}+\mathfrak{g}_{0}(X, \alpha) \mapsto\left(X, \hat{\beta}^{-1}(\alpha)\right)$
Hence the duality is given by

$$
\ll(X, A),(Y, B)>_{M}=\langle\hat{\beta}(A), Y\rangle+\langle\hat{\beta}(B), X\rangle=\beta(A, Y)+\beta(B, X)
$$

And from (1) the bracket is given by:
(2)

$$
\left\{\begin{aligned}
{[(X, A),(Y, B)]_{M} } & =\left([X, Y]+\bar{S}(\hat{\beta}(A), \hat{\beta}(B)), \hat{\beta}^{-1}\left(a d_{X}^{*} \hat{\beta}(B)\right)-\hat{\beta}^{-1}\left(a d_{Y}^{*} \hat{\beta}(A)\right)\right) \\
& =([X, Y]-1 / 2 M[A, B],[X, B]-[Y, A])
\end{aligned}\right.
$$

As $\mathfrak{g}_{0}=\underset{1 \leq k \leq p}{\oplus} \mathfrak{I}_{k}$ any $X \in \mathfrak{g}_{0}$ is of the form $X=\sum_{1 \leq k \leq p} X_{k}$ so the bracket reads:

$$
[(X, A),(Y, B)]_{M}=\sum_{1 \leq k \leq p}\left(\left[X_{k}, Y_{k}\right]-1 / 2 M_{k}\left[A_{k}, B_{k}\right],\left[X_{k}, B_{k}\right]-\left[Y_{k}, A_{k}\right]\right)
$$

Thus we only have to study the Manin algebra \mathfrak{L} associated to a real simple Lie algebra \mathfrak{g}_{0}. In this case $\mathfrak{g}_{0}{ }^{\mathbb{C}}$ is either simple or not simple. If it is not simple then $M=a+b J$ where $a, b \in \mathbb{R}$ and J is such that $J^{2}=-I d, J \circ a d X=a d X \circ J \forall X \in \mathfrak{g}_{0} ;$ if it is simple $M=\lambda I d$ for $\lambda \in \mathbb{R}$.

Proposition 2. Assume that there exists $N: \mathfrak{g}_{0} \rightarrow \mathfrak{g}_{0}$ such that

1) N is a linear isomorphism;
2) $N^{2}=1 / 2 M$;
3) $N \circ a d X=a d X \circ N \forall X \in \mathfrak{g}_{0}$.

Then

$$
\mathfrak{L} \approx \mathfrak{g}_{0}{ }^{\mathbb{C}} \text { as Lie algebras, } \mathfrak{g}_{0} \approx\left\{(X, 0) \in \mathfrak{g}_{0}{ }^{\mathbb{C}}\right\}
$$

and the duality is given by $\ll(X, A),(Y, B)>_{M}=\beta\left(X, N^{-1} B\right)+\beta\left(N^{-1} A, Y\right)$.
proof: the isomorphism is given by:

$$
\Psi: \mathfrak{g}_{0}{ }^{\mathbb{C}} \rightarrow \mathfrak{L}=\mathfrak{g}_{0}+\mathfrak{g}_{0}(X, A) \mapsto\left(X, N^{-1} A\right)
$$

Recall that $\mathfrak{g}_{0}{ }^{\mathbb{C}}=\left\{(X, Y) \mid X, Y \in \mathfrak{g}_{0}\right\}$ with the bracket $[,]_{\mathbb{C}}$ given by:

$$
[(X, A),(Y, B)]_{\mathbb{C}}=([X, Y]-[A, B],[X, B]-[Y, A])
$$

Corollary 1. If $M=\lambda$ Id with $\lambda>0$ we obtain the Manin pair $\left(\mathfrak{g}_{0}{ }^{\mathbb{C}}, \mathfrak{g}_{0}\right)$ where the duality is given by:

$$
\ll(X, A),(Y, B) \gg=\beta(A, Y)+\beta(B, X)
$$

Corollary 2. If $\mathfrak{g}_{0}{ }^{\mathbb{C}}$ is not simple then $M=a+b J$ with $a^{2}+b^{2} \neq 0$ if $M \neq 0$, thus N exits and is given by $N=c+d J$ with $(c+i d)^{2}=a+i b$ in \mathbb{C}. Then the Manin algebra associated to a Lie bialgebra structure with $M \neq 0$ on a real simple Lie algebra \mathfrak{g}_{0} such that $\mathfrak{g}_{0}{ }^{\mathbb{C}}$ is not simple, is $\mathfrak{L} \approx \mathfrak{g}_{0}{ }^{\text {C }}$.

Remark 1. If $\mathfrak{g}_{0}{ }^{\mathbb{C}}$ is simple and $M=\lambda I d$ with $\lambda<0$ there is no possible N .
Proposition 3. If $\mathfrak{g}_{0}{ }^{\mathbb{C}}$ is simple and $M=\lambda$ Id with $\lambda<0$ then $\mathfrak{L} \approx \mathfrak{g}_{0} \oplus \mathfrak{g}_{0}$, the direct sum of two copies of the Lie algebra $\mathfrak{g}_{0}, \mathfrak{g}_{0} \approx \Delta \mathfrak{g}_{0}=\left\{(X, X) \mid X \in \mathfrak{g}_{0}\right\}$ and the duality is given by:

$$
\ll(X, Y),\left(X^{\prime}, Y^{\prime}\right) \gg=1 / 2 \beta\left(X, X^{\prime}\right)-1 / 2 \beta\left(Y, Y^{\prime}\right) .
$$

proof: we can suppose that $\lambda=-1$ because when $\mathfrak{g}_{0}{ }^{\mathbb{C}}$ is simple the structures are isomorphic when multiplied by a positive constant, then from (2) the bracket is given by:

$$
\left[(X, Y),\left(X^{\prime}, Y^{\prime}\right)\right]=\left(\left[X, X^{\prime}\right]+\left[Y, Y^{\prime}\right],\left[X, Y^{\prime}\right]+\left[Y, X^{\prime}\right]\right)
$$

The isomorphism is $\phi: \mathfrak{L}=\mathfrak{g}_{0}+\mathfrak{g}_{0} \rightarrow \mathfrak{g}_{0} \oplus \mathfrak{g}_{0}=\mathfrak{L}^{\prime}(X, Y) \mapsto(X+Y, X-Y)$ The duality is given by:
$\left.\ll(X, Y), X^{\prime}, Y^{\prime}\right)>^{\prime}=\ll \phi^{-1}(X, Y), \phi^{-1}\left(X^{\prime}, Y^{\prime}\right)>_{\mathfrak{L}}=\frac{1}{2}\left(\beta\left(X, X^{\prime}\right)-\beta\left(Y, Y^{\prime}\right)\right)$
Remark 2. We have $\mathfrak{g}_{0}{ }^{\mathbb{C}} \approx \mathfrak{g}_{0} \oplus \mathfrak{g}_{0}$ if and only if there exits such a J.
The isomorphism is $\phi: \mathfrak{g}_{0} \oplus \mathfrak{g}_{0} \rightarrow \mathfrak{g}_{0}{ }^{\mathbb{C}}(X, Y) \mapsto\left(\frac{X+i J X}{2}, \frac{Y+i J Y}{2}\right)$
Remark that if $\mathfrak{g}_{0}{ }^{\mathbb{C}} \approx \mathfrak{g}_{0} \oplus \mathfrak{g}_{0}$ then $\mathfrak{g}_{0}{ }^{\mathbb{C}}$ is not simple.
Theorem 3. The Manin algebra \mathfrak{L} which is associated to the Lie bialgebra structure $\left(\mathfrak{g}_{0}, p\right)$ where \mathfrak{g}_{0} is a simple real Lie algebra, p satisfies $p=\partial Q$ and $[Q, Q]=\rho B$ where $B \in\left(S^{2} \mathfrak{g}^{*}\right)^{\text {inv }}$, hence $B(X, Y)=\beta(M X, Y)$ where $M \circ a d X=\operatorname{ad} X \circ M \forall X \in$ \mathfrak{g}_{0}, is
$\bullet \mathfrak{L}=\operatorname{Lie}\left(T^{*} G\right)$ if $B=0$, where G is the Lie group associated to \mathfrak{g}_{0};
$\bullet \mathfrak{L}=\mathfrak{g}_{0}{ }^{\mathbb{C}}$ if $\mathfrak{g}_{0}{ }^{\mathbb{C}}$ is not simple;
$\bullet \mathfrak{L}=\mathfrak{g}_{0}{ }^{\mathbb{C}}$ if $\mathfrak{g}_{0}{ }^{\mathbb{C}}$ is simple and $M=\lambda$ Id with $\lambda \in \mathbb{R}^{*}{ }_{+}$;
$\bullet \mathfrak{L}=\mathfrak{g}_{0} \oplus \mathfrak{g}_{0}$ if $\mathfrak{g}_{0}{ }^{\mathbb{C}}$ is simple and $M=\lambda$ Id with $\lambda \in \mathbb{R}^{*}{ }_{-}$.

3 Solutions of the nonzero standard modified Yang-Baxter's equation.

Aim: we want to find all the solutions of the modified Yang-Baxter equation of the form:

$$
\left\{\begin{array}{l}
{[\widetilde{Q} X, \widetilde{Q} Y]-\widetilde{Q}[\widetilde{Q} X, Y]-\widetilde{Q}[X, \widetilde{Q} Y]=\lambda[X, Y]} \tag{3}\\
\beta(\widetilde{Q} X, Y)=-\beta(X, \widetilde{Q} Y)
\end{array}\right.
$$

for $X, Y \in \mathfrak{g}_{0}$ when \mathfrak{g}_{0} is a real semisimple Lie algebra, and for nonzero λ.
In this case the algebra $\mathfrak{g}=\mathfrak{g}_{0}{ }^{\mathbb{C}}$ is semisimple; remark that this equation has been studied for complex semisimple Lie algebra by A. Belavin and V. Drinfeld [2]; we use their methods and results.
A. The case $\lambda>0$.
a. Existence of a solution.

Proposition 1. There always exists a solution $\widetilde{Q} \in \operatorname{End}\left(\mathfrak{g}_{0}\right)$, it is related to the existence of a Cartan subalgebra \mathfrak{h}_{0} of \mathfrak{g}_{0} such that \mathfrak{h}_{0} contains a maximal torus of \mathfrak{k} where $\mathfrak{g}_{0}=\mathfrak{k} \oplus \mathfrak{p}$ is a Cartan decomposition of \mathfrak{g}_{0}.
proof: to obtain this result we work on $\mathfrak{g}=\mathfrak{g}_{0}^{\mathbb{C}}$, we extend $\widetilde{Q} \mathbb{C}$-linearly to \mathfrak{g}. The equation satisfied by \widetilde{Q} on \mathfrak{g} is:

$$
\left\{\begin{array}{l}
{[\widetilde{Q} X, \widetilde{Q} Y]-\widetilde{Q}[\widetilde{Q} X, Y]-\widetilde{Q}[X, \widetilde{Q} Y]=\lambda[X, Y]} \tag{4}\\
\beta(\widetilde{Q} X, Y)=-\beta(X, \widetilde{Q} Y)
\end{array}\right.
$$

For any complex number μ let \mathfrak{g}_{μ} denote the generalized eigenspace given by:

$$
\mathfrak{g}_{\mu}=\left\{X \in \mathfrak{g} \mid(\widetilde{Q}-\mu)^{k} X=0 \text { for some positive integer } k\right\} .
$$

Let $a^{2}=-\lambda$, then a is purely imaginary; \mathfrak{g}_{a} and \mathfrak{g}_{-a} are subalgebras of \mathfrak{g} which are isotropic with respect to β and $\mathfrak{g}_{-a}=\overline{\mathfrak{g}_{a}}$.
Besides $\mathfrak{g}^{\prime}=\sum_{\mu \neq \pm a} \mathfrak{g}_{\mu}$ is a subalgebra and $\overline{\mathfrak{g}^{\prime}}=\mathfrak{g}^{\prime}$.
From ($[2]$ and [1] p. 8) we know that there exist two Borel subalgebras $\mathfrak{b}_{ \pm}$of \mathfrak{g} such that $\mathfrak{g}_{a}+\mathfrak{g}^{\prime} \subset \mathfrak{b}_{+}$and $\mathfrak{g}_{-a}+\mathfrak{g}^{\prime} \subset \mathfrak{b}_{-}$, moreover they satisfy $\overline{\mathfrak{b}_{+}}=\mathfrak{b}_{-}$and $\mathfrak{h}=\mathfrak{b}_{+} \cap \mathfrak{b}_{-}$ is a Cartan subalgebra of \mathfrak{g} such that $\overline{\mathfrak{h}}=\mathfrak{h}$ thus $\mathfrak{h}=\mathfrak{h}_{0}{ }^{\mathbb{C}}$ where \mathfrak{h}_{0} is a Cartan subalgebra of \mathfrak{g}_{0}.

Let $\mathfrak{g}_{0}=\mathfrak{k}+\mathfrak{p}$ be a Cartan decomposition of \mathfrak{g}_{0} and let $\mathfrak{h}_{0}=\mathfrak{t}+\mathfrak{a}$ be the corresponding decomposition of \mathfrak{h}_{0} i.e. $\mathfrak{t} \subset \mathfrak{k}$ and $\mathfrak{a} \subset \mathfrak{p}$.
Denote by Δ^{+}the set of roots of $(\mathfrak{g}, \mathfrak{h})$ such that the corresponding eigenspaces are in \mathfrak{b}_{+}.
Denote by α^{\prime} the restriction of $\alpha \in \Delta$ to \mathfrak{h}_{0}.
Then $\overline{\mathfrak{g}^{\alpha}}=\mathfrak{g}^{-\widetilde{\alpha}}$ where $-\widetilde{\alpha}^{\prime}=\bar{\alpha}^{\prime}$ and $\widetilde{\alpha} \in \Delta^{+}$if $\alpha \in \Delta^{+}$.
Remark that $\mathfrak{t}^{\prime}=\mathfrak{t}+i \mathfrak{a}$ is a maximal torus of $\mathfrak{k}+i \mathfrak{p}$ which is a compact subalgebra of \mathfrak{g}.
Hence we have $\alpha \in \Delta^{+}$if and only if $\exists X \in i \mathfrak{t}^{\prime}$ such that $\alpha(X)>0$.
But $\left(\alpha \in \Delta^{+}\right) \Rightarrow\left(\overline{\alpha^{\prime}} \in \Delta^{-}\right)$thus we obtain: $\left\{\begin{array}{l}i \alpha^{\prime}(Z)+\alpha^{\prime}(Y)>0 \\ -i \alpha^{\prime}(Z)+\alpha^{\prime}(Y)<0\end{array}\right.$
So there must be a $Z \in \mathfrak{t}$ such that $\alpha(Z) \neq 0 \forall \alpha \in \Delta$.
Reciprocally suppose there exists $X \in \mathfrak{t}$ such that $\alpha(X) \neq 0 \forall \alpha \in \Delta$ then let $\Delta^{+}=\{\alpha \in \Delta \mid i \alpha(X)>0\}, b_{+}=\left(\mathfrak{h}_{0}\right)^{\mathbb{C}}+\sum_{\alpha \in \Delta^{+}} \mathfrak{g}^{\alpha}$ and define \widetilde{Q} as follow:

$$
\widetilde{Q}(X)=\left\{\begin{array}{l}
a X \text { if } X \in \sum_{\alpha \in \Delta^{+}} \mathfrak{g}_{\alpha} \tag{5}\\
0 \text { if } X \in \mathfrak{h}=\mathfrak{h}_{0}^{\mathbb{C}} \\
-a X \text { if } X \in \frac{\sum_{\alpha \in \Delta^{+}} \mathfrak{g}_{\alpha}}{}
\end{array}\right.
$$

Such a \widetilde{Q} satisfies (4) and when restricted to \mathfrak{g}_{0} it satisfies (3).

So there exists a solution of (3) if and only if there exits $X \in \mathfrak{t}$ such that $\alpha(X) \neq 0 \forall \alpha \in \Delta^{+}$. And in this case a solution of (3) is given by (5). Remark that the fact that there exits $X \in \mathfrak{t}$ such that $\alpha(X) \neq 0 \forall \alpha \in \Delta$ is equivalent to the fact that \mathfrak{t} is a maximal torus of \mathfrak{k}. Hence we can always find a solution of (3) for $\lambda>0$.

b. Research of all the solutions.

We work on $\mathfrak{g}=\mathfrak{g}_{0}^{\mathbb{C}}$, we extend $\widetilde{Q} \mathbb{C}$-lineairely to \mathfrak{g}.
The equation satisfied by \widetilde{Q} on \mathfrak{g} is (4)
But we impose futhermore that $\widetilde{Q} \in \operatorname{End}\left(\mathfrak{g}_{0}\right)$ i.e. $\widetilde{Q}(X)=\widetilde{Q}(\bar{X}) \forall X \in \mathfrak{g}$.
We have from Belavin-Drinfeld [2]:
Theorem 1. Let \mathfrak{g} be a complex semisimple Lie algebra and let $Q \in \Lambda^{2} \mathfrak{g}$ satisfying

$$
\beta^{(3)}([Q, Q], X \wedge Y \wedge Z)=\beta\left(\frac{\lambda}{2}[X, Y], Z\right)
$$

Then, there exists a Cartan subalgebra \mathfrak{h} of \mathfrak{g}, a system of positive roots Δ^{+}of $(\mathfrak{g}, \mathfrak{h})$, two subsets Γ_{+}and Γ_{-}of the set Φ of simple roots corresponding to Δ^{+}and a map $\tau: \Gamma_{+} \rightarrow \Gamma_{-}$satisfying
(1) $<\tau(\alpha), \tau(\nu)>=<\alpha, \nu>, \forall \alpha, \nu \in \Gamma_{+}$;
(2) $\forall \alpha \in \Gamma_{+}$, there exists a positive integer k such that $\tau^{l}(\alpha) \in \Gamma_{+}, \forall l<k$ and $\tau^{k}(\alpha) \notin \Gamma_{+}$such that, for a choice of Weyl bases E_{α} in \mathfrak{g}^{α} with $\beta\left(E_{\alpha}, E_{-\alpha}\right)=1$:

$$
Q=Q_{0}+a\left(\sum_{\alpha \in \Delta^{+}} E_{-\alpha} \wedge E_{\alpha}+2 \sum_{\alpha \in \hat{\Gamma}_{+}, \alpha<\nu} E_{-\nu} \wedge E_{\alpha}\right)
$$

where $a^{2}=-\lambda$ and $Q_{0} \in \Lambda^{2} \mathfrak{h}$ is determined by $Q(\alpha, \nu), \forall \alpha, \nu \in \Phi$ and those must verify:
(3) $Q(\tau(\alpha), \nu)=Q(\alpha, \nu)-a(<\alpha, \nu>+<\tau(\alpha), \nu>), \forall \alpha \in \Gamma_{+}, \forall \nu \in \Phi$.

Where $\hat{\Gamma}_{+}$is the set of the positive roots which can be written as integer combinations of the simple roots in Γ_{+}.
Where $\langle\alpha, \nu\rangle=\beta\left(H_{\alpha}, H_{\nu}\right)$.
Where the notation $\nu>\alpha$ for $\alpha \in \hat{\Gamma}_{+}$means that there exists an integer $k \geq 1$ such that $\tau^{k}(\alpha)=\nu$.

Lemma 1. As we work on $\mathfrak{g}=\mathfrak{g}_{0}^{\mathbb{C}}$ with $\lambda>0$ we have:

1) $\mathfrak{h}=\mathfrak{h}_{0}{ }^{\mathbb{C}}$;
2) $\overline{\mathfrak{g}^{\alpha}}=\mathfrak{g}^{-\widetilde{\alpha}}$ where $-\widetilde{\alpha}_{\mid \mathfrak{h}_{0}}=\bar{\alpha}_{\mid \mathfrak{h}_{0}}$ thus $\overline{E_{\alpha}}=\lambda_{\alpha} E_{-\widetilde{\alpha}}$;
3) $\Gamma_{-}=\left\{\widetilde{\alpha}\right.$ when $\left.\alpha \in \Gamma_{+}\right\}$;
4) $\overline{H_{\alpha}}=-H_{\widetilde{\alpha}}$ for $\alpha \in \Delta$;
5) $\widetilde{Q}\left(E_{-\alpha}\right)=-a E_{-\alpha}-2 a \sum_{\nu<\alpha} E_{-\nu}$ where $\sum_{\nu<\alpha} E_{-\nu}=0$ if $\nu \notin \hat{\Gamma}_{+}$
proof:
*) from the paragraphe 3.a we already have 1 and 2 .
*) for 3: if $c_{+}=\operatorname{Im}(\widetilde{Q}+a)$ then $c_{-}=\operatorname{Im}(\widetilde{Q}-a)=\overline{c_{+}}$
and $\sum_{\alpha \in \hat{\Gamma}_{+}}\left(\mathfrak{g}^{\alpha}+\mathfrak{g}^{-\alpha}+\left[\mathfrak{g}^{\alpha}, \mathfrak{g}^{-\alpha}\right]\right)$ is the Levy factor of c_{+}so $\hat{\Gamma}_{+}=\hat{\Gamma}_{-}$i.e. $\hat{\Gamma}_{-}=$ $\left\{\widetilde{\alpha}\right.$ when $\left.\alpha \in \Gamma_{+}\right\}$
*) for 4: we use $\left[E_{\alpha}, E_{-\alpha}\right]=H_{\alpha}$ and 2 to obtain $\overline{H_{\alpha}}=-\lambda_{\alpha} \lambda_{-\alpha} H_{\widetilde{\alpha}},\left[H, E_{\alpha}\right]=$ $\alpha(H) E_{\alpha}$ and 2 to obtain $\overline{\alpha(H)}=-\widetilde{\alpha}(\bar{H})$ and $\beta\left(H_{\alpha}, H\right)=\alpha(H)$ to obtain $\lambda_{\alpha} \lambda_{-\alpha}=1$.
*) for 5: from theorem 1 we have $\widetilde{Q} E_{\alpha}=a\left(E_{\alpha}+2 \sum_{\nu>\alpha} E_{\nu}\right) \forall \alpha \in \nu_{+}$where $\sum_{\nu>\alpha} E_{\nu}=0$ if $\alpha \in \Delta_{+} \backslash \hat{\Gamma}_{+}$
To determine $\widetilde{Q} E_{-\alpha}$ we use: $\beta(\widetilde{Q} X, Y)=-\beta(X, \widetilde{Q} Y), \widetilde{Q}\left(\oplus_{\alpha \in \Delta^{+}} \mathfrak{g}^{-\alpha}\right) \subset \oplus_{\alpha \in \Delta^{+}} \mathfrak{g}^{-\alpha}$ and $\beta\left(E_{\alpha}, E_{-\gamma}\right)=\delta_{\alpha \gamma}$.

Remark 1. The equality 5 of Lemma 1. does not depend of the sign of λ.
Theorem 2. Let \mathfrak{g}_{0} be a real semisimple Lie algebra and let $Q \in \Lambda^{2} \mathfrak{g}_{0}$ satisfying

$$
\left\{\begin{array}{l}
{[\widetilde{Q} X, \widetilde{Q} Y]-\widetilde{Q}[\widetilde{Q} X, Y]-\widetilde{Q}[X, \widetilde{Q} Y]=\lambda[X, Y]} \\
\beta(\widetilde{Q} X, Y)=-\beta(X, \widetilde{Q} Y) \text { with } \lambda>0
\end{array}\right.
$$

Then, there exists a Cartan subalgebra \mathfrak{h}_{0} of \mathfrak{g}_{0} which is as in a.proposition 1, a system of positive roots Δ^{+}of $\left(\mathfrak{g}_{0}{ }^{\mathbb{C}}, \mathfrak{h}_{0}{ }^{\text {C }}\right)$, one subset Γ_{+}of the set Φ of simple roots corresponding to Δ^{+}and a map $\tau: \Gamma_{+} \rightarrow \Gamma_{-}=\left\{\widetilde{\alpha}\right.$ when $\left.\alpha \in \Gamma_{+}\right\}$satisfying
(1) $<\tau(\alpha), \tau(\nu)>=<\alpha, \nu>, \forall \alpha, \nu \in \Gamma_{+}$;
(2) $\forall \alpha \in \Gamma_{+}$, there exists a positive integer k such that $\tau^{l}(\alpha) \in \Gamma_{+}, \forall l<k$ and $\tau^{k}(\alpha) \notin \Gamma_{+}$
(3) $\tau(\alpha)=\widetilde{\nu} \Rightarrow \tau(\nu)=\widetilde{\alpha} \forall \alpha \in \Gamma_{+}$
such that, for a choice of Weyl bases E_{α} in \mathfrak{g}^{α} where $\overline{E_{\alpha}}=\lambda_{\alpha} E_{-\widetilde{\alpha}}$
with $\beta\left(E_{\alpha}, E_{-\alpha}\right)=1$ and
(4) $\lambda_{\tau(\alpha)}=\lambda_{\alpha} \forall \alpha \in \Gamma_{+}$we have

$$
Q=Q_{0}+a\left(\sum_{\alpha \in \Delta^{+}} E_{-\alpha} \wedge E_{\alpha}+2 \sum_{\alpha \in \hat{\Gamma}_{+}, \alpha<\nu} E_{-\nu} \wedge E_{\alpha}\right)
$$

where $a^{2}=-\lambda$ and $Q_{0} \in \Lambda^{2} \mathfrak{h}_{0}$ is determined by $Q(\alpha, \nu), \forall \alpha, \nu \in \Phi$ and those must verify:
(5) $Q(\tau(\alpha), \nu)=Q(\alpha, \nu)-a\left(\left\langle\alpha, \nu>+\langle\tau(\alpha), \nu>), \forall \alpha \in \Gamma_{+}, \forall \nu \in \Phi\right.\right.$
(6) $\widetilde{Q}\left(H_{\widetilde{\alpha}}\right)=-\overline{\widetilde{Q}\left(H_{\alpha}\right)} \forall \alpha$.
proof: we want that a Q given by theorem 1 satisfies $\widetilde{Q}(\bar{X})=\overline{\widetilde{Q}(X)} \forall X \in \mathfrak{g}$
In particular for $X=E_{\alpha}$ we obtain:
$1^{\text {st }}$ case :
If $\alpha \in \hat{\Gamma}_{+}$and $\tau(\alpha)=\widetilde{\nu} \in \hat{\Gamma}_{-}, \widetilde{\nu} \notin \hat{\Gamma}_{+}$then $\widetilde{\widetilde{Q}\left(E_{\alpha}\right)}=-a\left(\lambda_{\alpha} E_{-\widetilde{\alpha}}+2 \lambda_{\tau(\alpha)} E_{-\widetilde{\nu}}\right)$ and $\widetilde{Q}\left(\overline{E_{\alpha}}\right)=-a \lambda_{\alpha}\left(E_{-\widetilde{\alpha}}+2 \sum_{\gamma<\tilde{\alpha}} E_{-\gamma}\right)$
There is equality if and only if $\lambda_{\tau(\alpha)}=\lambda_{\alpha}$ and $\tau(\nu)=\widetilde{\alpha}$
$2^{\text {nd }}$ case :
We apply a recursive process in the case where $\alpha \in \hat{\Gamma}_{+}$is such that $\tau^{l}(\alpha) \in \hat{\Gamma}_{+}, l=$ $1, \cdots, k$ and $\tau^{k+1}(\alpha)=\widetilde{\nu} \notin \hat{\Gamma}_{+}$.

We apply recursive hypothese to $\tau(\alpha)$.
Then $\overline{\widetilde{Q}\left(E_{\alpha}\right)}=-a\left(\lambda_{\alpha} E_{-\widetilde{\alpha}}+2 \lambda_{\tau(\alpha)} E_{-\tau^{k}(\nu)}+\cdots+2 \lambda_{\tau^{k+1}(\alpha)} E_{-\nu}\right)$ and $\widetilde{Q}\left(\overline{E_{\alpha}}\right)=-a \lambda_{\alpha}\left(E_{-\widetilde{\alpha}}+2 \sum_{\gamma<\widetilde{\alpha}} E_{-\gamma}\right)$
There is equality if and only if : $\lambda_{\alpha}=\lambda_{\tau(\alpha)}=\cdots=\lambda_{\tau^{k+1}(\alpha)}$ and $\tau\left(\tau^{k}(\nu)\right)=\widetilde{\alpha}$ that is
$\tau^{k+1}(\nu)=\widetilde{\alpha}$.
We also want that $\widetilde{Q}(\bar{X})=\overline{\widetilde{Q}(X)} \forall X \in \mathfrak{h}$, that gives immediately 6 .

Remarks

1) If $\tau(\alpha)=\widetilde{\alpha}$ then $\lambda_{\alpha} \in \mathbb{C}$.
2) If $\tau(\alpha)=\widetilde{\nu}$ and $\tau(\nu)=\widetilde{\alpha}$ then $\lambda_{\widetilde{\alpha}}=\overline{\lambda_{\alpha}}$ and $\lambda_{\widetilde{\nu}}=\overline{\lambda_{\nu}}$.
3) If $\tau(\alpha)=\widetilde{\alpha}$ then $\widetilde{Q}\left(H_{\alpha}-a H_{\alpha}\right) \in i \Lambda^{2} \mathfrak{h}_{0}$.
B. The case $\lambda<0$.

The existence of a solution in this case has been studied in [1]:
Theorem 1. There exists a solution of (3) for $\lambda<0$ if and only if \mathfrak{g}_{0} is the sum of simple ideals which are either split, complex or one of the following cases (using the notation of Helgason [5]):
(i) $S U(p, p), S U(p, p+1)$;
(ii) $S O(p, p+2)$;
(iii) $E I I$.

We extend $\widetilde{Q} \mathbb{C}$ - linearly to \mathfrak{g} as in A. and we use the same A.b.theorem 1 .
Lemma 1. As we work on $\mathfrak{g}=\mathfrak{g}_{0}^{\mathbb{C}}$ with $\lambda<0$ we have:

1) $\mathfrak{h}=\mathfrak{h}_{0}{ }^{\mathbb{C}}$;
2) $\overline{\mathfrak{g}^{\alpha}}=\mathfrak{g}^{\widetilde{\alpha}}$ where $\widetilde{\alpha}_{\mid \mathfrak{h}_{0}}=\bar{\alpha}_{\mid \mathfrak{h}_{0}}$ thus $\overline{E_{\alpha}}=\lambda_{\alpha} E_{\widetilde{\alpha}}$;
3) $\overline{H_{\alpha}}=H_{\widetilde{\alpha}}$ for $\alpha \in \Delta$;
4) $\widetilde{Q}\left(E_{-\alpha}\right)=-a E_{-\alpha}-2 a \sum_{\nu<\alpha} E_{-\nu}$ where $\sum_{\nu<\alpha} E_{-\nu}=0$ if $\nu \notin \hat{\Gamma}_{+}$
proof:
*) for 1: as $a^{2}=-\lambda, a$ is real,
thus $\mathfrak{g}_{a}=\left(\mathfrak{g}_{a}{ }^{\mathbb{R}}\right)^{\mathbb{C}}, \mathfrak{g}_{-} a=\left(\mathfrak{g}_{-a}{ }^{\mathbb{R}}\right)^{\mathbb{C}}, \mathfrak{g}^{\prime}=\left(\mathfrak{g}^{\mathbb{R}}\right)^{\mathbb{C}}, \mathfrak{b}_{+}=\left(\mathfrak{b}_{+}{ }^{\mathbb{R}}\right)^{\mathbb{C}}, \mathfrak{b}_{-}=\left(\mathfrak{b}_{-}{ }^{\mathbb{R}}\right)^{\mathbb{C}}$
so $\mathfrak{h}=\mathfrak{h}_{0}{ }^{\text {C }}$
*) for 2: we use $\mathfrak{g}^{\alpha} \subset \mathfrak{b}_{+}$and $\overline{\overline{\mathfrak{b}}_{+}}=\mathfrak{b}_{+}$.
*) for 3: we use $\left[E_{\alpha}, E_{-\alpha}\right]=H_{\alpha}$ and 2 to obtain $\overline{H_{\alpha}}=\lambda_{\alpha} \lambda_{-\alpha} H_{\widetilde{\alpha}} ;\left[H, E_{\alpha}\right]=\alpha(H) E_{\alpha}$ and 2 to obtain $\overline{\alpha(H)}=\widetilde{\alpha}(\bar{H})$ and $\beta\left(H_{\alpha}, H\right)=\alpha(H)$ to obtain $\lambda_{\alpha} \lambda_{-\alpha}=1$.

Theorem 2. Let \mathfrak{g}_{0} be a real semisimple Lie algebra as in theorem 1 and let $Q \in \Lambda^{2} \mathfrak{g}_{0}$ satisfying

$$
\left\{\begin{array}{l}
{[\widetilde{Q} X, \widetilde{Q} Y]-\widetilde{Q}[\widetilde{Q} X, Y]-\widetilde{Q}[X, \widetilde{Q} Y]=\lambda[X, Y]} \\
\beta(\widetilde{Q} X, Y)=-\beta(X, \widetilde{Q} Y) \text { with } \lambda<0
\end{array}\right.
$$

Then, there exists a Cartan subalgebra \mathfrak{h}_{0} of \mathfrak{g}_{0}, a system of positive roots Δ^{+}of $\left(\mathfrak{g}_{0}{ }^{\mathbb{C}}, \mathfrak{h}_{0}{ }^{\mathbb{C}}\right)$, two subsets Γ_{+}and Γ_{-}of the set Φ of simple roots corresponding to Δ^{+} and a map $\tau: \Gamma_{+} \rightarrow \Gamma_{-}$satisfying
(1) $<\tau(\alpha), \tau(\nu)>=<\alpha, \nu>, \forall \alpha, \nu \in \Gamma_{+}$;
(2) $\forall \alpha \in \Gamma_{+}$, there exists a positive integer k such that $\tau^{l}(\alpha) \in \Gamma_{+}, \forall l<k$ and $\tau^{k}(\alpha) \notin \Gamma_{+}$
(3) $\tau^{k}(\alpha) \in \Gamma_{+} \Longleftrightarrow \tau^{k}(\widetilde{\alpha}) \in \Gamma_{+}$;
(4) $\tau(\widetilde{\alpha})=\widetilde{\tau(\alpha)} \forall \alpha \in \Gamma_{+}$
such that, for a choice of Weyl bases E_{α} in \mathfrak{g}^{α} where $\overline{E_{\alpha}}=\lambda_{\alpha} E_{\widetilde{\alpha}}$
with $\beta\left(E_{\alpha}, E_{-\alpha}\right)=1$ and
(5) $\lambda_{\tau(\alpha)}=\lambda_{\alpha} \forall \alpha \in \Gamma_{+}$we have

$$
Q=Q_{0}+a\left(\sum_{\alpha \in \Delta^{+}} E_{-\alpha} \wedge E_{\alpha}+2 \sum_{\alpha \in \hat{\Gamma}_{+}, \alpha<\nu} E_{-\nu} \wedge E_{\alpha}\right)
$$

where $a^{2}=-\lambda$ and $Q_{0} \in \Lambda^{2} \mathfrak{h}_{0}$ is determined by $Q(\alpha, \nu), \forall \alpha, \nu \in \Phi$ and those must verify:
(6) $Q(\tau(\alpha), \nu)=Q(\alpha, \nu)-a\left(\left\langle\alpha, \nu>+\langle\tau(\alpha), \nu>), \forall \alpha \in \Gamma_{+}, \forall \nu \in \Phi\right.\right.$
(7) $\widetilde{Q}\left(H_{\widetilde{\alpha}}\right)=\widetilde{\widetilde{Q}\left(H_{\alpha}\right)} \forall \alpha$.
proof: we want that a Q given by b.theorem 1 satisfies $\widetilde{Q}(\bar{X})=\overline{\widetilde{Q}(X)} \forall X \in \mathfrak{g}$ In particular for $X=E_{\alpha}$ we obtain:
$\widetilde{Q}\left(\overline{E_{\alpha}}\right)=a \lambda_{\alpha}\left(E_{\widetilde{\alpha}}+2 \sum_{\gamma>\widetilde{\alpha}} E_{\gamma}\right)$ and $\widetilde{\widetilde{Q}\left(E_{\alpha}\right)}=a \lambda_{\alpha} E_{\widetilde{\alpha}}+2 a \sum_{\nu>\alpha} \lambda_{\nu} E_{\widetilde{\nu}}$
Assume that $\tau^{k}(\widetilde{\alpha}) \in \Gamma_{+}$for $k=1, \cdots, l-1$ and $\tau^{l}(\widetilde{\alpha}) \notin \Gamma_{+} ;$and that $\tau^{i}(\alpha) \in$ Γ_{+}for $i=1, \cdots, j-1$ and $\tau^{j}(\alpha) \notin \Gamma_{+}$.
Then the previous equality reads:
(*) $a \lambda_{\alpha} E_{\widetilde{\alpha}}+2 a \lambda_{\alpha} E_{\tau(\widetilde{\alpha})}+\cdots+2 a \lambda_{\alpha} E_{\tau^{l}(\widetilde{\alpha})}=a \lambda_{\alpha} E_{\widetilde{\alpha}}+2 a \lambda_{\tau(\alpha)} E_{\widetilde{\tau(\alpha)}}+\cdots+2 a \lambda_{\tau^{j}(\alpha)} E_{\widetilde{\tau^{l}(\alpha)}}$
We must have $\mathrm{j}=\mathrm{l}$ this is 3 .
We apply a recursive process to get 4 and 5 .
$1^{\text {st }}$ case : for $\mathrm{l}=1$
If $\alpha \in \Gamma_{+}$and $\tau(\alpha) \notin \Gamma_{+}$, then by 3 we have $\widetilde{\alpha} \in \Gamma_{+}$and $\tau(\widetilde{\alpha}) \notin \Gamma_{+}$
So $(*)$ gives: $\lambda_{\alpha} E_{\tau(\widetilde{\alpha})}=\lambda_{\tau(\alpha)} E_{\tau(\alpha)}$.
$\underline{2}^{\text {nd }}$ case: Assume that $\left(\forall \alpha \in \Gamma_{+}\right.$such that $\tau^{k}(\alpha) \in \Gamma_{+}$for $k=1, \cdots, l^{\prime}-1$ and $\tau^{l^{\prime}}(\alpha) \notin \Gamma_{+}$we have: $\quad \lambda_{\alpha}=\lambda_{\tau(\alpha)}$ and $\left.\tau(\widetilde{\alpha})=\widetilde{\tau(\alpha)}\right) \quad$ for all $l^{\prime} \leq l$
We write (*) for l+1: $\lambda_{\alpha} E_{\tau(\widetilde{\alpha})}+\cdots+\lambda_{\alpha} E_{\tau^{l+1}(\widetilde{\alpha})}=\lambda_{\tau(\alpha)} E_{\tau(\alpha)}+\cdots+\lambda_{\tau^{l+1}(\alpha)} E_{\tau^{l+1}(\alpha)}$
We successively apply the recursive hypothesis to $\tau^{l}(\alpha)$ for $l^{\prime}=1$; to $\tau^{l-1}(\alpha)$ for $l^{\prime}=2$; to $\tau^{l-2}(\alpha)$ for $l^{\prime}=3 ; \cdots$; to $\tau(\alpha)$ for $l^{\prime}=l$, this gives 4 and 5 .

4 Case of a complex structure.

Aim: We show that there exist solutions of the modified Yang-Baxter equation when \mathfrak{g}_{0} is a simple real Lie algebra such that $\mathfrak{g}_{0}{ }^{\mathbb{C}}$ is not simple, which are not preserving the ideals in $\mathfrak{g}_{0}{ }^{\mathrm{C}}$.
We see $\mathfrak{g}_{0}{ }^{\mathbb{C}}$ as $\mathfrak{g}_{0}+i \mathfrak{g}_{0}$, the conjugation is given by $\overline{(X, Y)}=(X,-Y)$
Here $\mathfrak{g}_{0}{ }^{\mathbb{C}}=I_{1} \oplus I_{2}$ where I_{1} and I_{2} are two simple ideals of $\mathfrak{g}_{0}{ }^{\mathbb{C}}$.

Let J be a complex structure on \mathfrak{g}_{0}, extended \mathbb{C}-linearely to $\mathfrak{g}_{0}{ }^{\mathbb{C}}$ it is given by $J=i I d_{\mid I_{1}}-i I d_{\mid I_{2}}$. Hence $I_{1}=\left\{(X,-J X) \mid X \in \mathfrak{g}_{0}\right\}$ and $I_{2}=\left\{(X, J X) \mid X \in \mathfrak{g}_{0}\right\}$.

Let $M: \mathfrak{g}_{0} \rightarrow \mathfrak{g}_{0}$ satisfying $M \circ a d X=a d X \circ M \forall X \in \mathfrak{g}_{0}$; if we still denote by M its \mathbb{C}-linear extension to $\mathfrak{g}_{0}{ }^{\text {C }}$, we have $M=u I d+v J$.

Hence when we restricted M to \mathfrak{g}_{0}, the most general modified Yang Baxter's equation on \mathfrak{g}_{0} is:

$$
\begin{cases}\beta(\widetilde{Q} X, Y) & =-\beta(X, \widetilde{Q} Y) \tag{6}\\ {[\widetilde{Q} X, \widetilde{Q} Y]} & -\widetilde{Q}[\widetilde{Q} X, Y]-\widetilde{Q}[X, \widetilde{Q} Y]=(u I d+v J)[X, Y] \\ & \text { with } u^{2}+v^{2} \neq 0\end{cases}
$$

We still denote by \widetilde{Q} the \mathbb{C}-linear extension of \widetilde{Q} to $\mathfrak{g}_{0}{ }^{\mathbb{C}}$.
We extend (6) \mathbb{C}-linearely to $\mathfrak{g}_{0}{ }^{\mathbb{C}}$, we obtain the same equation but for $X, Y \in \mathfrak{g}_{0}{ }^{\mathbb{C}}$.
On $\mathfrak{g}_{0}{ }^{\mathbb{C}}$ we can see \widetilde{Q} as

$$
\widetilde{Q}=\left(\begin{array}{cc}
\widetilde{Q_{1}} & \widetilde{Q_{12}} \\
\widetilde{Q_{21}} & \widetilde{Q_{2}}
\end{array}\right)
$$

where $\widetilde{Q_{1}}: I_{1} \rightarrow I_{1}, \widetilde{Q_{2}}: I_{2} \rightarrow I_{2}, \widetilde{Q_{12}}: I_{2} \rightarrow I_{1}, \widetilde{Q_{21}}: I_{1} \rightarrow I_{2}$ are linear maps.
Remark 1. $\widetilde{Q}(\bar{X})=\overline{\widetilde{Q}(X)}$, so $\widetilde{Q_{2}}(X)=\overline{\widetilde{Q_{1}}(\bar{X})}$ and $\widetilde{Q_{12}}(X)=\overline{\widetilde{Q_{21}}(\bar{X})}$
We obtain the following equations:

$$
\left\{\begin{array}{l}
{\left[\widetilde{Q_{1}} X, \widetilde{Q_{1}} Y\right]-\widetilde{Q_{1}}\left[\widetilde{Q_{1}} X, Y\right]-\widetilde{Q_{1}}\left[X, \widetilde{Q_{1}} Y\right]=(u+i v)[X, Y] \forall X, Y \in I_{1}} \tag{7}\\
{\left[\widetilde{Q_{21}} X, \widetilde{Q_{21}} Y\right]-\widetilde{Q_{21}}\left[\widetilde{Q_{1}} X, Y\right]-\widetilde{Q_{21}}\left[X, \widetilde{Q_{1}} Y\right]=0 \forall X, Y \in I_{1}} \\
{\left[\widetilde{Q_{1}} X, \widetilde{Q_{12}} Y\right]-\widetilde{Q_{12}}\left[\widetilde{Q_{21}} X, Y\right]-\widetilde{Q_{1}}\left[X, \widetilde{Q_{12}} Y\right]=0 \forall X \in I_{1}, \forall Y \in I_{2}}
\end{array}\right.
$$

Our study of those equations is not an exhaustive one.

- $1^{\text {st }}$ case : Suppose $\widetilde{Q_{12}}=\widetilde{Q_{21}}=0$

We then have to solve the following problem:

$$
\begin{cases}\beta(\widetilde{Q} X, Y) & =-\beta(X, \widetilde{Q} Y) \tag{8}\\ {[\widetilde{Q} X, \widetilde{Q} Y]} & -\widetilde{Q}[\widetilde{Q} X, Y]-\widetilde{Q}[X, \widetilde{Q} Y]=\lambda[X, Y] \forall X, Y \in \mathfrak{g}\end{cases}
$$

Where \mathfrak{g} is a complex semisimple Lie algebra and $\lambda \in \mathbb{C}$.
Proposition 1. In the case where $\widetilde{Q_{12}}=\widetilde{Q_{21}}=0$ there exist solutions \widetilde{Q} of (6) which are given by 3.A.b.theorem 1 with $\lambda \in \mathbb{C}$

- $\underline{2}^{\text {nd }}$ case : Suppose $\widetilde{Q_{1}}=\widetilde{Q_{2}}=0$.

Proposition 2. There is no solution for (6) when $\widetilde{Q_{1}}=\widetilde{Q_{2}}=0$.
Indeed for $X, Y \in I_{1}$ we obtain from (a): $(u+i v)[X, Y]=0$. This is impossible as $u+i v \neq 0$

- $3^{\text {rd }}$ case :

Remark 2. For any $\widetilde{Q_{1}}$ solution of (a), $\widetilde{Q_{21}} \equiv 0$ is a trivial solution of (b) and (c).

From 3.A.b.theorem 1, we know that for a Cartan subalgebra \mathfrak{h}_{1} of I_{1}, a system of positive roots Δ^{+}of $\left(I_{1}, \mathfrak{h}_{1}\right)$ and if we note $\mathfrak{n}_{1 \pm}=\sum_{\alpha \in \Delta^{+}}\left(I_{1}\right)^{ \pm \alpha}$, a solution of (a) is given by:

$$
\widetilde{Q_{1}}(X)=\left\{\begin{array}{l}
a X \text { if } X \in \mathfrak{n}_{1+} \tag{9}\\
0 \text { if } X \in \mathfrak{h}_{1} \\
-a X \text { if } X \in \mathfrak{n}_{1-} \text { where } a \text { satisfies } a^{2}=u+i v
\end{array}\right.
$$

Proposition 3.For $\widetilde{Q_{1}}$ given by (9), a solution $\widetilde{Q_{21}}$ of (b) and (c) is given by:

$$
\widetilde{Q_{21}}(X)=\left\{\begin{array}{l}
a \bar{X} \text { if } X \in \mathfrak{h}_{1} \tag{10}\\
0 \text { else }
\end{array}\right.
$$

proof: we only have to check (b) and (c) for this $\widetilde{Q_{21}}$; writing for $X \in I_{1}, X=$ $X_{+}+X_{0}+X_{-}$where $X_{+} \in \mathfrak{n}_{1+}, X_{0} \in \mathfrak{h}_{1}, X_{-} \in \mathfrak{n}_{1-}$, this is an immediate result.

Aknowledgements.

I would like to thank Simone Gutt for all her suggestions which have permitted this work to be done.

References

[1] M. CAHEN, S. GUTT \& J. RAWNSLEY, Some remarks on the classification of Poisson Lie groups, Proceedings of the 1993 Tanigushi symposition on symplectic geometry, Contemporary Mathematics A.M.S. (under press).
[2] A. BELAVIN \& V. DRINFELD, The triangle equations and simple Lie algebras, Preprint of Inst. Theor. Phys 18 (1982).
[3] V. DRINFELD, Quantum groups, Proc. ICM 1986, AMS 1 (1987), 789-820.
[4] V. DRINFELD, Quasi-Hopf algebra, Leningrad Math. J. 1 (1990), 1419-1457.
[5] S. HELGASON, Differential goemetry, Lie groups and symmetric spaces, Academic Press, 1978.

Véronique CHLOUP
DÉPARTEMENT DE MATHÉMATIQUES, UNIVERSITÉ DE METZ,
ILE DU SAULCY,
F-57045 METZ CEDEX, FRANCE
E-mail address: chloup@poncelet.univ-metz.fr

