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Let (X,T ) be a topological space. Following Hewitt [3], if T ′

is a topology on X such that T ⊂ T ′ we call (X,T ′) an expansion

of (X,T ). Several other authors [1, 2, 3, 4, 6, 7, 8] have subse-

quently studied the preservation of topological properties under

expansions. In this note we consider the preservation of Baire

spaces under expansions. A Baire space is a topological space in

which every nonempty open set is of second category. Equivalently,

a space is Baire if and only if none of its nonempty open sets is

the union of countably many nowhere dense sets; this is true if

and only if the intersection of every sequence of dense open sets is

dense.

We show that an expansion of a Baire space need not be Baire,

and that the supremum of a collection of Baire topologies need not

be a Baire topology. We give some sufficient conditions under

which an expansion of a Baire space is Baire. It would be interest-
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ing to have necessary conditions under which stronger topologies

are Baire when the original topology is Baire.

We refer the reader to [5] for definitions of the basic topological

notions used herein. In the sequel, we use the symbol Ac to denote

the complement of a set A. We begin with an example.

Example 1. The topological expansion of a dense-in-itself

Baire space to a dense-in-itself space need not be Baire.

Construction. Let (X,T1) be a dense-in-itself Baire space with

a first category dense subset A, e.g., let X = [0, 1] with the usual

topology, and let A be the subspace of rational numbers in [0, 1].

Let T2 be the topology generated by T1 ∪ {A}. Each member of

T2 is of the form (A ∩G1)∪G2 for some G1, G2 ∈ T1. Since A is

of the first category in (X,T1),

A =
∞
⋃

n=1

Cn

where each Cn is nowhere dense. Consider a fixed Cn. To see

that Cn is nowhere dense in (X,T2), it suffices to observe that if

(A ∩G1) ∪G2 is a T2-open set with A ∩ G1 6= ∅, there exists a

nonempty T1-open subset G3 of G1 such that G3 ∩ Cn = ∅. It

follows that the T2-open set A is of the first category in (X,T2).
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Hence, (X,T2) is not Baire. That (X,T2) is dense-in-itself is evi-

dent.

We now give some sufficient conditions for expansions of Baire

topologies to be Baire.

Proposition 1. Suppose (X,T1) is a space, A ⊂ X , and T2 is

the topology on X generated by T1 ∪ {A,Ac}. Then each nowhere

dense subset of (X,T2) is also nowhere dense in (X,T1). Thus if

(X,T1) is a Baire space, if A is second category in each T1-open

set which it meets, and if Ac is second category in each T1-open

set which it meets, then (X,T2) is a Baire space.

Proof. Suppose E is nowhere dense in (X,T2). Let G be a

nonempty T1-open set such that G ∩ E 6= ∅. To show that E is

nowhere dense in (X,T1), it suffices to show that G contains a

nonempty T1-open set H such that H ∩ E = ∅.

Case 1. A ∩G ∩ E 6= ∅. Since E is nowhere dense in (X,T2),

there exist G′
1, G′

2 ∈ T1 such that ∅ 6= (A∩G′
1)∪G′

2 ⊂ A∩G and

[(A ∩ G′
1) ∪ G′

2] ∩ E = ∅. If G′
2 6= ∅, take H = G′

2. Otherwise,

∅ 6= A ∩G′
1 ⊂ A ∩G and A ∩G′

1 ∩ E = ∅. Let G1 = G′
1 ∩G ⊂ G.
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Then

∅ 6= A ∩G′
1 ∩G = A ∩G1 ⊂ A ∩G.

If Ac ∩ G1 ∩ E = ∅, then G1 ∩ E = ∅ and we take H = G1.

If Ac ∩ G1 ∩ E 6= ∅, since E is nowhere dense in (X,T2), there

exist G2, G3 ∈ T1 such that ∅ 6= (Ac ∩ G2) ∪ G3 ⊂ Ac ∩ G1 and

[(Ac∩G2)∪G3]∩E = ∅. Again, if G3 6= ∅, set H = G3. Otherwise,

∅ 6= Ac ∩G1 ∩G2, and Ac ∩G1 ∩G2 ∩E = ∅. Then G1 ∩G2 may

be taken as the required subset H of G. For evidently, G1 ∩ G2

is a nonempty T1-open subset of G. Moreover, G1 ∩ G2 ∩ E = ∅;

otherwise G1 ∩ G2 would contain points of E but no point of Ac,

and we would have

∅ 6= G1 ∩G2 ∩E ∩ A ⊂ A ∩G1 ∩ E = ∅.

Case 2. A∩G∩E = ∅. Then Ac∩G∩E 6= ∅, and the existence

of the required subset H of G follows by symmetry. The remainder

of the proposition is easily established.

Proposition 2. Suppose (X,T1) is a space and A is a subset

of X such that Ac is of the first category. Let T2 be the topology

on X generated by T1 ∪ {A}. Then every first category subset of
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(X,T2) is first category in (X,T1). Thus if (X,T1) is a Baire space,

and if A is residual, then (X,T2) is a Baire space.

Proof. We will show that if G is T2-open and dense, then Gc

must be category 1 in (X,T1). This will imply that every subset

of X which is nowhere dense in (X,T2), and, consequently, every

subset of X which is category 1 in (X,T2), is category 1 in (X,T1).

For if E is nowhere dense in (X,T2), then X − E is T2-open and

dense. Hence E is category 1 in (X,T1), and, consequently, so is

E.

Assume, therefore, that G is T2-open and dense. If G is T1-

open, then Gc is nowhere dense and hence category 1 in (X,T1).

Otherwise, there exist G1, G2 ∈ T1 such that G = (A ∩ G1) ∪ G2

with A ∩G1 6= ∅. Let H be the interior of Gc
2 in (X,T1) furnished

with the relativized T1 topology. Now G1∩H is dense in H . Other-

wise, there would exist a nonempty open subset G3 of H such that

G3∩G1∩H = ∅. Hence G3∩[(A∩G1)∪G2] = G3∩G = ∅, contrary

to the assumption that G is T2-dense. It follows that H −G1, the

boundary of G1∩H in H , is nowhere dense, and hence of category

1 in H . Hence H − G1 is category 1 in (X,T1). Since bdry G2
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(the boundary of G2 in (X,T1)) and H − A are both category 1

subsets of (X,T1), and since Gc = (H −A) ∪ (H −G1) ∪ bdry G2,

it follows that Gc is category 1 in (X,T1). The remainder of the

proposition follows easily.

The following example shows that the supremum of an in-

creasing sequence of Baire topologies need not be Baire.

Example 2. There exists a dense-in-itself Baire space (X,T0)

and a sequence T0, T1, T2, · · · of topologies on X such that for each

i, Ti,⊂ Ti+1 and (X,Ti) is Baire, but (X,T ) is not Baire if T is the

supremum of the sequence {Tn}.

Construction. Let X be the space of real numbers with the

usual topology. By standard methods we decompose X into a

sequence A0, A1, A2 · · · of pairwise disjoint sets such that for each

nonempty open setG, and for each i, Ai∩G is nonempty and second

category. We divide {A0, A1, A2, · · ·} into classes C0,C1,C2, · · · so

that Ck = {B(0, k), B(1, k), · · · , B(2k − 1, k)} where

B(i, k) =

∞
⋃

j=0

Ai+j(2
k), 0 ≤ i ≤ 2k − 1 .
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For each k,

X =
⋃

Ck =
2
k−1
⋃

i=0

B(i, k),

B(i, k)c =
2
k−1
⋃

ℓ=1,ℓ 6=i

B(ℓ, k) ,

and

B(i, k) ∩B(ℓ, k) = ∅ if i 6= ℓ .

Let T0 be the usual topology for the space X of real numbers.

(X,T0) is a Baire space. Having constructed Baire topologies

T0 ⊂ T1 ⊂ · · · ⊂ Tk on X , let Tk+1 be the expansion of Tk gen-

erated by

Tk ∪
(

2
k−1
⋃

i=1

{

B(i, k), B(i, k)c
})

.

By Proposition 1, each of the spaces (X,T0), (X,T1), (X,T2), · · · is

a Baire space and Ti ⊂ Ti+1 for each i. Let T be the supremum of

T0, T1, T2, · · ·. We assert that (X,T ) is not Baire. To prove this we

will show that An is nowhere dense in (X,T ) for each n. So consider

a fixed set An. Let H be a nonempty T -open set. We will show

that H contains a nonempty T -open set which misses An. Note

first that there is a nonempty T0-open set G and a corresponding
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basic T -open set G∩B(i, k) such that ∅ 6= G∩B(i, k) ⊂ H for some

nonnegative integers i and k. If n 6= i+j(2k) for some nonnegative

j, then An ∩B(i, k) = ∅, and consequently, G ∩ B(i, k) ∩ An = ∅.

If n = i+ j(2k) for some j, then

B(i+ (j + 1)2k, k + (j + 1)) ⊂ B(i, k)

and

B(i + (j + 1)2k, k + (j + 1)) ∩ An = ∅.

Hence

G ∩B(i+ (j + 1)2k, k + (j + 1)) 6= ∅,

and

G ∩B(i + (j + 1)2k, k + (j + 1)) ∩ An = ∅.
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