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Abstract. This expository note aims at illustrating weak conver-
gence of probability measures from a broader view than a previously
published paper. Though the results are standard for functional ana-
lysts, this approach is rarely known by statisticians and our presenta-
tion gives an alternative view to most standard probability textbooks.
In particular, this functional approach clarifies the underlying topo-
logical structure of weak convergence. We hope this short note is
helpful for those who are interested in weak convergence as well as
instructors of measure theoretic probability.

1. Introduction

Weak convergence of probability measures is often defined as follows [2, 4].

Definition 1.1. Let X be a metrizable space. A sequence {Pn} of proba-

bility measures on X is said to converge weakly to a probability measure

P if

lim
n→∞

∫

X

f(x)dPn(dx) =

∫

X

f(x)P (dx)

for every bounded continuous function f on X.

It is natural to ask the following questions:

1. Why the type of convergence defined in Definition 1.1 is called
“weak convergence”?

2. How weak it is?
3. Is there any connection between weak convergence of probability

measures and weak convergence in functional analysis?
4. Why we do not use a metric to describe it?

Answers to these questions are not obvious from Definition 1.1. Varadara-
jan [5] gives answers to Questions 3 and 4 under the assumption that X is
either compact or separable. In addition, Varadarajan [5] derives several
important properties of the space of probability measures.
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Theorem 1.2. [5] Suppose X is a metrizable space and P(X) is the space

of probability measures on X. Then the following statements hold.

(1) X is separable if and only if P(X) is separable.

(2) X is compact if and only if P(X) is compact.

(3) X is Polish if and only if P(X) is Polish.

Remark. To be precise, the topology on P(X) is the weak* topology
σ(P(X), Cb(X)). We shall define this in Section 2.

In the next section, we answer Questions 1-4 using the theory of topo-
logical vector spaces. This approach has certain advantages: (1) it clearly
illustrates the underlying topological structure of weak convergence; (2) it
may lead to simple and clean proofs; (3) it allows one to work under min-
imal hypotheses. As a result, our framework is more general than that of
Varadarajan [5] since we only require X to be a metrizable space, that is,
X need not be compact or separable.

2. Weak Convergence of Probability Measures: a

Topological Vector Space Point of View

Varadarajan [5] explains weak convergence of probability measures from
the Banach space point of view. In this section, we attempt to illustrate
weak convergence from the topological vector space point of view. Since
a topological vector space need not be a normed space, our setup is more
general than that of Varadarajan [5]. In particular, we do not assume that
X is compact or separable. We will mainly follow Aliprantis and Border
[1] and Bourbaki [3]. At this point, we recommend that readers consult
Chapter II, pp. 40-43 of Bourbaki [3] before proceeding further. Unless
otherwise stated, X denotes a metrizable space, BX denotes the Borel σ-
algebra on X , Ψ(X) denotes the space of all finite signed measures on
(X,BX), P(X) denotes the space of all probability measures on (X,BX),
Cb(X) denotes the space of all bounded continuous functions on X , and
Cu(X) denotes the space of all bounded d-uniformly continuous functions
on X , where d is a compatible metric. Define a map from (Cb(X),Ψ(X))
to R by

(f, µ) 7→ 〈f, µ〉 ≡

∫

X

fdµ.

It is evident that the above map is linear in each variable separately, i.e.,
it is a bilinear form. Moreover, the following theorem shows that the space
Cu(X) and Ψ(X) each separate points of the other. Since each bounded
continuous function on X can be approximated pointwisely by a sequence
of bounded d-Lipschitz continuous functions [1, Corollary 3.15], Cb(X) and
Ψ(X) each separate points of the other.
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Theorem 2.1. [5] For any two finite signed measures µ1 and µ2 on a

metrizable space X, the following two conditions are equivalent:

(1) µ1 = µ2.

(2)
∫

X
fdµ1 =

∫

X
fdµ2 for every f ∈ Cu(X).

Therefore, (Cb(X),Ψ(X)) is a dual pair and f 7→ 〈f, µ〉 =
∫

X
fdµ defines

a functional from Ψ(X) to R [3, Chapter II, pp. 40–41]. Hence, we may
identify Ψ(X) as a subspace of RCb(X) (equipped with the product topol-
ogy) and obtain a Hausforff locally convex topology on Ψ(X) [3, Proposition
2, Chapter II, p. 43], that is, the weak* topology σ(Ψ(X), Cb(X)). Since
P(X) ⊂ Ψ(X), the weak* topology σ(Ψ(X), Cb(X)) induces a topology
on P(X). This induced topology is often denoted by σ(P(X), Cb(X)). In
the literature of probability and statistics, σ(P(X), Cb(X)) is often called
the weak topology or topology of convergence in distribution; but
precisely it is the induced weak* topology. From Chapter II, p. 42 of [3],
we know that a neighborhood base at Q ∈ P(x) is given by all sets of the
form

{

P ∈ P(X) :

∣

∣

∣

∣

∫

fkdP −

∫

fkdQ

∣

∣

∣

∣

≤ ε, k = 1, 2, . . . , n

}

, (2.1)

where n is a positive integer, f1, . . . , fn ∈ Cb(X), and ε > 0. From now on,
P(X) will always be equipped with this topology unless stated otherwise.
Indeed, we have given answers to Questions 1 and 3 in Section 1. Definition
2 on Chapter II, p. 42 of [3] implies the answer to Question 2: weak
convergence of probability measures corresponds to the weakest topology
on P(X) that makes all the maps f 7→

∫

fdP, P ∈ P(X) continuous. Next,
we answer Question 4.

In general, a topological vector space need not be metrizable. For a topo-
logical vector space, the metrizability condition is given by the following
theorem [3, Chapter II, p. 16].

Theorem 2.2. A Hausdorff topological vector space is metrizable if and

only if it has a countable neighborhood base at zero.

This theorem might be a little bit too general since we have noticed
that the induced weak* topology σ(P(X), Cb(X)) is Hausdorff and locally
convex. Indeed, the metrizability of a Hausdorff locally convex space can
also be characterized [3, Corollary, Chapter II, p. 24].

Theorem 2.3. A Hausdorff locally convex space (X, T ) is metrizable if

and only if T is generated by a sequence {qn} of seminorms; in this case,

T is generated by the metric d given by

d(x, y) =

∞
∑

n=1

qn(x − y)

2n[1 + qn(x− y)]
.
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Clearly, the sufficient condition in Theorem 2.3 need not hold for the
weak* topology σ(P(X), Cb(X)). Therefore, in general we can only use
neighborhood bases or subbases to describe weak topology. This answers
Question 4 in Section 1.

Following the same argument in Section 2, the weak* topology

σ(Ψ(X), Cu(X))

is well-defined; it induces a relative topology on P(X), which is often de-
noted as σ(P(X), Cu(X)). Since Cu(X) is a proper subset of Cb(X) unless
X is compact, σ(Ψ(X), Cb(X)) is generally stronger than σ(Ψ(X), Cu(X))
[3, Corollary 3, Chapter II, p. 43]. Surprisingly, the following theorem [1,
Theorem 15.2] shows that they induce the same topology on P(X).

Theorem 2.4. Let X be a metrizable space and d be a compatible metric.

Then σ(P(X), Cb(X)) = σ(P(X), Cu(X)).

Finally, we remark that the σ(Ψ(X), Cb(X)) admits a uniformity D on
Ψ(X) since a topological vector space is a commutative topological group.
As a result, P(X) carries the corresponding relative uniformity U . It is
clear that the base for D consists of all the sets of the form

{(P1, P2) | P1 − P2 ∈ U},

where U is a neighborhood at zero in the space Ψ(X), ψ(Ψ(X), Cb(X)))
and that

σ(P(X), Cb(X))

is the topology on the uniform space (P(X),U). If {Pn} is a sequence in
P(X) and limn

∫

fdPn exists for every f ∈ Cb(X), then {Pn} is U-Cauchy.
However, there is no guarantee that {Pn} converges in σ(P(X), Cb(X))
even if P(X) is Polish; because different uniformities may generate the
same topology.
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