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A REPRESENTATION AND SOME PROPERTIES FOR

k-FIBONACCI SEQUENCES

Gwang-Yeon Lee, Jin-Soo Kim and Sang-Gu Lee*

Abstract. The k-Fibonacci sequence {g
(k)
n } is defined as:

g
(k)
1 = . . . = g

(k)
k−2 = 0, g

(k)
k−1 = g

(k)
k = 1

and for n > k ≥ 2,

g(k)n = g
(k)
n−1 + g

(k)
n−2 + · · ·+ g

(k)
n−k.

In this paper, we give a combinatorial representation of g
(k)
n and give some proper-

ties for k-Fibonacci sequence.

1. Introduction. The well-known Fibonacci sequence {Fn} is defined as:

F1 = F2 = 1 and, for n > 2, Fn = Fn−1 + Fn−2.

We call Fn the nth Fibonacci number. The Fibonacci sequence is

(F0 := 0), 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . . .

Now, we consider the generalization of the Fibonacci sequence, which is called

the k-Fibonacci sequence for the positive integer k ≥ 2. The k-Fibonacci sequence

{g
(k)
n } is defined as:

g
(k)
1 = · · · = g

(k)
k−2 = 0, g

(k)
k−1 = g

(k)
k = 1

and for n > k ≥ 2,

g(k)n = g
(k)
n−1 + g

(k)
n−2 + · · ·+ g

(k)
n−k.

We call g
(k)
n the nth k-Fibonacci number. For example, if k = 2, then {g

(2)
n }

is the Fibonacci sequence, {Fn}, and if k = 4, then g
(4)
1 = g

(4)
2 = 0, g

(4)
3 = g

(4)
4 = 1,

and then the 4-Fibonacci sequence is

0, 0, 1, 1, 2, 4, 8, 15, 29, 56, 108, 208, 401, 773, . . . .
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Let Ik−1 be the identity matrix of order k − 1 and let E be an 1 × (k − 1)

matrix whose entries are ones. For any k ≥ 2, the fundamental recurrence relation

g(k)n = g
(k)
n−1 + g

(k)
n−2 + · · ·+ g

(k)
n−k

can be defined by the vector recurrence relation











g
(k)
n+1

g
(k)
n+2

...
g
(k)
n+k











= Qk











g
(k)
n

g
(k)
n+1

...
g
(k)
n+k−1











(1.1)

where

Qk =

[

0 Ik−1

1 E

]

k×k

. (1.2)

The matrix Qk is said to be the k-Fibonacci matrix. By applying (1.1), we have
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


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g
(k)
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...
g
(k)
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







= Qn
k


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




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(k)
1

g
(k)
2
...

g
(k)
k











.

Let {g
(k)
n } be a k-Fibonacci sequence, and let

Gk = (g1, g2, g3, . . . ), gi = g
(k)
i+k−2, i = 1, 2, . . . ,

and if i ≤ 0, then gi = 0.

For example, if k = 2, then G2 = (1, 1, 2, 3, 5, 8, 13, . . . ). And if k = 4, then

G4 = (1, 1, 2, 4, 8, 15, 29, 56, 108, . . . ).

In [3], the author considered the completeness on {g
(k)
n } and gave a repre-

sentation for the recurrence relation g
(k)
n . In [4], the authors found a relationship

between the k-Fibonacci number g
(k)
n and the number of 1-factors of a bipartite
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graph, and in [5], the authors considered the eigenvalues of k-Fibonacci matrix Qk

and gave some interesting examples in combinatorics and probability with respect

to the k-Fibonacci sequences.

In this paper, we give a combinatorial representation of g
(k)
n and introduce

some properties for k-Fibonacci sequences.

2. Combinatorial representation of gn. In this section, we give a

representation for the nth k-Fibonacci number by using the generating function

Gk(x).

We can easily find the characteristic polynomial, xk − xk−1 − · · · − x − 1, of

the k-Fibonacci matrix Qk. It follows that all of the eigenvalues of Qk satisfy

xk = xk−1 + xk−2 + · · ·+ x+ 1.

And we can find the following fact in [5]:

xn = gn−k+2x
k−1 + (gn−k+1 + gn−k + · · ·+ gn−2k+3)x

k−2

+ (gn−k+1 + gn−k + · · ·+ gn−2k+4)x
k−3 (2.1)

+ · · ·+ (gn−k+1 + gn−k)x+ gn−k+1.

Let

Gk(x) = g1 + g2x+ g3x
2 + · · ·+ gn+1x

n + · · · .

Then

Gk(x) − xGk(x) − x2Gk(x) − · · · − xkGk(x) = (1 − x− x2 − · · · − xk)Gk(x).

Using equation (2.1), we have

(1 − x− x2 − · · · − xk)Gk(x) = g1 = 1.

Thus,

Gk(x) = (1− x− x2 − · · · − xk)−1

for 0 ≤ x+ x2 + · · ·+ xk < 1.

Let fk(x) = x+ x2 + · · ·+ xk. Then 0 ≤ fk(x) < 1 and we have the following

lemma.
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Lemma 2.1. For positive integers p and n, the coefficient of xn in (fk(x))
p is

p
∑

l=0

(−1)l
(

p

l

)(

n− kl − 1

n− kl − p

)

,
n

k
≤ p ≤ n.

Proof.

(fk(x))
p = (x+ x2 + · · ·+ xk)p

= xp(1 + x+ x2 + · · ·+ xk−1)p

= xp

(

1− xk

1− x

)p

= xp

(

(1− xk)

(

1

1− x

))p

= xp

((

p
∑

l=0

(

p

l

)

(−1)lxkl

)(

∞
∑

i=0

(

p+ i− 1

i

)

xi

))

.

In the above equation, we only consider the coefficient of xn. Since the first term on

the right is xp, kl+ i = n−p, that is, i = n−kl−p. If l = q for any q = 0, 1, . . . , p,

then the second term on the right is

(

(−1)q
(

p

q

)(

n− kq − 1

n− kq − p

))

xn−p.

So, the coefficient of xn is

p
∑

l=0

(−1)l
(

p

l

)(

n− kl − 1

n− kl − p

)

,
n

k
≤ p ≤ n.
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The proof is completed.

Now we have a combinatorial representation for gn.

Theorem 2.2. For positive integers p and n,

gn+1 =
∑

n

k
≤p≤n

p
∑

l=0

(−1)l
(

p

l

)(

n− kl − 1

n− kl − p

)

. (2.2)

Proof. Since

Gk(x) = g1 + g2x+ g3x
2 + · · ·+ gn+1x

n + · · ·

=
1

1− x− x2 − · · · − xk
,

the coefficient of xn is the n+ 1st Fibonacci number, gn+1 , in Gk. And,

Gk(x) =
1

1− x− x2 − · · · − xk

=
1

1− fk(x)

= 1 + fk(x) + (fk(x))
2 + · · ·+ (fk(x))

n + · · · (2.3)

= 1 + fk(x) + x2
2
∑

l=0

(

2

l

)

(−1)lxkl

∞
∑

i=0

(

i+ 1

i

)

xi+

· · ·+ xn

n
∑

l=0

(

n

l

)

(−1)lxkl

∞
∑

i=0

(

n+ i− 1

i

)

xi + · · · .



VOLUME 13, NUMBER 2, SPRING 2001 97

Since we consider the coefficient of xn, we only need the first n + 1 terms on the

right. The (p+ 1)st term in (2.3) is

xp

p
∑

l=0

(

p

l

)

(−1)lxkl

∞
∑

i=0

(

p+ i− 1

i

)

xi.

So, kl + i = n− p, and n
k
≤ p ≤ n. Hence, by Lemma 2.1, we have (2.2).

If k = 2, then

G2 = (1, 1, 2, 3, 5, 8, 13, 21, . . . )

is the Fibonacci sequence {Fn}. Since the generating function for {Fn} is G2(x) =
1

1−x−x2 , and hence,

G2(x) =
1

1− x(1 + x)

= 1 + x(1 + x) + x2(1 + x)2 + · · ·+ xn(1 + x)n + · · · .

If the first n + 1 terms on the right are examined in reverse order, it is seen that

the coefficient of xn in G2(x) is

1 +

(

n− 1

1

)

+

(

n− 2

2

)

+ · · · (2.4)

as asserted. So, we have the following corollary.

Corollary 2.3. Let Fn+1 be the (n+ 1)st Fibonacci number. Then

Fn+1 =
∑

i=0

(

n− i

i

)

=
∑

n

2
≤p≤n

p
∑

l=0

(−1)l
(

p

l

)(

n− 2l − 1

n− 2l − p

)

.
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Proof. By (2.2) and (2.4), the proof is completed.

3. Properties of k-Fibonacci Sequences. In this section, we give some

properties for k-Fibonacci sequences. First, we have the following theorem by using

vector recurrence relation (1.1).

Theorem 3.1 [3]. For positive integers n and m,

gn+m = gngm−(k−1) + (gn + gn−1)gm−(k−2)+

(gn + gn−1 + gn−2)gm−(k−3) + · · ·

+ (gn + gn−1 + gn−2 + · · ·+ gn−(k−2))gm−1 + gn+1gm.

Proof. For Gk, k ≥ 2, since g1 = g2 = 1, we can replace the matrix Qk in (2.2)

with

Qk =













0 g1 0 · · · 0
0 0 g1 · · · 0
...

...
. . .

...
0 0 g1
g1 g1 · · · g1 g2













.

Then

Qn
k =

















gn−(k−1) g
†
1,2 g

†
1,3 · · · g

†
1,k−1 gn−(k−2)

gn−(k−2) g
†
2,2 g

†
2,3 · · · g

†
2,k−1 gn−(k−3)

...
...

... · · ·
...

...
gn−1 g

†
k−1,2 g

†
k−1,3 · · · g

†
k−1,k−1 gn

gn g
†
k,2 g

†
k,3 · · · g

†
k,k−1 gn+1

















,

where

g
†
i,2 = gn−(k−i) + gn−(k−(i−1)),

g
†
i,3 = gn−(k−i) + gn−(k−(i−1)) + gn−(k−(i−2)),

...

g
†
i,k−1 = gn−(k−i) + gn−(k−(i−1)) + gn−(k−(i−2)) + · · ·+ gn−(k−(i−(k−2))).
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Since Qn
kQ

m
k = Qn+m

k , gn+m = (Qn+m
k )k,1.

Therefore,

gn+m = gngm−(k−1) + g
†
k,2gm−(k−2) + g

†
k,3gm−(k−3) + · · ·

+ g
†
k,k−1gm−1 + gn+1gm

= gngm−(k−1) + (gn + gn−1)gm−(k−2) + (gn + gn−1 + gn−2)gm−(k−3) + · · ·

+ (gn + gn−1 + gn−2 + · · ·+ gn−(k−2))gm−1 + gn+1gm.

We also have another representation of the nth k-Fibonacci number for positive

integers n and m.

Corollary 3.2. For positive integers n and m,

gn+m = gn−1gm−(k−2) + (gn−1 + gn−2)gm−(k−3)+

(gn−1 + gn−2 + gn−3)gm−(k−4) + · · ·

+ (gn−1 + gn−2 + gn−3 + · · ·+ gn−(k−1))gm + gngm+1.

Proof. Since gn+m = (Qn+m
k )k,1 = (Qn+m

k )k−1,k, the proof is completed.

For example, for n > k,

g2n = g2n−1 + g2n−2 + · · ·+ g2n−k

= gn+n

= gn−1gn−(k−2) + (gn−1 + gn−2)gn−(k−3) + · · ·

+ (gn−1 + gn−2 + · · ·+ gn−(k−1))gn + gngn+1.

So, we can get g2n by using gn+1, gn, . . . , gn−k+2.

The above fact raises a question [1, 2]. What is the relationship between gn

and gnt for a positive integer t. In particular, is there a t such that gn is a factor of

gnt? In the Fibonacci numbers, Fn|Ftn for all t = 1, 2, 3, . . . . However, this is not

true, in general, for k-Fibonacci numbers, k ≥ 3.

Lemma 3.3. For any positive integer n, the k-Fibonacci numbers gnk+n−k and

gnk+n−k+1 are odd numbers.
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Proof. If n = 1, then g1 = g2 = 1, i.e., g1 and g2 are odd numbers. By

induction on n, we may assume true for n, and consider n+ 1.

First,

g(n+1)k+(n+1)−k = gnk+n+1

= gnk+n + gnk+n−1 + · · ·+ gnk+n−k+2 + gnk+n−k+1

= gnk+n−1 + gnk+n−2 + · · ·+ gnk+n−k+1 + gnk+n−k

+ (gnk+n−1 + gnk+n−2 + · · ·+ gnk+n−k+2 + gnk+n−k+1)

= 2(gnk+n−1 + gnk+n−2 + · · ·+ gnk+n−k+1) + gnk+n−k.

Then g(n+1)k+(n+1)−k is an odd number since gnk+n−k is an odd number by hy-

pothesis. Similarly, g(n+1)k+(n+1)−k+1 is also an odd number.

Therefore, for any positive integer n, the k-Fibonacci numbers gnk+n−k and

gnk+n−k+1 are odd numbers.

Since g
(k)
n = gn−k+2, our question can be replaced from “Is there any t such

that g
(k)
n |g

(k)
nt for some n?” to “Is there any t such that gn−k+2|gnt−k+2 for some

n?”

Theorem 3.4. For k ≥ 3, there exists t such that gn−k+2 6 |gnt−k+2 for some n.

Proof. If k = 3, then

G3 = (1, 1, 2, 4, 7, 13, 24, 44, 81, 147, . . . ).

Here, g4 = 4, g9 = 81 and hence, g4 6 |g9. In this case, n = 5 and k = 3.

Now, suppose that k ≥ 4. Then, for any positive integer n, the gnk+n−k and

gnk+n−k+1 are odd numbers. Let n = k + 2, t = k and let m = n+ 1. Then

mt− k + 2 = (n+ 1)k − k + 2 =

(

n+
n− 2

k

)

k − k + 2 = nk + n− k.

So, gmt−k+2 is an odd number. Since n = k+2, k ≥ 4 and Gk = (1, 1, 2, 4, 8, . . . ),

gm−k+2 = gn+1−k+2 = g5.
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Since k ≥ 4, in any cases, g5 = 8. Since gm−k+2 is an even number and gmk−k+2 is

an odd number, there exists t such that gn−k+2 6 |gnt−k+2 for some n.

Now we have another question for any positive integers m and n. The question

is “how many k-Fibonacci numbers are there between nm and nm+1?”

Lemma 3.5. For positive integers n and r,

ngr ≤ gr+n. (2.3)

Proof. If n = 1, then gr ≤ gr+1. By induction on n, we may assume true for

n, and consider n+ 1. That is,

ngr ≤ gr+n ⇒ ngr + gr ≤ gr+n + gr

⇒ (n+ 1)gr ≤ gr+n−1 + gr+n−2 + · · ·+ gr+n−k + gr

= gr+n + (gr+n−1 + · · ·+ gr+n−(k−1) + gr+n−k + gr)− gr+n

= gr+n+1 + gr+n−k + gr − gr+n.

Since gr+n = gr+n−1+gr+n−2+ · · ·+gr+n−k and n ≥ 1, gr+n−k+gr ≤ gr+n. Thus,

(n+ 1)gr ≤ gr+n+1.

Therefore, ngr ≤ gr+n for any positive integers n, r.

Theorem 3.6. Let m and n be any two positive integers. Then there are no

more than n k-Fibonacci numbers between the consecutive powers nm and nm+1.

Proof. Suppose that the interval between some nm and nm+1 were to contain

at least n+ 1 k-Fibonacci numbers:

nm < gr+1, gr+2, . . . , gr+n+1, . . . < nm+1.

Since nm < gr+1, n · nm < ngr+1. So, by (2.3),

nm+1 < ngr+1 ≤ gr+n+1.

Consequently, nm+1 < gr+n+1, a contradiction.

One of the most well-known properties of the Fibonacci sequence is the formula

for the sum S
(2)
n of the first n terms. A glance at the first few cases quickly leads

to the conjecture

S(2)
n = F1 + F2 + · · ·+ Fn = Fn+2 − 1,
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which is immediately confirmed by mathematical induction. In case k ≥ 3, we can

easily verify that

S(k)
n =

1

k − 1

(

g
(k)
n+2 − g

(k)
n+(k−2) − 2g

(k)
n+(k−3) − · · · − (k − 2)g

(k)
n+1 − 1

)

.
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