# Bialgebra structures on a real semisimple Lie algebra.

Véronique Chloup

#### Abstract

We describe some results on the classification of bialgebra structures on a real semisimple Lie algebra. We first describe the possible Manin algebras (i.e. big algebra in the Manin triple ) for such a bialgebra structure. We then determine all the bialgebra structures on a real semisimple Lie algebra for the nonzero standard modified Yang-Baxter equation. Finally we consider the case of a real simple Lie algebra the complexification of which is not simple and we give some partial results about the bialgebra structures for any nonzero modified Yang-Baxter equation.

## **1** Definitions and notations.

Our work is a continuation of a paper from M. Cahen, S. Gutt and J. Rawnsley [1]; we use the same notations as theirs which we now recall.

**Definition 1.** (cf[3]) A Lie bialgebra  $(\mathfrak{g}, p)$  is a Lie algebra  $\mathfrak{g}$  with a 1-cocycle  $p : \mathfrak{g} \to \Lambda^2 \mathfrak{g}$  (relative to the adjoint action) such that  $p^* : \mathfrak{g}^* \times \mathfrak{g}^* \to \mathfrak{g}^*$   $(\xi, \eta) \to [\xi, \eta]$  with

$$\langle [\xi,\eta], X \rangle = \langle \xi \land \eta, p(X) \rangle$$

is a Lie bracket on  $\mathfrak{g}^*$ . One also denotes the bialgebra by  $(\mathfrak{g}, \mathfrak{g}^*)$ .

A Lie bialgebra  $(\mathfrak{g}, p)$  is said to be *exact* if the 1-cocycle p is a coboundary,  $p = \partial Q$ , for  $Q \in \Lambda^2 \mathfrak{g}$ .

This means that  $\partial Q_X = [X, Q]$  and then the condition for  $(\mathfrak{g}, \partial Q)$  to be a Lie bialgebra is that the bracket [Q, Q] be invariant under the adjoint action in  $\Lambda^3 \mathfrak{g}$ .

Communicated by Y. Félix

Bull. Belg. Math. Soc. 2 (1995), 265-278

Received by the editors November 1994

AMS Mathematics Subject Classification : 53C15, 58F05.

Keywords : Bialgebras, Manin algebras, modified Yang-Baxter equation.

**Definition 2.** (cf [3]) A Manin triple consists of three Lie algebras  $(\mathfrak{L}, \mathfrak{g}_1, \mathfrak{g}_2)$ and a nondegenerate invariant symmetric bilinear form  $\ll, \gg$  on  $\mathfrak{L}$  such that

1) $\mathfrak{g}_1$  and  $\mathfrak{g}_2$  are subalgebras of  $\mathfrak{L}$ ;

- 2) $\mathfrak{L} = \mathfrak{g}_1 + \mathfrak{g}_2$  as vector spaces;
- 3) $\mathfrak{g}_1$  and  $\mathfrak{g}_2$  are isotropic for  $\ll$ ,  $\gg$ .

We shall call the Lie algebra  $\mathfrak{L}$  the associated *Manin algebra*.

**Proposition 1.** (cf [3]) There is a bijective correspondance between Lie bialgebras and Manin triples.

**Notation.** Let  $\mathfrak{g}$  be a Lie algebra of dimension n. Consider any vector space  $\mathfrak{L}$  of dimension 2n with a nondegenerate symmetric bilinear form  $\ll$ ,  $\gg$  and a skewsymmetric bilinear map  $[,]: \mathfrak{L} \times \mathfrak{L} \to \mathfrak{L}$  such that

- i)  $\mathfrak{L}$  contains  $\mathfrak{g}$ ;
- ii) the bracket restricted to  $\mathbf{g} \times \mathbf{g}$  is the Lie bracket of  $\mathbf{g}$ ;
- iii)  $\mathfrak{g}$  is isotropic;
- $\mathrm{iv}) \ll [X,Y], Z \gg + \ll Y, [X,Z] \gg = 0, \ \forall X, Y, Z \in \mathfrak{L}.$

Then, choosing an isotropic subspace supplementary to  $\mathfrak{g}$  in  $\mathfrak{L}$  and identifying it with  $\mathfrak{g}^*$  via  $\ll$ ,  $\gg$ ,  $\mathfrak{L} = \mathfrak{g} + \mathfrak{g}^*$  as vector spaces and one has :

1)  $\ll$   $(X, \alpha), (Y, \nu) \gg = \langle \alpha, Y \rangle + \langle \nu, X \rangle;$ 

2)  $[(X, \alpha), (Y, \nu)] = ([X, Y] + C_1(\alpha, Y) - C_1(\nu, X) + \overline{S}(\alpha, \nu), ad_X^*\nu - ad_Y^*\alpha + T(\alpha, \nu)).$ 

The invariance condition reads:

- 3)  $S(\alpha, \nu, \gamma) = \langle \gamma, \overline{S}(\alpha, \nu) \rangle$  is totally skewsymmetric;
- 4)  $\langle T(\alpha, \nu), Z \rangle = \langle \alpha, C_1(\nu, Z) \rangle.$

We denote by  $\mathfrak{L}_{S,p}$  where  $p = {}^{t}T : \mathfrak{g} \to \Lambda^{2}\mathfrak{g}$ , the space  $\mathfrak{L} = \mathfrak{g} + \mathfrak{g}^{*}$  with  $\ll$ ,  $\gg$  and [,] defined by 1 and 2 with the conditions 3 and 4.

**Definition 3.** (cf [4]) A *Manin pair* is a pair of Lie algebras  $(\mathfrak{L}, \mathfrak{g})$  and a nondegenerate symmetric bilinear form  $\ll$ ,  $\gg$  on  $\mathfrak{L}$  such that the conditions i),ii),iii),iv) are satisfied.

So if  $(\mathfrak{L}, \mathfrak{g})$  is a Manin pair, then a choice of an isotropic subspace in  $\mathfrak{L}$  supplementary to  $\mathfrak{g}$  identifies  $\mathfrak{L}$  with a Lie algebra  $\mathfrak{L}_{S,p}$ 

Remark that the bracket defined on  $\mathfrak{L}$  is a Lie bracket (i.e. satisfies Jacobi's identity) if and only if :

5)  $\partial p = 0$  where  $p = {}^{t}T : \mathfrak{g} \to \Lambda^{2}\mathfrak{g};$ 

6) [X,S]( $\alpha, \nu, \gamma$ ) +  $\langle \Sigma_{\alpha\nu\gamma} T(T(\alpha, \nu), \gamma)$ ),  $X \rangle = 0$  where  $\Sigma$  denotes the sum over cyclic permutations;

7) 
$$\Sigma_{\alpha\eta\gamma}(S(T(\alpha,\eta),\gamma,\nu) + S(T(\alpha,\nu),\eta,\gamma)) = 0.$$

**Definition 4.** A map  $\phi : \mathfrak{L}_{S,p} \to \mathfrak{L}_{S',p'}$  which is linear, maps  $\mathfrak{g}$  to  $\mathfrak{g}$ , preserves  $\ll$ ,  $\gg$  and is such that  $\phi[(X,\alpha),(Y,\nu)]_{S,p} = [\phi(X,\alpha),\phi(Y,\nu)]_{S',p'}$  is called an isomorphism of Manin pair.

Remark that it is of the form  $\phi(X, \alpha) = (A(X + \hat{Q}(\alpha)), {}^{t}A^{-1}(\alpha))$  where

i)  $A: \mathfrak{g} \to \mathfrak{g}$  is Lie automorphism of  $\mathfrak{g}$  and  $\hat{Q}: \mathfrak{g}^* \to \mathfrak{g}$  is induced by an element

$$\begin{aligned} Q \in \Lambda^{2} \mathfrak{g} \text{ through } \langle \nu, \hat{Q}(\alpha) \rangle &= Q(\alpha, \nu) \text{ such that} \\ \text{ii) } A^{-1} \cdot p' - p &= -\partial Q; \\ \text{iii) } (A^{-1} \cdot S' - S)(\alpha, \nu, \gamma) &= \Sigma_{\alpha \nu \gamma} (Q(T(\alpha, \nu), \gamma) + \langle \alpha, [\hat{Q}(\nu), \hat{Q}(\gamma)] \rangle) \end{aligned}$$

$$= 1/2[Q,Q](\alpha,\nu,\gamma) + \Sigma_{\alpha\nu\gamma}(T(\alpha,\nu),\gamma)$$

where  $(A \cdot p')_X(\alpha, \nu) = p'_{A^{-1}(X)}({}^tA\alpha, {}^tA\nu)$  and  $(A \cdot S)(\alpha, \nu, \gamma) = S({}^tA\alpha, {}^tA\nu, {}^tA\gamma)$ . We then say that  $\mathfrak{L}_{S,p}$  and  $\mathfrak{L}_{S',p'}$  are isomorphic under  $\phi$ .

**Remark 1.** A Manin pair  $(\mathfrak{L}, \mathfrak{g})$  yields a Manin triple  $(\mathfrak{L}, \mathfrak{g}, \mathfrak{g}^*)$  if and only if there is an isotropic subspace supplementary to  $\mathfrak{g}$  in  $\mathfrak{L}$  which is a subalgebra of  $\mathfrak{L}$ . Hence a bialgebra structure on  $\mathfrak{g}$  yields as its corresponding Manin algebra an algebra  $\mathfrak{L}_{S,p'}$  which is isomorphic to a Lie algebra  $\mathfrak{L}_{0,p}$  and vice versa.

**Definition 5.** (cf [1]) We shall say that two *Manin algebras*  $\mathfrak{L}$  and  $\mathfrak{L}'$  are isomorphic if there exists a map  $\phi : \mathfrak{L} \to \mathfrak{L}'$  which

- is an isomorphism of Lie algebras ,
- maps  $\mathfrak{g}$  to  $\mathfrak{g}$ ,

• is a homothetic transformation from  $\mathfrak{L}$  to  $\mathfrak{L}'$ , i.e.  $\ll \phi(X), \phi(Y) \gg' = s \ll X, Y \gg \forall X, Y \in \mathfrak{L}$  for some nonzero real s.

**Lemma 1.** (cf [1]) Two Lie bialgebra structures on a given Lie algebra  $\mathfrak{g}$ ,  $(\mathfrak{g}, p)$ and  $(\mathfrak{g}, p')$  yield isomorphic Manin algebras if and only if there are  $Q \in \Lambda^2 \mathfrak{g}$ , A an automorphism of  $\mathfrak{g}$  and s a nonzero real number such that

$$\begin{cases} p' = sA(p - \partial Q);\\ 1/2[Q, Q](\alpha, \nu, \gamma) + \sum_{\alpha, \nu, \gamma} Q({}^{t}p(\alpha, \nu), \gamma) = 0. \end{cases}$$

In particular, two exact Lie bialgebra structures on  $\mathfrak{g}$ ,  $(\mathfrak{g}, \partial Q)$  and  $(\mathfrak{g}, \partial Q')$  yield isomorphic Manin algebras if and only if  $[Q, Q] = s^2 A[Q', Q']$  for some automorphism A of  $\mathfrak{g}$  and some  $s \neq 0 \in \mathbb{R}$ .

**Lemma 2.** If  $\mathfrak{g}$  is a (real or complex) semisimple Lie algebra and  $\beta$  its Killing form, the linear map  $\rho$ :  $(S^2\mathfrak{g}^*)^{inv} \to (\Lambda^3\mathfrak{g})^{inv}$  defined by  $\beta^{(3)}\langle \rho B, X \wedge Y \wedge Z \rangle = B([X,Y],Z)$  for  $X, Y, Z \in \mathfrak{g}$  is a linear isomorphism.

Hence any bialgebra structure one  $\mathfrak{g}$  is defined by a  $Q \in \Lambda^2 \mathfrak{g}$  such that  $[Q, Q] = \rho B$  where  $B \in (S^2 \mathfrak{g}^*)^{inv}$  is of the form  $B(X, Y) = \beta(MX, Y)$ .

Suppose  $\mathfrak{g}$  has a nondegenerate invariant symmetric bilinear form  $\beta$ . Then Q determines a linear map  $\tilde{Q} : \mathfrak{g} \to \mathfrak{g}$  defined by  $\langle \alpha, \tilde{Q}(X) \rangle = \beta(\hat{Q}(\alpha), X)$  or equivalentely  $\beta(\tilde{Q}(Y), X) = \beta^{(2)}(Q, X \wedge Y) = Q(\hat{\beta}(X), \hat{\beta}(Y))$  where  $\hat{\beta} : \mathfrak{g} \to \mathfrak{g}^*$  is such that  $\langle \hat{\beta}(X), Y \rangle = \beta(X, Y)$ .

**Remark 2.** If  $\mathfrak{g}_0$  is a simple real Lie algebra such that  $\mathfrak{g} = \mathfrak{g}_0^{\mathbb{C}}$  is simple then  $(\Lambda^3 \mathfrak{g}_0)^{inv}$  is 1- dimensional. Hence any exact Lie bialgebra structure on  $\mathfrak{g}_0$  is of the form  $(\mathfrak{g}_0, p)$  where  $p = \partial Q$  with  $Q \in \Lambda^2 \mathfrak{g}_0$  and  $[Q, Q] = \lambda \Omega$  such that

$$\beta^{(3)}(X \wedge Y \wedge Z, \Omega) = \beta(X, [Y, Z]).$$

**Corollary 1.** When we look at all the Lie bialgebra structures on a simple real Lie algebra  $\mathfrak{g}_0$  such that  $\mathfrak{g} = \mathfrak{g}_0^{\mathbb{C}}$  is simple there are only three cases up to isomorphism:

- $\lambda = 0;$
- $\lambda > 0;$
- $\lambda < 0$ .

# 2 The Manin algebras associated to a real semisimple Lie algebra

**Aim:** we determine the Manin algebra  $\mathfrak{L}$  which is associated to the Lie bialgebra structure  $(\mathfrak{g}_0, p)$  where  $\mathfrak{g}_0$  is a semisimple real Lie algebra, p satisfies  $p = \partial Q$  and  $[Q,Q] = \rho B$  where  $B \in (S^2\mathfrak{g}^*)^{inv}$ , hence  $B(X,Y) = \beta(MX,Y)$  where  $M \circ adX = adX \circ M \quad \forall X \in \mathfrak{g}_0$ .

**Theorem 1.** Up to isomorphism the Manin algebra  $\mathfrak{L}$  associated to a real semisimple Lie algebra  $\mathfrak{g}_0$  which can be writen  $\mathfrak{g}_0 = \bigoplus_{1 \leq k \leq p} \mathfrak{I}_k$  where  $\mathfrak{I}_k$  are simple ideals of  $\mathfrak{g}_0$ , is of the form  $\mathfrak{L} = \bigoplus_{1 \leq k \leq p} \mathfrak{L}_k$  where  $\mathfrak{L}_k$  is one of the following:

$$\begin{cases} \mathfrak{L}_k = Lie(T^*(I_k)) \text{ where } I_k \text{ is the Lie group associated to the Lie algebra } \mathfrak{I}_k; \\ \mathfrak{L}_k = (\mathfrak{I}_k)^{\mathbb{C}}; \\ \mathfrak{L}_k = \mathfrak{I}_k \oplus \mathfrak{I}_k. \end{cases}$$

The rest of this paragraph is devoted to the proof of the theorem 1.

The Manin algebra we consider is given by  $\mathfrak{L}_{0,\partial Q}$  which is isomorphic to  $\mathfrak{L}_{-1/2[Q,Q],0} = \mathfrak{L}$ .

So  $\mathfrak{L} = \mathfrak{g}_0 + \mathfrak{g}_0^*$  as vector spaces with the duality  $\ll (X, \alpha), (Y, \nu) \gg_M = \langle \alpha, Y \rangle + \langle \nu, X \rangle$ and the bracket :

(1) 
$$[(X,\alpha),(Y,\nu)]_M = ([X,Y] + \bar{S}(\alpha,\nu), ad_X^*\nu - ad_Y^*\alpha)$$

where  $S = -1/2[Q, Q] = -1/2\rho B$  so that  $\beta^{(3)}\langle S, X \wedge Y \wedge Z \rangle = -1/2\beta(M[X, Y], Z)$ and  $M \circ adX = adX \circ M \ \forall X \in \mathfrak{g}_0$ . So we have  $M[X_k, Y_k] = [X_k, MY_k]$  for  $1 \leq k \leq p$ , this implies  $M(\mathfrak{I}_k) \subset \mathfrak{I}_k$ 

Thus we write  $M(\sum_{1 \le k \le p} X_k) = \sum_{1 \le k \le p} M_k(X_k)$ 

**Proposition 1.** Suppose  $\mathfrak{g}$  is a real semisimple Lie algebra and S=0 then  $\mathfrak{L} = Lie(T^*G)$ .

*proof*: We first identify  $T^*G$  with  $G \times \mathfrak{g}^*$ : to  $\alpha \in T^*G$  we associate the couple  $(g, \tilde{\alpha})$  such that  $\tilde{\alpha} = L^*{}_g \alpha_g$ .

We define the product on  $T^*G$  by  $\alpha_g \cdot \nu_{g'} = (R^*_{g'^{-1}}\alpha_g + L^*_{g^{-1}}\nu_{g'})$ , so it is given on  $G \times \mathfrak{g}^*$  by  $(g, \tilde{\alpha}) \cdot (g', \tilde{\nu}) = (gg', Ad^*_{g'^{-1}}\tilde{\alpha} + \tilde{\nu})$ .

The bracket on  $Lie(T^*G)$  reads:  $ad(X, \tilde{\alpha}) \cdot (Y, \tilde{\nu}) = ([X, Y], -ad_Y^*\tilde{\alpha} + ad_X^*\tilde{\nu})$  which is the bracket (1) when  $S \equiv 0$ . Remark that in what follows the hypothesis that  $\mathfrak{g}_0$  is semisimple is too strong, it's sufficient that  $\mathfrak{g}_0$  possesses a nondegenerate invariant bilinear form.

We identify  $\mathfrak{g}_0 + \mathfrak{g}_0^*$  with  $\mathfrak{g}_0 + \mathfrak{g}_0$  by  $\Psi : \mathfrak{g}_0 + \mathfrak{g}_0^* \to \mathfrak{g}_0 + \mathfrak{g}_0 \ (X, \alpha) \mapsto (X, \hat{\beta}^{-1}(\alpha))$ Hence the duality is given by

$$\ll (X, A), (Y, B) \gg_M = \langle \hat{\beta}(A), Y \rangle + \langle \hat{\beta}(B), X \rangle = \beta(A, Y) + \beta(B, X)$$

And from (1) the bracket is given by:

(2)  

$$\begin{cases}
[(X, A), (Y, B)]_M = ([X, Y] + \bar{S}(\hat{\beta}(A), \hat{\beta}(B)), \hat{\beta}^{-1}(ad_X^*\hat{\beta}(B)) - \hat{\beta}^{-1}(ad_Y^*\hat{\beta}(A))) \\
= ([X, Y] - 1/2M[A, B], [X, B] - [Y, A])
\end{cases}$$

As  $\mathfrak{g}_0 = \bigoplus_{1 \leq k \leq p} \mathfrak{I}_k$  any  $X \in \mathfrak{g}_0$  is of the form  $X = \sum_{1 \leq k \leq p} X_k$  so the bracket reads:

$$[(X, A), (Y, B)]_M = \sum_{1 \le k \le p} ([X_k, Y_k] - 1/2M_k[A_k, B_k], \ [X_k, B_k] - [Y_k, A_k])$$

Thus we only have to study the Manin algebra  $\mathfrak{L}$  associated to a real simple Lie algebra  $\mathfrak{g}_0$ . In this case  $\mathfrak{g}_0^{\mathbb{C}}$  is either simple or not simple. If it is not simple then M = a + bJ where  $a, b \in \mathbb{R}$  and J is such that  $J^2 = -Id$ ,  $J \circ adX = adX \circ J \forall X \in \mathfrak{g}_0$ ; if it is simple  $M = \lambda Id$  for  $\lambda \in \mathbb{R}$ .

**Proposition 2.** Assume that there exists  $N : \mathfrak{g}_0 \to \mathfrak{g}_0$  such that

- 1) N is a linear isomorphism;
- 2)  $N^2 = 1/2M;$

3) 
$$N \circ adX = adX \circ N \ \forall X \in \mathfrak{g}_0$$

Then

$$\mathfrak{L} \approx \mathfrak{g}_0^{\mathbb{C}}$$
 as Lie algebras,  $\mathfrak{g}_0 \approx \{(X, 0) \in \mathfrak{g}_0^{\mathbb{C}}\}$ 

and the duality is given by  $\ll (X, A), (Y, B) \gg_M = \beta(X, N^{-1}B) + \beta(N^{-1}A, Y).$ 

*proof:* the isomorphism is given by:

$$\Psi: \mathfrak{g}_0^{\mathbb{C}} \to \mathfrak{L} = \mathfrak{g}_0 + \mathfrak{g}_0 \ (X, A) \mapsto \ (X, N^{-1}A)$$

Recall that  $\mathfrak{g}_0^{\mathbb{C}} = \{(X, Y) \mid X, Y \in \mathfrak{g}_0\}$  with the bracket  $[, ]_{\mathbb{C}}$  given by:

$$[(X, A), (Y, B)]_{\mathbb{C}} = ([X, Y] - [A, B], [X, B] - [Y, A]).$$

**Corollary 1.** If  $M = \lambda Id$  with  $\lambda > 0$  we obtain the Manin pair  $(\mathfrak{g}_0^{\mathbb{C}}, \mathfrak{g}_0)$  where the duality is given by:

$$\ll (X, A), (Y, B) \gg = \beta(A, Y) + \beta(B, X).$$

**Corollary 2.** If  $\mathfrak{g}_0^{\mathbb{C}}$  is not simple then M = a + bJ with  $a^2 + b^2 \neq 0$  if  $M \neq 0$ , thus N exits and is given by N = c + dJ with  $(c + id)^2 = a + ib$  in  $\mathbb{C}$ . Then the Manin algebra associated to a Lie bialgebra structure with  $M \neq 0$  on a real simple Lie algebra  $\mathfrak{g}_0$  such that  $\mathfrak{g}_0^{\mathbb{C}}$  is not simple, is  $\mathfrak{L} \approx \mathfrak{g}_0^{\mathbb{C}}$ .

**Remark 1.** If  $\mathfrak{g}_0^{\mathbb{C}}$  is simple and  $M = \lambda Id$  with  $\lambda < 0$  there is no possible N.

**Proposition 3.** If  $\mathfrak{g}_0^{\mathbb{C}}$  is simple and  $M = \lambda Id$  with  $\lambda < 0$  then  $\mathfrak{L} \approx \mathfrak{g}_0 \oplus \mathfrak{g}_0$ , the direct sum of two copies of the Lie algebra  $\mathfrak{g}_0$ ,  $\mathfrak{g}_0 \approx \Delta \mathfrak{g}_0 = \{(X, X) \mid X \in \mathfrak{g}_0\}$  and the duality is given by:

$$\ll (X,Y), (X',Y') \gg = 1/2\beta(X,X') - 1/2\beta(Y,Y').$$

*proof:* we can suppose that  $\lambda = -1$  because when  $\mathfrak{g}_0^{\mathbb{C}}$  is simple the structures are isomorphic when multiplied by a positive constant, then from (2) the bracket is given by:

$$[(X,Y),(X',Y')] = ([X,X'] + [Y,Y'], [X,Y'] + [Y,X']).$$

The isomorphism is  $\phi : \mathfrak{L} = \mathfrak{g}_0 + \mathfrak{g}_0 \rightarrow \mathfrak{g}_0 \oplus \mathfrak{g}_0 = \mathfrak{L}'(X,Y) \mapsto (X+Y,X-Y)$ The duality is given by:

$$\ll (X,Y), X', Y') \gg' = \ll \phi^{-1}(X,Y), \phi^{-1}(X',Y') \gg_{\mathfrak{L}} = \frac{1}{2}(\beta(X,X') - \beta(Y,Y')) \quad \Box$$

**Remark 2.** We have  $\mathfrak{g}_0^{\mathbb{C}} \approx \mathfrak{g}_0 \oplus \mathfrak{g}_0$  if and only if there exits such a J. The isomorphism is  $\phi : \mathfrak{g}_0 \oplus \mathfrak{g}_0 \to \mathfrak{g}_0^{\mathbb{C}}(X,Y) \mapsto (\frac{X+iJX}{2}, \frac{Y+iJY}{2})$ Remark that if  $\mathfrak{g}_0^{\mathbb{C}} \approx \mathfrak{g}_0 \oplus \mathfrak{g}_0$  then  $\mathfrak{g}_0^{\mathbb{C}}$  is not simple.

**Theorem 3.** The Manin algebra  $\mathfrak{L}$  which is associated to the Lie bialgebra structure  $(\mathfrak{g}_0, p)$  where  $\mathfrak{g}_0$  is a simple real Lie algebra, p satisfies  $p = \partial Q$  and  $[Q, Q] = \rho B$ where  $B \in (S^2\mathfrak{g}^*)^{inv}$ , hence  $B(X, Y) = \beta(MX, Y)$  where  $M \circ adX = adX \circ M \quad \forall X \in \mathfrak{g}_0$ , is

- • $\mathfrak{L} = Lie(T^*G)$  if B = 0, where G is the Lie group associated to  $\mathfrak{g}_0$ ;
- • $\mathfrak{L} = \mathfrak{g}_0^{\mathbb{C}}$  if  $\mathfrak{g}_0^{\mathbb{C}}$  is not simple;
- $\mathfrak{L} = \mathfrak{g}_0^{\mathbb{C}}$  if  $\mathfrak{g}_0^{\mathbb{C}}$  is simple and  $M = \lambda Id$  with  $\lambda \in \mathbb{R}^*_+$ ;
- • $\mathfrak{L} = \mathfrak{g}_0 \oplus \mathfrak{g}_0$  if  $\mathfrak{g}_0^{\mathbb{C}}$  is simple and  $M = \lambda Id$  with  $\lambda \in \mathbb{R}^*_{-}$ .

# 3 Solutions of the nonzero standard modified Yang-Baxter's equation.

**Aim:** we want to find all the solutions of the modified Yang-Baxter equation of the form:

(3) 
$$\begin{cases} [\tilde{Q}X, \tilde{Q}Y] - \tilde{Q}[\tilde{Q}X, Y] - \tilde{Q}[X, \tilde{Q}Y] = \lambda[X, Y] \\ \beta(\tilde{Q}X, Y) = -\beta(X, \tilde{Q}Y) \end{cases}$$

for  $X, Y \in \mathfrak{g}_0$  when  $\mathfrak{g}_0$  is a real semisimple Lie algebra, and for nonzero  $\lambda$ .

In this case the algebra  $\mathfrak{g} = \mathfrak{g}_0^{\mathbb{C}}$  is semisimple; remark that this equation has been studied for complex semisimple Lie algebra by A. Belavin and V. Drinfeld [2]; we use their methods and results.

- A. The case  $\lambda > 0$ .
- a. Existence of a solution.

**Proposition 1.** There always exists a solution  $\widetilde{Q} \in End(\mathfrak{g}_0)$ , it is related to the existence of a Cartan subalgebra  $\mathfrak{h}_0$  of  $\mathfrak{g}_0$  such that  $\mathfrak{h}_0$  contains a maximal torus of  $\mathfrak{k}$  where  $\mathfrak{g}_0 = \mathfrak{k} \oplus \mathfrak{p}$  is a Cartan decomposition of  $\mathfrak{g}_0$ .

*proof:* to obtain this result we work on  $\mathfrak{g} = \mathfrak{g}_0^{\mathbb{C}}$ , we extend  $\tilde{Q}$   $\mathbb{C}$ -linearly to  $\mathfrak{g}$ . The equation satisfied by  $\tilde{Q}$  on  $\mathfrak{g}$  is:

(4) 
$$\begin{cases} [\tilde{Q}X, \tilde{Q}Y] - \tilde{Q}[\tilde{Q}X, Y] - \tilde{Q}[X, \tilde{Q}Y] = \lambda[X, Y] \\ \beta(\tilde{Q}X, Y) = -\beta(X, \tilde{Q}Y) \end{cases}$$

For any complex number  $\mu$  let  $\mathfrak{g}_{\mu}$  denote the generalized eigenspace given by:

 $\mathfrak{g}_{\mu} = \{X \in \mathfrak{g} \mid (\tilde{Q} - \mu)^{k} X = 0 \text{ for some positive integer } k\}.$ 

Let  $a^2 = -\lambda$ , then a is purely imaginary;  $\mathfrak{g}_a$  and  $\mathfrak{g}_{-a}$  are subalgebras of  $\mathfrak{g}$  which are isotropic with respect to  $\beta$  and  $\mathfrak{g}_{-a} = \overline{\mathfrak{g}_a}$ .

Besides  $\mathfrak{g}' = \sum_{\mu \neq \pm a} \mathfrak{g}_{\mu}$  is a subalgebra and  $\overline{\mathfrak{g}'} = \mathfrak{g}'$ .

From ([2] and [1] p. 8) we know that there exist two Borel subalgebras  $\mathfrak{b}_{\pm}$  of  $\mathfrak{g}$  such that  $\mathfrak{g}_a + \mathfrak{g}' \subset \mathfrak{b}_+$  and  $\mathfrak{g}_{-a} + \mathfrak{g}' \subset \mathfrak{b}_-$ , moreover they satisfy  $\overline{\mathfrak{b}_+} = \mathfrak{b}_-$  and  $\mathfrak{h} = \mathfrak{b}_+ \cap \mathfrak{b}_-$  is a Cartan subalgebra of  $\mathfrak{g}$  such that  $\overline{\mathfrak{h}} = \mathfrak{h}$  thus  $\mathfrak{h} = \mathfrak{h}_0^{\mathbb{C}}$  where  $\mathfrak{h}_0$  is a Cartan subalgebra of  $\mathfrak{g}_0$ .

Let  $\mathfrak{g}_0 = \mathfrak{k} + \mathfrak{p}$  be a Cartan decomposition of  $\mathfrak{g}_0$  and let  $\mathfrak{h}_0 = \mathfrak{t} + \mathfrak{a}$  be the corresponding decomposition of  $\mathfrak{h}_0$  i.e.  $\mathfrak{t} \subset \mathfrak{k}$  and  $\mathfrak{a} \subset \mathfrak{p}$ .

Denote by  $\Delta^+$  the set of roots of  $(\mathfrak{g}, \mathfrak{h})$  such that the corresponding eigenspaces are in  $\mathfrak{b}_+$ .

Denote by  $\alpha'$  the restriction of  $\alpha \in \Delta$  to  $\mathfrak{h}_0$ .

Then  $\overline{\mathfrak{g}^{\alpha}} = \mathfrak{g}^{-\alpha}$  where  $-\widetilde{\alpha}' = \overline{\alpha}'$  and  $\widetilde{\alpha} \in \Delta^+$  if  $\alpha \in \Delta^+$ .

Remark that  $\mathfrak{t}' = \mathfrak{t} + i\mathfrak{a}$  is a maximal torus of  $\mathfrak{k} + i\mathfrak{p}$  which is a compact subalgebra of  $\mathfrak{g}$ .

Hence we have  $\alpha \in \Delta^+$  if and only if  $\exists X \in it'$  such that  $\alpha(X) > 0$ . But  $(\alpha \in \Delta^+) \Rightarrow (\overline{\alpha'} \in \Delta^-)$  thus we obtain:  $\begin{cases} i\alpha'(Z) + \alpha'(Y) > 0\\ -i\alpha'(Z) + \alpha'(Y) < 0 \end{cases}$ 

So there must be a  $Z \in \mathfrak{t}$  such that  $\alpha(Z) \neq 0 \ \forall \alpha \in \Delta$ .

Reciprocally suppose there exists  $X \in \mathfrak{t}$  such that  $\alpha(X) \neq 0 \ \forall \alpha \in \Delta$  then let  $\Delta^+ = \{\alpha \in \Delta \mid i\alpha(X) > 0\}, \ b_+ = (\mathfrak{h}_0)^{\mathbb{C}} + \sum_{\alpha \in \Delta^+} \mathfrak{g}^{\alpha}$  and define  $\widetilde{Q}$  as follow:

(5) 
$$\widetilde{Q}(X) = \begin{cases} aX \text{ if } X \in \sum_{\alpha \in \Delta^+} \mathfrak{g}_{\alpha} \\ 0 \text{ if } X \in \mathfrak{h} = \mathfrak{h}_0^{\mathbb{C}} \\ -aX \text{ if } X \in \overline{\sum_{\alpha \in \Delta^+} \mathfrak{g}_{\alpha}} \end{cases}$$

Such a  $\tilde{Q}$  satisfies (4) and when restricted to  $\mathfrak{g}_0$  it satisfies (3).

So there exists a solution of (3) if and only if there exits  $X \in \mathfrak{t}$  such that  $\alpha(X) \neq 0 \ \forall \alpha \in \Delta^+$ . And in this case a solution of (3) is given by (5). Remark that the fact that there exits  $X \in \mathfrak{t}$  such that  $\alpha(X) \neq 0 \ \forall \alpha \in \Delta$  is equivalent to the fact that  $\mathfrak{t}$  is a maximal torus of  $\mathfrak{k}$ . Hence we can always find a solution of (3) for  $\lambda > 0$ .

#### b. Research of all the solutions.

We work on  $\mathfrak{g} = \mathfrak{g}_0^{\mathbb{C}}$ , we extend  $\widetilde{Q}$   $\mathbb{C}$ -lineairely to  $\mathfrak{g}$ . The equation satisfied by  $\widetilde{Q}$  on  $\mathfrak{g}$  is (4)

But we impose furthermore that  $\widetilde{Q} \in End(\mathfrak{g}_0)$  i.e.  $\overline{\widetilde{Q}(X)} = \widetilde{Q}(\overline{X}) \ \forall X \in \mathfrak{g}.$ 

We have from Belavin-Drinfeld [2]:

**Theorem 1.** Let  $\mathfrak{g}$  be a complex semisimple Lie algebra and let  $Q \in \Lambda^2 \mathfrak{g}$  satisfying

$$\beta^{(3)}([Q,Q], X \wedge Y \wedge Z) = \beta(\frac{\lambda}{2}[X,Y], Z).$$

Then, there exists a Cartan subalgebra  $\mathfrak{h}$  of  $\mathfrak{g}$ , a system of positive roots  $\Delta^+$  of  $(\mathfrak{g}, \mathfrak{h})$ , two subsets  $\Gamma_+$  and  $\Gamma_-$  of the set  $\Phi$  of simple roots corresponding to  $\Delta^+$  and a map  $\tau : \Gamma_+ \to \Gamma_-$  satisfying

(1)  $< \tau(\alpha), \tau(\nu) > = < \alpha, \nu >, \forall \alpha, \nu \in \Gamma_+;$ 

(2)  $\forall \alpha \in \Gamma_+$ , there exists a positive integer k such that  $\tau^l(\alpha) \in \Gamma_+$ ,  $\forall l < k$ and  $\tau^k(\alpha) \notin \Gamma_+$  such that, for a choice of Weyl bases  $E_\alpha$  in  $\mathfrak{g}^\alpha$  with  $\beta(E_\alpha, E_{-\alpha}) = 1$ :

$$Q = Q_0 + a(\sum_{\alpha \in \Delta^+} E_{-\alpha} \wedge E_{\alpha} + 2\sum_{\alpha \in \hat{\Gamma}_+, \alpha < \nu} E_{-\nu} \wedge E_{\alpha})$$

where  $a^2 = -\lambda$  and  $Q_0 \in \Lambda^2 \mathfrak{h}$  is determined by  $Q(\alpha, \nu)$ ,  $\forall \alpha, \nu \in \Phi$  and those must verify:

(3) 
$$Q(\tau(\alpha),\nu) = Q(\alpha,\nu) - a(\langle \alpha,\nu \rangle + \langle \tau(\alpha),\nu \rangle), \ \forall \alpha \in \Gamma_+, \ \forall \nu \in \Phi.$$

Where  $\hat{\Gamma}_+$  is the set of the positive roots which can be written as integer combinations of the simple roots in  $\Gamma_+$ .

Where  $\langle \alpha, \nu \rangle = \beta(H_{\alpha}, H_{\nu}).$ 

Where the notation  $\nu > \alpha$  for  $\alpha \in \hat{\Gamma}_+$  means that there exists an integer  $k \ge 1$  such that  $\tau^k(\alpha) = \nu$ .

Lemma 1. As we work on 
$$\mathfrak{g} = \mathfrak{g}_0^{\mathbb{C}}$$
 with  $\lambda > 0$  we have:  
1)  $\mathfrak{h} = \mathfrak{h}_0^{\mathbb{C}}$ ;  
2)  $\overline{\mathfrak{g}^{\alpha}} = \mathfrak{g}^{-\widetilde{\alpha}}$  where  $-\widetilde{\alpha}_{|\mathfrak{h}_0} = \overline{\alpha}_{|\mathfrak{h}_0}$  thus  $\overline{E_{\alpha}} = \lambda_{\alpha} E_{-\widetilde{\alpha}}$ ;  
3)  $\Gamma_- = \{\widetilde{\alpha} \text{ when } \alpha \in \Gamma_+\};$   
4)  $\overline{H_{\alpha}} = -H_{\widetilde{\alpha}}$  for  $\alpha \in \Delta$ ;  
5)  $\widetilde{Q}(E_{-\alpha}) = -aE_{-\alpha} - 2a \sum_{\nu < \alpha} E_{-\nu}$  where  $\sum_{\nu < \alpha} E_{-\nu} = 0$  if  $\nu \notin \widehat{\Gamma}_+$ 

proof:

\*) from the paragraphe 3.a we already have 1 and 2.

\*) for 3: if  $c_{+} = Im(\tilde{Q} + a)$  then  $c_{-} = Im(\tilde{Q} - a) = \overline{c_{+}}$ 

and  $\sum_{\alpha \in \hat{\Gamma}_+} (\mathfrak{g}^{\alpha} + \mathfrak{g}^{-\alpha} + [\mathfrak{g}^{\alpha}, \mathfrak{g}^{-\alpha}])$  is the Levy factor of  $c_+$  so  $\overline{\hat{\Gamma}_+} = \hat{\Gamma}_-$  i.e.  $\hat{\Gamma}_- =$ 

 $\{\tilde{\alpha} \text{ when } \alpha \in \Gamma_+\}\$ \*) for 4: we use  $[E_{\alpha}, E_{-\alpha}] = H_{\alpha}$  and 2 to obtain  $\overline{H_{\alpha}} = -\lambda_{\alpha}\lambda_{-\alpha}H_{\alpha}$ ,  $[H, E_{\alpha}] =$  $\alpha(H)E_{\alpha}$  and 2 to obtain  $\overline{\alpha(H)} = -\widetilde{\alpha}(\overline{H})$  and  $\beta(H_{\alpha}, H) = \alpha(H)$  to obtain  $\lambda_{\alpha}\lambda_{-\alpha} = 1$ .  $\ast)$  for 5: from theorem 1 we have  $\widetilde{Q}E_{\alpha} = a(E_{\alpha} + 2\sum_{\nu > \alpha} E_{\nu}) \ \forall \alpha \in \nu_{+} \text{ where } \sum_{\nu > \alpha} E_{\nu} = 0 \text{ if } \alpha \in \Delta_{+} \backslash \widehat{\Gamma}_{+}$ To determine  $\widetilde{Q}E_{-\alpha}$  we use:  $\beta(\widetilde{Q}X,Y) = -\beta(X,\widetilde{Q}Y), \ \widetilde{Q}(\bigoplus_{\alpha\in\Delta^+}\mathfrak{g}^{-\alpha}) \subset \bigoplus_{\alpha\in\Delta^+}\mathfrak{g}^{-\alpha}$ 

and  $\beta(E_{\alpha}, E_{-\gamma}) = \delta_{\alpha\gamma}$ .

**Remark 1.** The equality 5 of Lemma 1. does not depend of the sign of  $\lambda$ .

**Theorem 2.** Let  $\mathfrak{g}_0$  be a real semisimple Lie algebra and let  $Q \in \Lambda^2 \mathfrak{g}_0$  satisfying

$$\begin{cases} [\tilde{Q}X, \tilde{Q}Y] - \tilde{Q}[\tilde{Q}X, Y] - \tilde{Q}[X, \tilde{Q}Y] = \lambda[X, Y] \\ \beta(\tilde{Q}X, Y) = -\beta(X, \tilde{Q}Y) \text{ with } \lambda > 0 \end{cases}$$

Then, there exists a Cartan subalgebra  $\mathfrak{h}_0$  of  $\mathfrak{g}_0$  which is as in a.proposition 1, a system of positive roots  $\Delta^+$  of  $(\mathfrak{g}_0^{\mathbb{C}}, \mathfrak{h}_0^{\mathbb{C}})$ , one subset  $\Gamma_+$  of the set  $\Phi$  of simple roots corresponding to  $\Delta^+$  and a map  $\tau: \Gamma_+ \to \Gamma_- = \{ \widetilde{\alpha} \text{ when } \alpha \in \Gamma_+ \}$  satisfying

(1)  $< \tau(\alpha), \tau(\nu) > = < \alpha, \nu >, \forall \alpha, \nu \in \Gamma_+;$ 

(2)  $\forall \alpha \in \Gamma_+$ , there exists a positive integer k such that  $\tau^l(\alpha) \in \Gamma_+$ ,  $\forall l < k$ and  $\tau^k(\alpha) \notin \Gamma_+$ 

(3)  $\tau(\alpha) = \tilde{\nu} \Rightarrow \tau(\nu) = \tilde{\alpha} \, \forall \alpha \in \Gamma_+$ 

such that, for a choice of Weyl bases  $E_{\alpha}$  in  $\mathfrak{g}^{\alpha}$  where  $\overline{E_{\alpha}} = \lambda_{\alpha} E_{-\widetilde{\alpha}}$ with  $\beta(E_{\alpha}, E_{-\alpha}) = 1$  and

(4)  $\lambda_{\tau(\alpha)} = \lambda_{\alpha} \ \forall \alpha \in \Gamma_+ \ we \ have$ 

$$Q = Q_0 + a(\sum_{\alpha \in \Delta^+} E_{-\alpha} \wedge E_{\alpha} + 2\sum_{\alpha \in \hat{\Gamma}_+, \alpha < \nu} E_{-\nu} \wedge E_{\alpha})$$

where  $a^2 = -\lambda$  and  $Q_0 \in \Lambda^2 \mathfrak{h}_0$  is determined by  $Q(\alpha, \nu), \forall \alpha, \nu \in \Phi$  and those must verify:

(5) 
$$Q(\tau(\alpha), \nu) = Q(\alpha, \nu) - a(\langle \alpha, \nu \rangle + \langle \tau(\alpha), \nu \rangle), \ \forall \alpha \in \Gamma_+, \ \forall \nu \in \Phi$$
  
(6)  $\widetilde{Q}(H_{\widetilde{\alpha}}) = -\overline{\widetilde{Q}(H_{\alpha})} \ \forall \alpha.$ 

*proof:* we want that a Q given by theorem 1 satisfies  $\tilde{Q}(\overline{X}) = \overline{\tilde{Q}(X)} \ \forall X \in \mathfrak{g}$ In particular for  $X = E_{\alpha}$  we obtain:  $1^{st} case$  :

If  $\alpha \in \hat{\Gamma}_+$  and  $\tau(\alpha) = \tilde{\nu} \in \hat{\Gamma}_-$ ,  $\tilde{\nu} \notin \hat{\Gamma}_+$  then  $\overline{\tilde{Q}(E_\alpha)} = -a(\lambda_\alpha E_{-\tilde{\alpha}} + 2\lambda_{\tau(\alpha)}E_{-\tilde{\nu}})$  and  $\widetilde{Q}(\overline{E_{\alpha}}) = -a\lambda_{\alpha}(E_{-\widetilde{\alpha}} + 2\sum_{\gamma < \widetilde{\alpha}} E_{-\gamma})$ There is equality if and only if  $\lambda_{\tau(\alpha)} = \lambda_{\alpha}$  and  $\tau(\nu) = \tilde{\alpha}$  $2^{nd} case$  :

We apply a recursive process in the case where  $\alpha \in \hat{\Gamma}_+$  is such that  $\tau^l(\alpha) \in \hat{\Gamma}_+$ , l =1,  $\cdots$ , k and  $\tau^{k+1}(\alpha) = \tilde{\nu} \notin \hat{\Gamma}_+$ .

We apply recursive hypothese to  $\tau(\alpha)$ .

Then  $\overline{\tilde{Q}(E_{\alpha})} = -a(\lambda_{\alpha}E_{-\tilde{\alpha}} + 2\lambda_{\tau(\alpha)}E_{-\tau^{k}(\nu)} + \dots + 2\lambda_{\tau^{k+1}(\alpha)}E_{-\nu})$  and  $\widetilde{Q}(\overline{E_{\alpha}}) = -a\lambda_{\alpha}(E_{-\tilde{\alpha}} + 2\sum_{\gamma<\tilde{\alpha}}E_{-\gamma})$ There is equality if and only if :  $\lambda_{\alpha} = \lambda_{\tau(\alpha)} = \dots = \lambda_{\tau^{k+1}(\alpha)}$  and  $\tau(\tau^{k}(\nu)) = \tilde{\alpha}$  that is  $\tau^{k+1}(\nu) = \tilde{\alpha}.$ 

We also want that  $\widetilde{Q}(\overline{X}) = \overline{\widetilde{Q}(X)} \ \forall X \in \mathfrak{h}$ , that gives immediately 6.

#### 

#### Remarks

- 1) If  $\tau(\alpha) = \tilde{\alpha}$  then  $\lambda_{\alpha} \in \mathbb{C}$ .
- 2) If  $\tau(\alpha) = \tilde{\nu}$  and  $\tau(\nu) = \tilde{\alpha}$  then  $\lambda_{\tilde{\alpha}} = \overline{\lambda_{\alpha}}$  and  $\lambda_{\tilde{\nu}} = \overline{\lambda_{\nu}}$ .
- 3) If  $\tau(\alpha) = \tilde{\alpha}$  then  $\tilde{Q}(H_{\alpha} aH_{\alpha}) \in i\Lambda^2\mathfrak{h}_0$ .

#### **B.** The case $\lambda < 0$ .

The existence of a solution in this case has been studied in [1]:

**Theorem 1.** There exists a solution of (3) for  $\lambda < 0$  if and only if  $\mathfrak{g}_0$  is the sum of simple ideals which are either split, complex or one of the following cases (using the notation of Helgason [5]):

(i) SU(p,p), SU(p,p+1);(ii) SO(p,p+2);(iii) EII.

We extend  $Q \mathbb{C}$ -linearly to  $\mathfrak{g}$  as in A. and we use the same A.b.theorem 1.

Lemma 1. As we work on  $\mathfrak{g} = \mathfrak{g}_0^{\mathbb{C}}$  with  $\lambda < 0$  we have: 1)  $\mathfrak{h} = \mathfrak{h}_0^{\mathbb{C}}$ ; 2)  $\overline{\mathfrak{g}^{\alpha}} = \mathfrak{g}^{\widetilde{\alpha}}$  where  $\widetilde{\alpha}_{|\mathfrak{h}_0} = \overline{\alpha}_{|\mathfrak{h}_0}$  thus  $\overline{E_{\alpha}} = \lambda_{\alpha} E_{\widetilde{\alpha}}$ ; 3)  $\overline{H_{\alpha}} = H_{\widetilde{\alpha}}$  for  $\alpha \in \Delta$ ; 4)  $\widetilde{Q}(E_{-\alpha}) = -aE_{-\alpha} - 2a\sum_{\nu < \alpha} E_{-\nu}$  where  $\sum_{\nu < \alpha} E_{-\nu} = 0$  if  $\nu \notin \widehat{\Gamma}_+$ 

proof:

\*) for 1: as  $a^2 = -\lambda$ , a is real, thus  $\mathfrak{g}_a = (\mathfrak{g}_a^{\mathbb{R}})^{\mathbb{C}}$ ,  $\mathfrak{g}_- a = (\mathfrak{g}_{-a}^{\mathbb{R}})^{\mathbb{C}}$ ,  $\mathfrak{g}' = (\mathfrak{g}'^{\mathbb{R}})^{\mathbb{C}}$ ,  $\mathfrak{b}_+ = (\mathfrak{b}_+^{\mathbb{R}})^{\mathbb{C}}$ ,  $\mathfrak{b}_- = (\mathfrak{b}_-^{\mathbb{R}})^{\mathbb{C}}$ so  $\mathfrak{h} = \mathfrak{h}_0^{\mathbb{C}}$ \*) for 2: we use  $\mathfrak{g}^{\alpha} \subset \mathfrak{b}_+$  and  $\overline{\mathfrak{b}_+} = \mathfrak{b}_+$ .

\*) for 3: we use  $[\underline{E}_{\alpha}, \underline{E}_{-\alpha}] = H_{\alpha}$  and 2 to obtain  $\overline{H_{\alpha}} = \lambda_{\alpha}\lambda_{-\alpha}H_{\widetilde{\alpha}}$ ;  $[H, E_{\alpha}] = \alpha(H)E_{\alpha}$ and 2 to obtain  $\overline{\alpha(H)} = \widetilde{\alpha}(\overline{H})$  and  $\beta(H_{\alpha}, H) = \alpha(H)$  to obtain  $\lambda_{\alpha}\lambda_{-\alpha} = 1$ .

**Theorem 2.** Let  $\mathfrak{g}_0$  be a real semisimple Lie algebra as in theorem 1 and let  $Q \in \Lambda^2 \mathfrak{g}_0$  satisfying

$$\begin{cases} [\tilde{Q}X, \tilde{Q}Y] - \tilde{Q}[\tilde{Q}X, Y] - \tilde{Q}[X, \tilde{Q}Y] = \lambda[X, Y] \\ \beta(\tilde{Q}X, Y) = -\beta(X, \tilde{Q}Y) \text{ with } \lambda < 0 \end{cases}$$

Then, there exists a Cartan subalgebra  $\mathfrak{h}_0$  of  $\mathfrak{g}_0$ , a system of positive roots  $\Delta^+$  of  $(\mathfrak{g}_0^{\mathbb{C}}, \mathfrak{h}_0^{\mathbb{C}})$ , two subsets  $\Gamma_+$  and  $\Gamma_-$  of the set  $\Phi$  of simple roots corresponding to  $\Delta^+$  and a map  $\tau : \Gamma_+ \to \Gamma_-$  satisfying

(1)  $< \tau(\alpha), \tau(\nu) > = < \alpha, \nu >, \forall \alpha, \nu \in \Gamma_+;$ 

(2)  $\forall \alpha \in \Gamma_+$ , there exists a positive integer k such that  $\tau^l(\alpha) \in \Gamma_+$ ,  $\forall l < k$ and  $\tau^k(\alpha) \notin \Gamma_+$ 

(3)  $\tau^k(\alpha) \in \Gamma_+ \iff \tau^k(\widetilde{\alpha}) \in \Gamma_+;$ 

(4)  $\tau(\tilde{\alpha}) = \tau(\alpha) \ \forall \alpha \in \Gamma_+$ 

such that, for a choice of Weyl bases  $E_{\alpha}$  in  $\mathfrak{g}^{\alpha}$  where  $\overline{E_{\alpha}} = \lambda_{\alpha} E_{\widetilde{\alpha}}$ with  $\beta(E_{\alpha}, E_{-\alpha}) = 1$  and

(5)  $\lambda_{\tau(\alpha)} = \lambda_{\alpha} \ \forall \alpha \in \Gamma_+ \ we \ have$ 

$$Q = Q_0 + a(\sum_{\alpha \in \Delta^+} E_{-\alpha} \wedge E_{\alpha} + 2\sum_{\alpha \in \hat{\Gamma}_+, \alpha < \nu} E_{-\nu} \wedge E_{\alpha})$$

where  $a^2 = -\lambda$  and  $Q_0 \in \Lambda^2 \mathfrak{h}_0$  is determined by  $Q(\alpha, \nu)$ ,  $\forall \alpha, \nu \in \Phi$  and those must verify:

(6) 
$$Q(\tau(\alpha),\nu) = Q(\alpha,\nu) - a(\langle \alpha,\nu \rangle + \langle \tau(\alpha),\nu \rangle), \ \forall \alpha \in \Gamma_+, \ \forall \nu \in \Phi$$
  
(7)  $\widetilde{Q}(H_{\widetilde{\alpha}}) = \overline{\widetilde{Q}(H_{\alpha})} \ \forall \alpha.$ 

*proof:* we want that a Q given by b.theorem 1 satisfies  $\tilde{Q}(\overline{X}) = \overline{\tilde{Q}(X)} \quad \forall X \in \mathfrak{g}$ In particular for  $X = E_{\alpha}$  we obtain:

 $\widetilde{Q}(\overline{E_{\alpha}}) = a\lambda_{\alpha}(E_{\widetilde{\alpha}} + 2\sum_{\gamma > \widetilde{\alpha}} E_{\gamma}) \text{ and } \widetilde{Q}(E_{\alpha}) = a\lambda_{\alpha}E_{\widetilde{\alpha}} + 2a\sum_{\nu > \alpha}\lambda_{\nu}E_{\widetilde{\nu}}$ Assume that  $\tau^{k}(\widetilde{\alpha}) \in \Gamma_{+}$  for  $k = 1, \cdots, l - 1$  and  $\tau^{l}(\widetilde{\alpha}) \notin \Gamma_{+}$ ; and that  $\tau^{i}(\alpha) \in \Gamma_{+}$  for  $i = 1, \cdots, j - 1$  and  $\tau^{j}(\alpha) \notin \Gamma_{+}$ .

Then the previous equality reads:

$$(*) \quad a\lambda_{\alpha}E_{\widetilde{\alpha}} + 2a\lambda_{\alpha}E_{\tau(\widetilde{\alpha})} + \dots + 2a\lambda_{\alpha}E_{\tau^{l}(\widetilde{\alpha})} = a\lambda_{\alpha}E_{\widetilde{\alpha}} + 2a\lambda_{\tau(\alpha)}E_{\widetilde{\tau(\alpha)}} + \dots + 2a\lambda_{\tau^{j}(\alpha)}E_{\widetilde{\tau^{l}(\alpha)}}$$

We must have j=1 this is 3.

We apply a recursive process to get 4 and 5.

 $1^{st} case : for l=1$ 

If  $\alpha \in \Gamma_+$  and  $\tau(\alpha) \notin \Gamma_+$ , then by 3 we have  $\tilde{\alpha} \in \Gamma_+$  and  $\tau(\tilde{\alpha}) \notin \Gamma_+$ 

So (\*) gives:  $\lambda_{\alpha} E_{\tau(\widetilde{\alpha})} = \lambda_{\tau(\alpha)} E_{\widetilde{\tau(\alpha)}}$ .

<u>2<sup>nd</sup> case</u>: Assume that  $(\forall \alpha \in \Gamma_+ \text{ such that } \tau^k(\alpha) \in \Gamma_+ \text{ for } k = 1, \cdots, l' - 1 \text{ and}$  $\tau^{l'}(\alpha) \notin \Gamma_+ \text{ we have: } \lambda_\alpha = \lambda_{\tau(\alpha)} \text{ and } \tau(\widetilde{\alpha}) = \widetilde{\tau(\alpha)} ) \text{ for all } l' \leq l$ We write (\*) for l+1:  $\lambda_\alpha E_{\tau(\widetilde{\alpha})} + \cdots + \lambda_\alpha E_{\tau^{l+1}(\widetilde{\alpha})} = \lambda_{\tau(\alpha)} E_{\widetilde{\tau(\alpha)}} + \cdots + \lambda_{\tau^{l+1}(\alpha)} E_{\tau^{l+1}(\alpha)}$ We successively apply the recursive hypothesis to  $\tau^l(\alpha)$  for l' = 1; to  $\tau^{l-1}(\alpha)$  for

l' = 2; to  $\tau^{l-2}(\alpha)$  for l' = 3; ...; to  $\tau(\alpha)$  for l' = l, this gives 4 and 5.

### 4 Case of a complex structure.

Aim: We show that there exist solutions of the modified Yang-Baxter equation when  $\mathfrak{g}_0$  is a simple real Lie algebra such that  $\mathfrak{g}_0^{\mathbb{C}}$  is not simple, which are not preserving the ideals in  $\mathfrak{g}_0^{\mathbb{C}}$ .

We see  $\mathfrak{g}_0^{\mathbb{C}}$  as  $\mathfrak{g}_0 + i\mathfrak{g}_0$ , the conjugation is given by  $\overline{(X,Y)} = (X,-Y)$ Here  $\mathfrak{g}_0^{\mathbb{C}} = I_1 \oplus I_2$  where  $I_1$  and  $I_2$  are two simple ideals of  $\mathfrak{g}_0^{\mathbb{C}}$ . Let J be a complex structure on  $\mathfrak{g}_0$ , extended  $\mathbb{C}$ -linearly to  $\mathfrak{g}_0^{\mathbb{C}}$  it is given by  $J = iId_{|I_1} - iId_{|I_2}$ . Hence  $I_1 = \{(X, -JX) \mid X \in \mathfrak{g}_0\}$  and  $I_2 = \{(X, JX) \mid X \in \mathfrak{g}_0\}$ .

Let  $M : \mathfrak{g}_0 \to \mathfrak{g}_0$  satisfying  $M \circ adX = adX \circ M \ \forall X \in \mathfrak{g}_0$ ; if we still denote by M its  $\mathbb{C}$ -linear extension to  $\mathfrak{g}_0^{\mathbb{C}}$ , we have M = uId + vJ.

Hence when we restricted M to  $\mathfrak{g}_0$ , the most general modified Yang Baxter's equation on  $\mathfrak{g}_0$  is:

(6) 
$$\begin{cases} \beta(\tilde{Q}X,Y) &= -\beta(X,\tilde{Q}Y)\\ [\tilde{Q}X,\tilde{Q}Y] & -\tilde{Q}[\tilde{Q}X,Y] - \tilde{Q}[X,\tilde{Q}Y] = (uId+vJ)[X,Y]\\ & \text{with } u^2 + v^2 \neq 0 \end{cases}$$

We still denote by  $\tilde{Q}$  the  $\mathbb{C}$ -linear extension of  $\tilde{Q}$  to  $\mathfrak{g}_0^{\mathbb{C}}$ . We extend (6)  $\mathbb{C}$ -linearly to  $\mathfrak{g}_0^{\mathbb{C}}$ , we obtain the same equation but for  $X, Y \in \mathfrak{g}_0^{\mathbb{C}}$ .

On  ${\mathfrak{g}_0}^{\mathbb{C}}$  we can see  $\widetilde{Q}$  as

$$\widetilde{Q} = \begin{pmatrix} \widetilde{Q_1} & \widetilde{Q_{12}} \\ \\ \\ \widetilde{Q_{21}} & \widetilde{Q_2} \end{pmatrix}$$

where  $\widetilde{Q}_1: I_1 \to I_1, \widetilde{Q}_2: I_2 \to I_2, \widetilde{Q}_{12}: I_2 \to I_1, \widetilde{Q}_{21}: I_1 \to I_2$  are linear maps. **Remark 1.**  $\widetilde{Q}(\overline{X}) = \overline{\widetilde{Q}(X)}$ , so  $\widetilde{Q}_2(X) = \overline{\widetilde{Q}_1(\overline{X})}$  and  $\widetilde{Q}_{12}(X) = \overline{\widetilde{Q}_{21}(\overline{X})}$ We obtain the following equations:

(7)

$$[\widetilde{Q}_1X,\widetilde{Q}_1Y] - \widetilde{Q}_1[\widetilde{Q}_1X,Y] - \widetilde{Q}_1[X,\widetilde{Q}_1Y] = (u+iv)[X,Y] \;\forall X,Y \in I_1 \quad (a)$$

$$[\widetilde{Q_{21}}X,\widetilde{Q_{21}}Y] - \widetilde{Q_{21}}[\widetilde{Q_1}X,Y] - \widetilde{Q_{21}}[X,\widetilde{Q_1}Y] = 0 \ \forall X,Y \in I_1$$
(b)

$$[\widetilde{Q}_1 X, \widetilde{Q}_{12} Y] - \widetilde{Q}_{12} [\widetilde{Q}_{21} X, Y] - \widetilde{Q}_1 [X, \widetilde{Q}_{12} Y] = 0 \ \forall X \in I_1, \ \forall Y \in I_2$$
(c)

Our study of those equations is not an exhaustive one.

•  $\underline{1^{st} \ case}$ : Suppose  $\widetilde{Q_{12}} = \widetilde{Q_{21}} = 0$ We then have to solve the following problem:

(8) 
$$\begin{cases} \beta(\tilde{Q}X,Y) &= -\beta(X,\tilde{Q}Y)\\ [\tilde{Q}X,\tilde{Q}Y] &- \tilde{Q}[\tilde{Q}X,Y] - \tilde{Q}[X,\tilde{Q}Y] = \lambda[X,Y] \; \forall X,Y \in \mathfrak{g} \end{cases}$$

Where  $\mathfrak{g}$  is a complex semisimple Lie algebra and  $\lambda \in \mathbb{C}$ .

**Proposition 1.** In the case where  $\widetilde{Q_{12}} = \widetilde{Q_{21}} = 0$  there exist solutions  $\widetilde{Q}$  of (6) which are given by 3.A.b.theorem 1 with  $\lambda \in \mathbb{C}$ 

Bialgebra structures on a real semisimple Lie algebra.

•  $\underline{2^{nd} \ case}$ : Suppose  $\widetilde{Q}_1 = \widetilde{Q}_2 = 0$ .

**Proposition 2.** There is no solution for (6) when  $\widetilde{Q}_1 = \widetilde{Q}_2 = 0$ .

Indeed for  $X, Y \in I_1$  we obtain from (a): (u + iv)[X, Y] = 0. This is impossible as  $u + iv \neq 0$ 

•  $\underline{3^{rd} \ case}$  :

**Remark 2.** For any  $\widetilde{Q}_1$  solution of (a),  $\widetilde{Q}_{21} \equiv 0$  is a trivial solution of (b) and (c).

From 3.A.b.theorem 1, we know that for a Cartan subalgebra  $\mathfrak{h}_1$  of  $I_1$ , a system of positive roots  $\Delta^+$  of  $(I_1, \mathfrak{h}_1)$  and if we note  $\mathfrak{n}_{1\pm} = \sum_{\alpha \in \Delta^+} (I_1)^{\pm \alpha}$ , a solution of (a) is given by:

(9) 
$$\widetilde{Q}_{1}(X) = \begin{cases} aX \text{ if } X \in \mathfrak{n}_{1+} \\ 0 \text{ if } X \in \mathfrak{h}_{1} \\ -aX \text{ if } X \in \mathfrak{n}_{1-} \text{ where } a \text{ satisfies } a^{2} = u + iv \end{cases}$$

**Proposition 3.** For  $\widetilde{Q_1}$  given by (9), a solution  $\widetilde{Q_{21}}$  of (b) and (c) is given by:

(10) 
$$\widetilde{Q_{21}}(X) = \begin{cases} a\overline{X} & \text{if } X \in \mathfrak{h}_1 \\ 0 & \text{else} \end{cases}$$

proof: we only have to check (b) and (c) for this  $\widetilde{Q_{21}}$ ; writing for  $X \in I_1$ ,  $X = X_+ + X_0 + X_-$  where  $X_+ \in \mathfrak{n}_{1+}$ ,  $X_0 \in \mathfrak{h}_1$ ,  $X_- \in \mathfrak{n}_{1-}$ , this is an immediate result.

#### Aknowledgements.

I would like to thank Simone Gutt for all her suggestions which have permitted this work to be done.

## References

- M. CAHEN, S. GUTT & J. RAWNSLEY, Some remarks on the classification of Poisson Lie groups, Proceedings of the 1993 Tanigushi symposition on symplectic geometry, Contemporary Mathematics A.M.S. (under press).
- [2] A. BELAVIN & V. DRINFELD, The triangle equations and simple Lie algebras, Preprint of Inst. Theor. Phys 18 (1982).
- [3] V. DRINFELD, Quantum groups, Proc. ICM 1986, AMS 1 (1987), 789-820.
- [4] V. DRINFELD, Quasi-Hopf algebra, Leningrad Math. J. 1 (1990), 1419-1457.
- [5] S. HELGASON, Differential goemetry, Lie groups and symmetric spaces, Academic Press, 1978.

Véronique CHLOUP DÉPARTEMENT DE MATHÉMATIQUES, UNIVERSITÉ DE METZ, ILE DU SAULCY, F-57045 METZ CEDEX, FRANCE *E-mail address:* chloup@poncelet.univ-metz.fr