
A RELATIONSHIP BETWEEN THE METROPOLIS ALGORITHM

AND THE TWO-MEMBERED EVOLUTION STRATEGY

L. Vincent Edmondson

Central Missouri State University

1. Introduction. A significant amount of research has been done during the past two
decades in the area of nature-inspired heuristic algorithms. These algorithms are designed
to be robust problem-solving techniques which are typically applied to difficult optimiza-
tion problems (such as those found in the class of problems labeled NP- complete). The
two most common “natural” heuristic algorithms are simulated annealing and genetic al-
gorithms. This paper briefly reviews the mechanics of the algorithms and then establishes
a relationship between the Metropolis algorithm [1] from simulated annealing and a special
form of a genetic algorithm known as the two-membered evolution strategy.

2. Simulated Annealing and the Metropolis Algorithm. Simulated annealing is
modeled after the actual annealing process in condensed matter physics. In brief, annealing
is the process in which the temperature of a solid in a heat bath is increased to a point at
which the particles of the solid move freely with respect to one another, followed by a slow
cooling of the heat bath. If the cooling is slow enough, then the particles line themselves
up and reach a state with minimum energy.

If a system is in thermal equilibrium at a given temperature T , then its energy is
probabilistically distributed among all different energy states E according to the Boltzmann
probability distribution

Prob(E) ∼ exp

(

−E

kT

)

,

where k is the Boltzmann constant. This means that, for any temperature T , there is a
nonzero probability that the current local minimum is not the global minimum. The net
effect of this is that the system can perform hillclimbing in an attempt to move from a local
minimum to a better (possibly global) minimum [2,3].

The following pseudo-code form of the Metropolis algorithm incorporates the afore-
mentioned hillclimbing strategy.
1. Generate a solution x1 to the minimization problem and evaluate the objective function

at x1 to obtain E1. (“Solution” simply means a valid answer to the problem and it
does not imply optimality.)
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2. Randomly perturb x1 to obtain x2 and evaluate the objective function at x2 to obtain
E2.

3. Calculate the probability p that x2 will become the incumbent solution.

p = exp

[

−(E2 − E1)

kT

]

If p > 1, then p← 1.
4. Determine if x2 will become the incumbent solution. Assume that random [0, 1) gen-

erates a uniformly-distributed random number in the range [0, 1).
If p > random [0, 1) then x1 ← x2 and E1 ← E2.

5. Determine if the algorithm should stop.
If (termination criterion is not met) then goto step 2
else stop with “optimal” solution x1.
Examination of step 4 shows that the solution x2 will always replace x1 (and, hence,

become the incumbent solution) whenever E2 ≤ E1. This indicates that the solution at
x2 is better than the solution at x1. There is also a chance that x2 will replace x1 as the
incumbent solution when E2 > E1 (this is known as “hillclimbing”).

Some possible termination criteria are having reached a maximum number of iterations
or having successfully replaced the incumbent solution a maximum number of times. Clearly,
these maximum numbers must be determined prior to the start of the algorithm.

For any particular invocation of the Metropolis algorithm, the temperature T maintains
a constant value. The simulated annealing algorithm is a series of Metropolis algorithms
with different (decreasing) values of T .

It is important to note, for the purposes of this paper, that the Metropolis algorithm
always keeps a single solution as the incumbent. The perturbed solution will always unseat
the incumbent if it is better, and it will sometimes unseat the incumbent if it is worse (this
is hillclimbing).

3. Genetic Algorithms and the Two-Membered Evolution Strategy. Genetic
algorithms are randomized, population-based search procedures which utilize the Darwinian
notion of “survival of the fittest.” These algorithms were independently developed by
Holland [4] at the University of Michigan and by Rechenberg and Schwefel [5] in Germany.
The German versions are known as evolution strategies [ESs] and will be the focus of this
section.

The general process of the two-membered ES, denoted (1+1)-ES, is to start with the
single population member, mutate it (change it in some fashion prescribed by the mutation
operator) to create a single offspring, and then select the better of the two to become
the parent for the next generation. The “betterness” quality of an individual arises from
the objective function evaluation. If the objective function is to be minimized, then the
individual with the smallest function value becomes the parent.
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Schwefel [6] describes the (1+1)-ES algorithm with the following 8-tuple:

(1 + 1)− ES = (P 0,m, s, cd, ci, f, g, t)

where

P 0 = (x0, σ0) ∈ I population, I = R
n × R

n

m : I → I mutation operator
s : I × I → I selection operator
cd, ci ∈ R step-size control
f : R

n → R objective function
g : R

n → R constraint functions
t : I × I → {0, 1} termination criterion

At any given time/generation r, P r represents the parent and m(P r) is the child
(mutated parent). Although the mutation operator can be generalized, it was originally
defined in such a way that x′r (the child) was the addition of the n-element vector xr (the
parent) and an n-element vector of independent, normally-distributed random numbers
with zero mean and standard deviation σr. Assuming a minimization problem, the parent
in generation r+1 would be the same as in generation r unless f(x′r) ≤ f(xr). The step-size
controls were used to modify σr so that a successful mutation occurred approximately one-
fifth of the time. The termination criterion could be defined in numerous ways, including
the use of a maximum number of generations or a maximum CPU time.

Again, for the purposes of this paper, it is important to note that in the (1+1)-ES
algorithm a single solution is maintained as the incumbent. This incumbent is perturbed
each generation and then a selection operator chooses the incumbent for the next generation.

4. Relationship Between the Metropolis Algorithm and (1+1)-ES. The fol-
lowing theorem establishes a relationship between the Metropolis algorithm and the (1+1)-
ES algorithm.

Theorem. The Metropolis algorithm is a special case of the two-membered evolution
strategy.

Proof. To prove this theorem, it is sufficient to show that the Metropolis algorithm
can be defined with the same 8-tuple used for the (1+1)-ES algorithm.

Metropolis algorithm = (P 0,m, s, cd, ci, f, g, t).

P 0 represents the initial solution. In general, the value of σr is arbitrary (unless the
mutation operator requires a standard deviation).

The Metropolis algorithm does not specify a particular perturbation method. There-
fore, the mutation operator m can be defined in whatever manner is consistent with the
perturbation method required by the specific instantiation of the Metropolis algorithm un-
der consideration.
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The selection operator s must be defined so that

P r+1 =

{

x′r if exp
[

−(f(x′r)−f(xr))
kT

]

> random [0, 1)

xr otherwise.

The values of cd and ci are arbitrary (unless σr needs to be modified so that the
mutation success rate can be held approximately constant).

The choice of algorithm will have no impact on the objective function f or the constraint
functions g. It is assumed that the mutation operator will generate perturbations that
satisfy all constraint functions.

The Metropolis algorithm does not specify a particular termination criterion. There-
fore, t can be defined in whatever manner is consistent with the termination criterion
required by the specific instantiation of the Metropolis algorithm under consideration.

Remark. This theorem shows that, at a fundamental algorithmic level, the annealing
process is a simplistic form of evolution.

5. Example. Here is a simple example using the Metropolis algorithm. Suppose that
the following distance matrix is given for the traveling salesperson problem.

city A B C D E
A − 5 9 2 12
B 5 − 6 11 4
C 9 6 − 7 9
D 2 11 7 − 11
E 12 4 9 11 −

Suppose that x1 is the tour A-B-C-D-E. The associated objective function E1 is 5 +
6 + 7 + 11 + 12 = 41. Now suppose that x1 is perturbed by inverting the order of the
second through fourth cities in the tour, yielding x2 = A-D-C-B-E. The associated objective
function E2 is 2+7+6+4+12 = 31. Without loss of generality, assume that the Boltzmann
parameters k and T are 1 and 0.99, respectively. Using step 3, p ≈ 24368. Since the
calculated value for p is greater than 1, it is reset to 1. Therefore, in step 4, x2 becomes
the incumbent solution.

Suppose that the next iteration perturbs the incumbent solution by inverting the order
of the first and second cities, giving a tour of D-A-C-B-E with an objective function value
of 32. Since E2 > E1, step 3 will yield a p value that is less than unity. Therefore, x2 will
replace x1 as the incumbent solution only if p is greater than the random number generated
in step 4. This process, known as hillclimbing, is used to allow the algorithm to escape from
(possibly non-global) local minima.
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The algorithm will terminate after either a predetermined number of iterations has been
reached or after a predetermined number of successful reconfigurations has been reached.

Section 4 of this paper established that the (1+1)-ES is equivalent to the Metropolis
algorithm when the parameters are chosen appropriately. Based on this equivalence, the
(1+1)-ES would yield the same sequence of x-iterates as the Metropolis algorithm. There-
fore, it is not necessary to repeat the example for the (1+1)-ES.

6. Conclusion. Randomized search techniques (including simulated annealing and
genetic algorithms) have been applied to a wide variety of problems. Goldberg [7] lists
genetic algorithm application problems from diverse disciplines such as biology, computer
science, engineering, and social science. Aarts and van Laarhoven give a similar list for
simulated annealing in [2].

A characteristic of many of these problems is that they are NP-complete. Although
neither simulated annealing nor genetic algorithms can guarantee that an optimal solution
to a problem will be found (especially for an NP-complete problem), they have been shown
to be robust techniques that generally locate a near-optimal solution.
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