Explicit solution to the minimization problem of generalized cross-validation criterion for selecting ridge parameters in generalized ridge regression

Hirokazu Yanagihara
(Received July 6, 2017)
(Revised January 17, 2018)

Abstract

This paper considers optimization of the ridge parameters in generalized ridge regression (GRR) by minimizing a model selection criterion. GRR has a major advantage over ridge regression ($R R$) in that a solution to the minimization problem for one model selection criterion, i.e., Mallows' C_{p} criterion, can be obtained explicitly with GRR, but such a solution for any model selection criteria, e.g., C_{p} criterion, cross-validation (CV) criterion, or generalized CV (GCV) criterion, cannot be obtained explicitly with RR. On the other hand, C_{p} criterion is at a disadvantage compared to CV and GCV criteria because a good estimate of the error variance is required in order for C_{p} criterion to work well. In this paper, we show that ridge parameters optimized by minimizing GCV criterion can also be obtained by closed forms in GRR. We can overcome one disadvantage of GRR by using GCV criterion for the optimization of ridge parameters. By using the result, we propose a principle component regression hybridized with the GRR that is a new method for a linear regression with highdimensional explanatory variables.

1. Introduction

Let $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right)^{\prime}$ be an n-dimensional vector of response variables and \boldsymbol{X} be an $n \times k$ matrix of nonstochastic centralized explanatory variables $\left(\boldsymbol{X}^{\prime} \mathbf{1}_{n}=\mathbf{0}_{k}\right)$ with $\operatorname{rank}(\boldsymbol{X})=m(\leq \min \{k, n-1\})$, where n is the sample size, $\mathbf{1}_{n}$ is an n-dimensional vector of ones, and $\mathbf{0}_{k}$ is a k-dimensional vector of zeros. We assume a linear relationship between \boldsymbol{y} and \boldsymbol{X}, expressed by the liner regression model:

$$
\begin{equation*}
\boldsymbol{y}=\mu \mathbf{1}_{n}+\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}, \tag{1}
\end{equation*}
$$

where μ is an unknown location parameter, $\boldsymbol{\beta}$ is a k-dimensional vector of unknown regression coefficients, and ε is an n-dimensional vector of

[^0]independent error variables from a distribution with mean 0 and error variance σ^{2}.

The ordinary least squares (OLS) method is widely used for estimating the unknown parameters in (1). This is because although the OLS estimators of μ and $\boldsymbol{\beta}$ are given by simple forms, they have several desirable theoretical properties. The OLS estimators of μ and $\boldsymbol{\beta}$ are given by $\hat{\mu}=\bar{y}$ and $\hat{\boldsymbol{\beta}}=$ $\left(\boldsymbol{X}^{\prime} \boldsymbol{X}\right)^{+} \boldsymbol{X}^{\prime} \boldsymbol{y}$, respectively, where \bar{y} is a sample mean of the elements of \boldsymbol{y}, i.e., $\bar{y}=\mathbf{1}_{n}^{\prime} \boldsymbol{y} / n$, and \boldsymbol{A}^{+}is the Moore-Penrose inverse matrix of \boldsymbol{A} (for details of the Moore-Penrose inverse matrix, see, e.g., [9, chap. 20]). However, when multicollinearity occurs in \boldsymbol{X}, the OLS estimator of $\boldsymbol{\beta}$ is not a good estimator in the sense that it has a large variance. The ridge regression (RR) estimation proposed by Hoerl and Kennard [10] is one of the methods that avoid the problem from multicollinearity. The RR estimator is defined by adding $\theta \boldsymbol{I}_{k}$ to $\boldsymbol{X}^{\prime} \boldsymbol{X}$ in $\hat{\boldsymbol{\beta}}$, where $\theta \in \mathbb{R}_{+}=\{\theta \in \mathbb{R} \mid \theta \geq 0\}$ is called a ridge parameter. Since the estimates provided by the RR estimator depend heavily on the value of θ, the optimization of θ is a very important problem. One of the optimization methods is to choose a ridge parameter that minimizes a model selection criterion, e.g., Mallows' $C_{p}[16,17]$, cross-validation (CV) [21] and generalized CV (GCV) [3] criteria (see, e.g., [7, 25]). However, an optimal value of θ cannot be obtained without an iterative computational algorithm.

Hoerl and Kennard [10] proposed not only the RR but also a generalized ridge regression (GRR) in their paper. Although GRR estimation was proposed over 40 years ago, even today, many researchers study the theoretical properties of the GRR estimator (e.g., [12]), and use GRR for real data analysis (e.g., [19]), and for developing new statistical procedures based on GRR (e.g., [2, 11, 24]). The GRR estimator is defined not by a single ridge parameter but by multiple ridge parameters $\boldsymbol{\theta}=\left(\theta_{1}, \ldots, \theta_{k}\right)^{\prime} \in \mathbb{R}_{+}^{k}$, i.e., the GRR estimator of $\boldsymbol{\beta}$ is defined by replacing $\theta \boldsymbol{I}_{k}$ in the RR estimator of $\boldsymbol{\beta}$ with $\boldsymbol{Q} \boldsymbol{\Theta} \boldsymbol{Q}^{\prime}$, where \mathbb{R}_{+}^{k} is the k th Cartesian power of $\mathbb{R}_{+}, \boldsymbol{\Theta}$ is a $k \times k$ diagonal matrix whose j th diagonal element is θ_{j}, and \boldsymbol{Q} is the $k \times k$ orthogonal matrix that diagonalizes $\boldsymbol{X}^{\prime} \boldsymbol{X}$. Even though the number of ridge parameters has increased, we can obtain $\boldsymbol{\theta}$ minimizing C_{p} criterion by closed form (see, e.g., $[13,22,26,18])$. However, C_{p} criterion is at a disadvantage compared to the CV or GCV criteria because a good estimate of the error variance σ^{2} is required in order for C_{p} criterion to work well. In an extended GRR, several authors have tried solving the minimization problem for a model selection criterion other than C_{p} criterion by using the Newton-Raphson method (e.g., [8, 23]). In this paper, we show that ridge parameters optimized by minimizing the GCV criterion can also be obtained by closed forms in the original GRR. We can overcome one of the disadvantages of GRR by using GCV criterion for the optimization of the ridge parameters.

If negative values are allowed as optimal ridge parameters, an explicit solution of the minimization problem of the GCV criterion was derived by finding the point where a gradient vector of GCV criterion is zero vector. If $m=k<n-1$, from the result in [15], we can see that the equation that a gradient vector of GCV criterion is zero vector can be solved explicitly and uniquely when the ridge parameters are real values. Regrettably, the solution does not necessarily become a non-negative value. Hence, in the common setting of the GRR, an explicit solution of the minimization problem of GCV criterion cannot be obtained by solving the equation that a gradient vector of GCV criterion is zero vector.

This paper is organized as follows: In §2, we describe the use of GCV criterion for selecting the ridge parameters for GRR, and we present some lemmas to express explicitly the optimal solution of GCV criterion. In §3, we show an explicit solution to the minimization problem of GCV criterion for GRR, and present additional theorems on GRR after optimizing the ridge parameters. In §4, we apply GRR to a linear regression model with highdimensional explanatory variables, and propose a new method that is a principle component regression hybridized with the GRR. A numerical examination is conducted at the end of $\S 4$. Technical details are provided in the Appendix.

2. Preliminaries

Let \boldsymbol{Q} be the $k \times k$ orthogonal matrix that diagonalizes $\boldsymbol{X}^{\prime} \boldsymbol{X}$ as

$$
\boldsymbol{Q}^{\prime} \boldsymbol{X}^{\prime} \boldsymbol{X} \boldsymbol{Q}=\left(\begin{array}{cc}
\boldsymbol{D} & \boldsymbol{O}_{m, k-m} \tag{2}\\
\boldsymbol{O}_{k-m, m} & \boldsymbol{O}_{k-m, k-m}
\end{array}\right)
$$

where $\boldsymbol{O}_{k, m}$ is a $k \times m$ matrix of zeros, and

$$
\begin{equation*}
\boldsymbol{D}=\operatorname{diag}\left(d_{1}, \ldots, d_{m}\right) \text { and } d_{1}, \ldots, d_{m} \text { are nonzero eigenvalues of } \boldsymbol{X}^{\prime} \boldsymbol{X} \tag{3}
\end{equation*}
$$

We note that d_{1}, \ldots, d_{m} are positive, because we assume that $\boldsymbol{X}^{\prime} \boldsymbol{X}$ is a positive semidefinite matrix. Without loss of generality, it is assumed that $d_{1} \geq \cdots \geq$ d_{m}. Moreover, let $\boldsymbol{M}_{\boldsymbol{\theta}}$ be a $k \times k$ matrix defined by

$$
\boldsymbol{M}_{\boldsymbol{\theta}}=\boldsymbol{X}^{\prime} \boldsymbol{X}+\boldsymbol{Q} \boldsymbol{\Theta} \boldsymbol{Q}^{\prime},
$$

where $\boldsymbol{\Theta}$ is the $k \times k$ diagonal matrix given by $\boldsymbol{\Theta}=\operatorname{diag}\left(\theta_{1}, \ldots, \theta_{k}\right)$. In particular, we write $\boldsymbol{M}_{\boldsymbol{\theta}}$ with $\boldsymbol{\theta}=\mathbf{0}_{k}$ as \boldsymbol{M}. Then, a GRR estimator of $\boldsymbol{\beta}$ is defined by

$$
\begin{equation*}
\hat{\boldsymbol{\beta}}_{\boldsymbol{\theta}}=\boldsymbol{M}_{\boldsymbol{\theta}}^{+} \boldsymbol{X}^{\prime} \boldsymbol{y} . \tag{4}
\end{equation*}
$$

It is clear that the GRR estimator in (4) with $\boldsymbol{\theta}=\mathbf{0}_{k}$ coincides with the ordinary least squares (OLS) estimator defined by

$$
\begin{equation*}
\hat{\boldsymbol{\beta}}=\boldsymbol{M}^{+} \boldsymbol{X}^{\prime} \boldsymbol{y} \tag{5}
\end{equation*}
$$

Equation (4) leads to a predictor of \boldsymbol{y} derived from GRR as

$$
\begin{equation*}
\hat{\boldsymbol{y}}_{\boldsymbol{\theta}}=\bar{y} \mathbf{1}_{n}+\boldsymbol{X} \hat{\boldsymbol{\beta}}_{\boldsymbol{\theta}}=\left(\boldsymbol{J}_{n}+\boldsymbol{X} \boldsymbol{M}_{\boldsymbol{\theta}}^{+} \boldsymbol{X}^{\prime}\right) \boldsymbol{y} \tag{6}
\end{equation*}
$$

where \boldsymbol{J}_{n} is an $n \times n$ projection matrix defined by $\boldsymbol{J}_{n}=\mathbf{1}_{n} \mathbf{1}_{n}^{\prime} / n$.
Notice that $\operatorname{tr}\left(\boldsymbol{J}_{n}+\boldsymbol{X} \boldsymbol{M}_{\boldsymbol{\theta}}^{+} \boldsymbol{X}^{\prime}\right)=1+\operatorname{tr}\left(\boldsymbol{M}_{\boldsymbol{\theta}}^{+} \boldsymbol{M}\right)$. Thus, according to a general formula of the GCV criterion provide by Craven and Wahba [3], the GCV criterion for selecting $\boldsymbol{\theta}$ can be defined by

$$
\begin{equation*}
\operatorname{GCV}(\boldsymbol{\theta})=\frac{\left(\boldsymbol{y}-\hat{\boldsymbol{y}}_{\boldsymbol{\theta}}\right)^{\prime}\left(\boldsymbol{y}-\hat{\boldsymbol{y}}_{\boldsymbol{\theta}}\right)}{n\left[1-\left\{1+\operatorname{tr}\left(\boldsymbol{M}_{\boldsymbol{\theta}}^{+} \boldsymbol{M}\right)\right\} / n\right]^{2}} . \tag{7}
\end{equation*}
$$

A main aim of this paper is to obtain the closed form of the minimizers of $\operatorname{GCV}(\boldsymbol{\theta})$. Let z_{1}, \ldots, z_{m} be elements of an m-dimensional vector defined by

$$
\begin{equation*}
\left(z_{1}, \ldots, z_{m}\right)^{\prime}=\left(\boldsymbol{D}^{-1 / 2}, \boldsymbol{O}_{m, k-m}\right) \boldsymbol{Q}^{\prime} \boldsymbol{X}^{\prime} \boldsymbol{y} \tag{8}
\end{equation*}
$$

Here, we assume that all z_{1}, \ldots, z_{m} are not 0 . Furthermore, let $t_{j}(j=1, \ldots$, $m)$ be the j th-order statistic of $z_{1}^{2}, \ldots, z_{m}^{2}$, i.e.,

$$
t_{j}= \begin{cases}\min \left\{z_{1}^{2}, \ldots, z_{m}^{2}\right\} & (j=1) \tag{9}\\ \min \left\{\left\{z_{1}^{2}, \ldots, z_{m}^{2}\right\} \backslash\left\{t_{1}, \ldots, t_{j-1}\right\}\right\} & (j=2, \ldots, m)\end{cases}
$$

The following statistics based on t_{1}, \ldots, t_{m} play a big role in expressing the closed form of the minimizers of GCV criterion:

$$
\begin{align*}
& s_{0}^{2}=\frac{\boldsymbol{y}^{\prime}\left(\boldsymbol{I}_{n}-\boldsymbol{J}_{n}-\boldsymbol{X} \boldsymbol{M}^{+} \boldsymbol{X}^{\prime}\right) \boldsymbol{y}}{n-m-1}, \\
& s_{\alpha}^{2}=\frac{(n-m-1) s_{0}^{2}+\sum_{j=1}^{\alpha} t_{j}}{n-m-1+\alpha} \quad(\alpha=1, \ldots, m) \tag{10}
\end{align*}
$$

When the sample size is smaller than the number of explanatory variables, $m \leq$ $n-1$ holds because $\boldsymbol{X}^{\prime} \mathbf{1}_{n}=\mathbf{0}_{k}$ is satisfied. It is easy to see that $\boldsymbol{y}^{\prime}\left(\boldsymbol{I}_{n}-\boldsymbol{J}_{n}-\right.$ $\left.\boldsymbol{X} \boldsymbol{M}^{+} \boldsymbol{X}^{\prime}\right) \boldsymbol{y}=0$ holds when $m=n-1$. From this fact, we define $s_{0}^{2}=0$ when $m=n-1$. It should be kept in mind that $s_{0}^{2}=0$ holds in most cases of highdimensional explanatory variables. The term s_{α}^{2} has the following property (the proof is given in Appendix A.1):

Lemma 1. Let a_{*} be an integer defined by

$$
\begin{equation*}
a_{*} \in\{0,1, \ldots, m\} \text { s.t. } s_{a_{*}}^{2} \in R_{a_{*}}, \tag{11}
\end{equation*}
$$

where R_{α} is a range given by

$$
R_{\alpha}= \begin{cases}\left(0, t_{1}\right] & (\alpha=0) \tag{12}\\ \left(t_{\alpha}, t_{\alpha+1}\right] & (\alpha=1, \ldots, m-1) . \\ \left(t_{m}, \infty\right) & (\alpha=m)\end{cases}
$$

Then following properties are satisfied:
(1) Case of $s_{0}^{2} \neq 0: \quad{ }^{\exists!} a_{*} \in\{0,1, \ldots, m\}$ s.t. $s_{a_{*}}^{2} \in R_{a_{*}}$. Then $s_{a_{*}}^{2} \leq s_{0}^{2}$ is satisfied.
(2) Case of $s_{0}^{2}=0: ~ \neg\left({ }^{\exists} a_{*} \in\{0,1, \ldots, m\}\right.$ s.t. $\left.s_{a_{*}}^{2} \in R_{a_{*}}\right)$.

On the other hand, the GRR estimator $\hat{\boldsymbol{\beta}}_{\boldsymbol{\theta}}$ in (4) and $\operatorname{GCV}(\boldsymbol{\theta})$ in (7) satisfy the following property (the proof is given in Appendix A.2):

Lemma 2. The GRR estimator $\hat{\boldsymbol{\beta}}_{\boldsymbol{\theta}}$ and $\operatorname{GCV}(\boldsymbol{\theta})$ are invariant with respect to any changes in $\theta_{m+1}, \ldots, \theta_{k}$.

From Lemma 2, we set $\theta_{m+1}=\cdots=\theta_{k}=\infty$ for simplicity. Moreover, Lemma 2 indicates that $\operatorname{GCV}(\boldsymbol{\theta})$ can be regarded as a function with respect to $\boldsymbol{\theta}_{1}=\left(\theta_{1}, \ldots, \theta_{m}\right)^{\prime}$. In particular, the GCV criterion can be expressed as the following lemma (the proof is given in Appendix A.3):

Lemma 3. The $G C V(\theta)$ can be written as

$$
\begin{equation*}
\operatorname{GCV}(\boldsymbol{\theta})=g\left(\boldsymbol{\theta}_{1}\right)=\frac{\left\{(n-m-1) s_{0}^{2}+\sum_{j=1}^{m}\left\{\theta_{j} /\left(d_{j}+\theta_{j}\right)\right\}^{2} z_{j}^{2}\right\} / n}{\left\{1-\left(m+1-\sum_{j=1}^{m} \theta_{j} /\left(d_{j}+\theta_{j}\right)\right) / n\right\}^{2}} . \tag{13}
\end{equation*}
$$

Lemma 3 indicates that the optimal θ_{j} is ∞ if z_{j} is accidentally 0 . Then, optimizations of $\theta_{1}, \ldots, \theta_{j-1}, \theta_{j+1}, \ldots, \theta_{m}$ should perform by z_{1}, \ldots, z_{j-1}, z_{j+1}, \ldots, z_{m}. Moreover, it is easy to see that $g\left(\boldsymbol{\theta}_{1}\right)$ takes a minimum at $\boldsymbol{\theta}_{1}=\mathbf{0}_{m}$ when $s_{0}^{2}=0$ and $m<n-1$, because the non-negative function $g\left(\boldsymbol{\theta}_{1}\right)$ takes 0 if and only if $\boldsymbol{\theta}_{1}=\mathbf{0}_{m}$ when $s_{0}^{2}=0$ and $m<n-1$. Thus, we do not consider the case of $s_{0}^{2}=0$ and $m<n-1$, i.e., henceforth, $s_{0}^{2}=0$ means the case of $m=n-1$.

Notice that when $s_{0}^{2} \neq 0$,

$$
\left.\frac{\partial}{\partial \theta_{\alpha}} g\left(\boldsymbol{\theta}_{1}\right)\right|_{\boldsymbol{\theta}_{1}=\mathbf{0}_{m}}=-\frac{2 s_{0}^{2}}{d_{\alpha}(n-m-1)}<0 .
$$

This implies that $g\left(\boldsymbol{\theta}_{1}\right)$ does not reach a minimum at $\mathbf{0}_{m}$ when $s_{0}^{2} \neq 0$. On the other hand, $g\left(\boldsymbol{\theta}_{1}\right)$ is not determinate when $s_{0}^{2}=0$ and $\theta_{1}=\cdots=\theta_{m}=0$. Hence, we search for optimal solutions of $g\left(\boldsymbol{\theta}_{1}\right)$ in $\boldsymbol{\theta}_{1} \in \mathbb{R}_{+}^{m} \backslash\left\{\mathbf{0}_{m}\right\}$.

3. Main results

3.1. Optimal solutions of GCV criterion. The ridge parameters $\theta_{1}, \ldots, \theta_{m}$ that minimize $g\left(\boldsymbol{\theta}_{1}\right)$ in (13) are derived as in the following theorem (the proof is given in Appendix A.4):

Theorem 1. Let $\hat{\theta}_{1}, \ldots, \hat{\theta}_{m}$ be optimal solutions of $g\left(\boldsymbol{\theta}_{1}\right)$, i.e.,

$$
\hat{\boldsymbol{\theta}}_{1}=\left(\hat{\theta}_{1}, \ldots, \hat{\boldsymbol{\theta}}_{m}\right)^{\prime}=\arg \min _{\boldsymbol{\theta}_{1} \in \mathbb{R}_{+}^{m} \backslash\left\{\boldsymbol{0}_{m}\right\}} g\left(\boldsymbol{\theta}_{1}\right) .
$$

Then, an explicit form of $\hat{\theta}_{j}(j=1, \ldots, m)$ is given as follows:
(1) Case of $s_{0}^{2} \neq 0$:

$$
\hat{\theta}_{j}= \begin{cases}\infty & \left(s_{a_{*}}^{2}>z_{j}^{2}\right) \tag{14}\\ d_{j} /\left(z_{j}^{2} / s_{a_{*}}^{2}-1\right) & \left(s_{a_{*}}^{2} \leq z_{j}^{2}\right)\end{cases}
$$

where d_{j}, z_{j}, and s_{α}^{2} are given by (3), (8), and (10), respectively, and the integer a_{*} is given by (11).
(2) Case of $s_{0}^{2}=0: \quad{ }^{\forall} h \in\left(0, t_{1}\right]$,

$$
\begin{equation*}
\hat{\theta}_{j}=d_{j} /\left(z_{j}^{2} / h-1\right) \tag{15}
\end{equation*}
$$

where t_{j} is given by (9). To minimize the covariance matrix of the GRR estimator, we define $h=t_{1}$. Hence

$$
\hat{\theta}_{j}= \begin{cases}\infty & \left(z_{j}^{2}=t_{1}\right) \tag{16}\\ d_{j} /\left(z_{j}^{2} / t_{1}-1\right) & \left(z_{j}^{2} \neq t_{1}\right)\end{cases}
$$

Liu and Jiang [15] derived ridge parameters optimized by minimizing GCV criterion when $m=k<n-1$ if the domain of GCV criterion is not \mathbb{R}_{+}^{k} but \mathbb{R}^{k}. If all $z_{1}^{2}, \ldots, z_{k}^{2}$ are larger than s_{0}^{2}, the point where the first derivatives of GCV criterion with respect to $\boldsymbol{\theta}$ are zeros is contained in \mathbb{R}_{+}^{k}. Hence the result in [15] coincides with our result in (14) when all $z_{1}^{2}, \ldots, z_{k}^{2}$ are larger than s_{0}^{2}, i.e., in the case of $a_{*}=0$.

By using equation (14) or (16), we can obtain a closed form of the GRR estimator of $\boldsymbol{\beta}$ after optimizing $\boldsymbol{\theta}$ by GCV criterion. However, the expression is somewhat difficult to use in actual data analysis because equations (14) and (16) involve ∞. Hence, we give another expression of the GRR estimator after optimizing $\boldsymbol{\theta}$ by GCV criterion. Let \boldsymbol{V} be an $m \times m$ diagonal matrix defined by $\boldsymbol{V}=\operatorname{diag}\left(v_{1}, \ldots, v_{m}\right)$, where

$$
v_{j}=\left\{\begin{array}{llll}
0 & \left(s_{a_{*}}^{2}>z_{j}^{2}\right) ; \quad 1-s_{a_{s}}^{2} / z_{j}^{2} \quad\left(s_{a_{*}}^{2} \leq z_{j}^{2}\right), \quad\left(\text { when } s_{0}^{2} \neq 0\right), \tag{17}\\
0 & \left(t_{1}=z_{j}^{2}\right) ; \quad 1-t_{1} / z_{j}^{2} \quad\left(t_{1} \neq z_{j}^{2}\right), \quad\left(\text { when } s_{0}^{2}=0\right)
\end{array}\right.
$$

Then, the GRR estimator after optimizing $\boldsymbol{\theta}$ by GCV criterion is given by

$$
\begin{equation*}
\hat{\boldsymbol{\beta}}_{\hat{\boldsymbol{\theta}}}=\boldsymbol{Q}_{1} \boldsymbol{V} \boldsymbol{Q}_{1}^{\prime} \hat{\boldsymbol{\beta}}, \tag{18}
\end{equation*}
$$

where $\hat{\boldsymbol{\beta}}$ is the OLS estimator of $\boldsymbol{\beta}$ given by (5), and \boldsymbol{Q}_{1} is a $k \times m$ matrix that consists of the first m columns of \boldsymbol{Q}, which is given by (2).
3.2. Relationships between the optimal solutions of GCV and the generalized C_{p} criteria. When $s_{0}^{2} \neq 0, C_{p}$ and the modified $C_{p}\left(M C_{p}\right)$ [26] criteria can be defined. Their optimal solutions are also given by closed forms, and they are unified as solutions of the minimization problem of the following generalized $C_{p}\left(G C_{p}\right)$ criterion:

$$
G C_{p}(\boldsymbol{\theta} \mid \lambda)=\left(\boldsymbol{y}-\hat{\boldsymbol{y}}_{\boldsymbol{\theta}}\right)^{\prime}\left(\boldsymbol{y}-\hat{\boldsymbol{y}}_{\boldsymbol{\theta}}\right)+2 \lambda \operatorname{tr}\left(\boldsymbol{M}_{\boldsymbol{\theta}}^{+} \boldsymbol{M}\right),
$$

where $\hat{\boldsymbol{y}}_{\boldsymbol{\theta}}$ is the predictor of \boldsymbol{y} given by (6) (originally, the $G C_{p}$ criterion for the model (1) was proposed by Atkinson [1]). Solutions of $G C_{p}(\boldsymbol{\theta} \mid \lambda)$ with $\lambda=s_{0}^{2}$ and $c_{\mathrm{M}} s_{0}^{2}$ correspond to those of C_{p} and $M C_{p}$ criteria, respectively, where $c_{\mathrm{M}}=1+2 /(n-m-3)$. Since it follows from Lemma 2 that $G C_{p}(\boldsymbol{\theta} \mid \lambda)$ is invariant with respect to any changes in $\theta_{m+1}, \ldots, \theta_{k}$, we take $\theta_{m+1}=\cdots=$ $\theta_{k}=\infty$ for simplicity as well as the minimization of the GCV criterion. By extending the result in [18], the optimal solutions of $G C_{p}(\boldsymbol{\theta} \mid \lambda)$ are given by

$$
\hat{\theta}_{j}(\lambda)= \begin{cases}\infty & \left(\lambda>z_{j}^{2}\right), \tag{19}\\ d_{j} /\left(z_{j}^{2} / \lambda-1\right) & \left(\lambda \leq z_{j}^{2}\right) .\end{cases}
$$

By comparing (14) with (19), it is clear that the optimal solutions of GCV criterion are a special case of those of $G C_{p}$ criterion with $\lambda=s_{a_{*}}^{2}$. Suppose that $\lambda_{1} \leq \lambda_{2}$. Then it is easy to see that $\hat{\theta}_{j}\left(\lambda_{1}\right) \leq \hat{\theta}_{j}\left(\lambda_{2}\right)$. Notice that $c_{\mathrm{M}}>1$ holds. Moreover, from Lemma 1 (1), $s_{a_{*}}^{2} \leq s_{0}^{2}$ holds. Consequently, the following theorem is derived:

Theorem 2. The optimal solutions of GCV criterion can be regarded as the special case of those of $G C_{p}$ criterion with $\lambda=s_{a_{*}}^{2}$, where a_{*} is the integer defined by (11). Let $\hat{\theta}_{j}^{(\mathrm{C})}$ and $\hat{\theta}_{j}^{(\mathrm{M})}(j=1, \ldots, m)$ be optimal solutions of C_{p} and $M C_{p}$ criteria, respectively, when $s_{0}^{2} \neq 0$. Then, the following inequality always holds:

$$
\hat{\theta}_{j} \leq \hat{\theta}_{j}^{(\mathrm{C})} \leq \hat{\theta}_{j}^{(\mathrm{M})}
$$

Theorem 2 indicates that even though GCV criterion does not require an estimator of σ^{2}, it estimates σ^{2} automatically by $s_{a_{*}}^{2}$. Furthermore, $s_{a_{*}}^{2}$ always underestimates σ^{2}. This results in less shrinkage of the OLS estimator with the GRR optimized by GCV criterion than it does by C_{p} criterion or $M C_{p}$ criterion.

Additionally, we consider choosing a threshold value λ in (19) by minimizing the $\operatorname{GCV}(\hat{\boldsymbol{\theta}}(\lambda))$, where $\hat{\boldsymbol{\theta}}(\lambda)=\left(\hat{\theta}_{1}(\lambda), \ldots, \hat{\theta}_{m}(\lambda), \infty, \ldots, \infty\right)^{\prime}$, and $\hat{\theta}_{j}(\lambda)$ is given by (19). It is obviously that $\min _{\boldsymbol{\theta} \in \mathbb{R}_{+}^{k}} \operatorname{GCV}(\boldsymbol{\theta}) \leq \min _{\lambda \in \mathbb{R}_{+}} \operatorname{GCV}(\hat{\boldsymbol{\theta}}(\lambda))$.

From Theorem 1, the ridge parameters that minimize $\operatorname{GCV}(\boldsymbol{\theta})$ can be expressed as $\hat{\boldsymbol{\theta}}\left(s_{a_{*}}^{2}\right)$. Hence, we derive the following theorem:

Theorem 3. An explicit solution to the minimization problem of $\operatorname{GCV}(\hat{\boldsymbol{\theta}}(\lambda))$ can be obtained as $s_{a_{*}}^{2}$, i.e.,

$$
s_{a_{*}}^{2}=\arg \min _{\lambda \in \mathbb{R}_{+}} \operatorname{GCV}(\hat{\boldsymbol{\theta}}(\lambda))
$$

Theorem 3 indicates that the GRR with $\boldsymbol{\theta}$ optimized by the GCV criterion is equivalent to the GRR with $\boldsymbol{\theta}$ optimized by $G C_{p}$ criterion after choosing the threshold value λ by GCV criterion.
3.3. Generalized degrees of freedom in the optimized GRR. In this subsection, we derive an estimate for the generalized degrees of freedom (GDF), as proposed by Ye [27], for the GRR after optimizing $\boldsymbol{\theta}$ by GCV criterion under the normal distributed assumption. Suppose that $\varepsilon \sim N_{n}\left(\mathbf{0}_{n}, \sigma^{2} \boldsymbol{I}_{n}\right)$. From [5], the GDF of the GRR after optimizing $\boldsymbol{\theta}$ is given by

$$
\gamma=E\left[\sum_{i=1}^{n} \frac{\partial \hat{\mu}_{i}}{\partial y_{i}}\right]
$$

where $\hat{\mu}_{i}(i=1, \ldots, n)$ is the i th element of $\hat{\boldsymbol{y}}_{\hat{\boldsymbol{\theta}}}=\bar{y} \mathbf{1}_{n}+\boldsymbol{X} \hat{\boldsymbol{\beta}}_{\hat{\boldsymbol{\theta}}}$, and $\hat{\boldsymbol{\beta}}_{\hat{\boldsymbol{\theta}}}$ is the GRR estimator of $\boldsymbol{\beta}$ after optimizing GCV, which is given by (18). Hence, we can see that the GDF is estimated by $\hat{\gamma}=\sum_{i=1}^{n} \partial \hat{\mu}_{i} / \partial y_{i}$. After a simple calculation, we obtain the explicit form of $\hat{\gamma}$ as in the following theorem (the proof is given in Appendix A.5):

Theorem 4. Suppose that $\varepsilon \sim N_{n}\left(\mathbf{0}_{n}, \sigma^{2} \boldsymbol{I}_{n}\right)$. Let $w_{j}=I\left(v_{j} \neq 0\right) \quad(j=$ $1, \ldots, m)$, where $I(x \neq 0)$ is the indicator function, i.e., $I(x \neq 0)=1$ if $x \neq 0$ and $I(x \neq 0)=0$ if $x=0, \boldsymbol{V}=\operatorname{diag}\left(v_{1}, \ldots, v_{m}\right)$ is given by (17), and let \boldsymbol{W} be an $m \times m$ diagonal matrix whose j th diagonal element is w_{j}. Then, an estimator of the GDF is derived as

$$
\begin{equation*}
\hat{\gamma}=1+2 \operatorname{tr}(\boldsymbol{W})-\operatorname{tr}(\boldsymbol{V}) . \tag{20}
\end{equation*}
$$

In particular $\operatorname{tr}(\boldsymbol{W})=m-a_{*}$ holds when $s_{0}^{2} \neq 0$ and $\operatorname{tr}(\boldsymbol{W})=m-1$ holds when $s_{0}^{2}=0$, where the integer a_{*} is given by (11).

4. Application to the case of high-dimensional explanatory variables

4.1. Principle component regression hybridized with the GRR. In this section, we consider the case of high-dimensional explanatory variables, i.e., the case of $n \leq k$, which has been studied by, e.g., Srivastava and Kubokawa [20], and

Fan and Lv [6]. In this paper, the case of $m=n-1$ is considered. Even when $m=n-1$, GRR can work, and the optimal solutions of GCV criterion can be obtained by the closed forms, as in Theorem 1. However, it seems from Theorem 1 that the optimal $\boldsymbol{\theta}_{1}$ will become very small. Thus, there is a possibility that GRR cannot work effectively. In order to avoid such a risk, we apply GRR to a regression model in which the various small singular values of \boldsymbol{X} are eliminated, i.e., the GRR is applied to a principal component regression (PCR; see, e.g., [4, chap. 6.9], [14]). Let $\boldsymbol{D}_{r}=\left(d_{1}, \ldots, d_{r}\right)(r<m)$ be a $r \times r$ diagonal matrix, where d_{j} is the j th largest eigenvalue of $\boldsymbol{X}^{\prime} \boldsymbol{X}$ defined by (3), and let \boldsymbol{X}_{r} be an $n \times k$ matrix defined by

$$
\boldsymbol{X}_{r}=\boldsymbol{P}\left(\begin{array}{cc}
\boldsymbol{D}_{r}^{1 / 2} & \boldsymbol{O}_{r, k-r} \\
\boldsymbol{O}_{n-r, r} & \boldsymbol{O}_{n-r, k-r}
\end{array}\right) \boldsymbol{Q}^{\prime}
$$

After eliminating $m-r$ principal components and replacing \boldsymbol{X} with \boldsymbol{X}_{r}, the reduced model, called the r-PCR model, can be expressed. It is equivalent to the following liner regression model:

$$
\begin{equation*}
\boldsymbol{y}=\mu \mathbf{1}_{n}+\boldsymbol{X}_{r} \boldsymbol{\beta}+\boldsymbol{\varepsilon} . \tag{21}
\end{equation*}
$$

We know that a predictor of \boldsymbol{y} derived from the model (4.1) with $r=m$ corresponds to \boldsymbol{y}. Thus, we do not consider the case of $r=m$. Let $\operatorname{GCV}(\boldsymbol{\theta} \mid r)$ be the GCV criterion for selecting $\boldsymbol{\theta}_{r}$ in the r-PCR model (21) to which the GRR is applied, and let $\hat{\boldsymbol{\theta}}_{r}$ be the minimizer of $\operatorname{GCV}(\boldsymbol{\theta} \mid r)$. Then, $\hat{\boldsymbol{\theta}}_{r}$ can be also obtained in closed form from Theorem 1.

The most important choice in PCR is to determine how many singular values are eliminated, i.e., it is important to choose the optimal r. We can use the estimate of the GDF calculated in Theorem 4 with the new GCV criterion for selecting r for the PCR hybridized with the GRR. For the r-PCR model (21) derived from the GRR after optimizing $\boldsymbol{\theta}_{r}$, let $\hat{\boldsymbol{y}}_{r, \hat{\boldsymbol{\theta}}_{r}}$ be a predictor of \boldsymbol{y} and let $\hat{\gamma}_{r}$ be the estimator of GDF. As in Ye (1998), we propose a new GCV criterion for selecting r as

$$
\begin{equation*}
\operatorname{GCV}^{\#}(r)=\frac{\left(\boldsymbol{y}-\hat{\boldsymbol{y}}_{r, \hat{\boldsymbol{\theta}}_{r}}\right)^{\prime}\left(\boldsymbol{y}-\hat{\boldsymbol{y}}_{r, \hat{\boldsymbol{\theta}}_{r}}\right)}{n\left(1-\hat{\gamma}_{r} / n\right)^{2}} . \tag{22}
\end{equation*}
$$

Unfortunately, there is a possibility that $1-\hat{\gamma}_{r} / n \leq 0$, in which case, we reject r. Let \mathscr{S} be a set of integers defined by $\mathscr{S}=\left\{r \in\{0,1, \ldots, m-1\} \mid 1-\hat{\gamma}_{r} / n\right.$ $>0\}$. Then, an optimal r is found by minimizing the GCV criterion in (22) is as follows:

$$
\hat{r}=\arg \min _{r \in \mathscr{\mathscr { L }}} \operatorname{GCV}^{\#}(r) .
$$

Table 1. MSEs of coefficients and a predictor in each method

n	k	ρ	MSE of Coefficients (\%)			MSE of Predictor (\%)		
			M1	M2	M3	M1	M2	M3
20	20	0.80	95.69	29.28	29.30	98.72	96.39	101.82
		0.90	98.10	29.20	29.22	98.77	95.19	101.80
		0.99	100.63	29.14	29.17	99.10	94.71	101.85
	40	0.80	98.06	63.29	63.87	98.93	94.63	100.27
		0.90	99.25	63.35	63.37	99.73	95.22	100.90
		0.99	97.84	63.32	63.08	98.60	95.44	100.86
	100	0.80	99.15	93.76	94.13	99.04	95.41	99.94
		0.90	99.01	96.60	97.15	99.12	97.20	102.77
		0.99	99.03	99.33	100.02	98.80	96.79	103.60
	200	0.80	98.55	87.53	90.82	98.32	92.20	98.91
		0.90	98.92	85.91	91.02	98.55	90.30	101.48
		0.99	98.88	86.48	92.37	98.51	87.80	101.35
50	50	0.80	100.24	77.08	77.06	99.69	96.51	99.33
		0.90	100.91	77.42	77.29	99.97	97.01	99.38
		0.99	100.15	77.32	77.51	99.81	97.36	99.08
	100	0.80	100.30	75.76	74.62	99.57	90.22	89.28
		0.90	99.94	75.61	73.96	99.77	91.39	92.40
		0.99	100.08	75.15	73.79	99.84	86.65	92.24
	250	0.80	99.72	78.76	77.62	99.69	86.64	88.70
		0.90	99.90	78.83	77.80	99.74	91.84	95.19
		0.99	100.26	78.52	77.90	100.02	89.30	98.42
	500	0.80	99.46	86.05	87.77	99.59	92.65	97.63
		0.90	99.56	87.51	89.43	99.47	91.99	98.90
		0.99	99.68	90.53	92.37	99.88	95.59	100.85

4.2. Numerical study. We evaluated the proposed method by applying it to data from $N_{n}\left(\boldsymbol{X} \boldsymbol{\beta}, \boldsymbol{I}_{n}\right)$, where $\boldsymbol{X}=\left(\boldsymbol{I}_{n}-\boldsymbol{J}_{n}\right) \boldsymbol{X}_{0} \boldsymbol{\Phi}(\rho)^{1 / 2}$ and $\boldsymbol{\beta}=\boldsymbol{M}^{+} \boldsymbol{X}^{\prime} \boldsymbol{\eta}$. Here, \boldsymbol{X}_{0} is an $n \times k$ matrix whose elements are identically and independently distributed according to $U(-1,1), \boldsymbol{\Phi}(\rho)$ is a $k \times k$ symmetric matrix whose (a, b) th element is $\rho^{|a-b|}$, and $\boldsymbol{\eta}$ is an n-dimensional vector whose j th element is given by

$$
\sqrt{\frac{12 n(n-1)}{4 n^{2}+6 n-1}}\left\{(-1)^{j-1}\left(1-\frac{j-1}{n}\right)-\frac{1}{2 n}\right\} .
$$

In this setting, it should be emphasized that $\|\boldsymbol{\beta}\|$ does not become large even when k is increased. If $\|\boldsymbol{\beta}\|$ becomes large as k is increased, a value close to
$\mathbf{0}_{m}$ is frequently chosen as the optimal $\boldsymbol{\theta}$. Needless to say, such a situation is meaningless in applications of GRR. Therefore, we avoid such a situation by controlling the elements of $\boldsymbol{\beta}$.

The following three methods were applied to simulated data:
Method 1 (M1): ordinary GRR (GRR with all of the principle components). Method 2 (M2): PCR hybridized with GRR (i.e., the proposed method).
Method 3 (M3): ordinary PCR (PCR without GRR) with an optimal r $(r=0,1, \ldots, m-1)$ chosen by minimizing GCV criterion as

$$
\operatorname{GCV}_{\mathrm{P}}^{\#}(r)=\frac{\left(\boldsymbol{y}-\hat{\boldsymbol{y}}_{r}\right)^{\prime}\left(\boldsymbol{y}-\hat{\boldsymbol{y}}_{r}\right)}{n\{1-(1+r) / n\}^{2}},
$$

where $\hat{\boldsymbol{y}}_{r}=\left\{\boldsymbol{J}_{n}+\boldsymbol{X}_{r} \boldsymbol{M}_{r}^{+} \boldsymbol{X}_{r}^{\prime}\right\} \boldsymbol{y}$.
Let $\hat{\boldsymbol{\beta}}_{j}$ be an estimator of $\boldsymbol{\beta}$ and $\hat{\boldsymbol{y}}_{j}$ be a predictor of \boldsymbol{y}, as derived from Method $j(j=1,2,3)$. We compared the following two characteristics of each method, based on 10,000 iterations:

- MSE of coefficients (\%): $100 \times E\left[\left(\hat{\boldsymbol{\beta}}_{j}-\boldsymbol{\beta}\right)^{\prime}\left(\hat{\boldsymbol{\beta}}_{j}-\boldsymbol{\beta}\right)\right] / \operatorname{tr}\left(\boldsymbol{M}^{+}\right), \operatorname{tr}\left(\boldsymbol{M}^{+}\right)$is the MSE of the OLS estimator of $\boldsymbol{\beta}$.
- MSE of predictor $(\%): 100 \times E\left[\left(\hat{\boldsymbol{y}}_{j}-\boldsymbol{X} \boldsymbol{\beta}\right)^{\prime}\left(\hat{\boldsymbol{y}}_{j}-\boldsymbol{X} \boldsymbol{\beta}\right)\right] / n$, where n is the

MSE of a predictor of \boldsymbol{y} derived from the OLS estimation.
Table 1 shows the two characteristics for $n=20,100, k=n, 2 n, 5 n, 10 n$ and $\rho=0.8,0.9,0.99$. When the characteristic is less than 100 , it means that the method used improved the performance of the OLS estimation, as measured by the MSE. From the table, we can see that in most cases and for both MSEs Method 2 resulted in the smallest (best) values. Those of Method 1 were the worst. These results indicate that GRR does not work effectively when k is larger than n. If PCR is used instead of GRR, although the result is improved, it is still insufficient. Using GRR and PCR simultaneously is expected to improve the results more than using either one alone.

Appendix

A.1. Proof of Lemma 1

In order to prove Lemma 1 (1), we show that if the integer a_{*} in (11) exists, it is unique. Later, we will use reductio ad absurdum to prove the existence of the integer a_{*}. Notice that the following equation is satisfied for any integers $\alpha \in\{0,1, \ldots, m-1\}$:

$$
s_{\alpha+1}^{2}=\frac{(n-m-1+\alpha) s_{\alpha}^{2}+t_{\alpha+1}}{n-m+\alpha}=\frac{n-m-1+\alpha}{n-m+\alpha}\left(s_{\alpha}^{2}-t_{\alpha+1}\right)+t_{\alpha+1},
$$

where t_{j} and s_{α}^{2} are given by (9) and (10), respectively. This implies that

$$
s_{\alpha+1}^{2}-t_{\alpha+1}=\frac{n-m-1+\alpha}{n-m+\alpha}\left(s_{\alpha}^{2}-t_{\alpha+1}\right) \quad\left({ }^{\forall} \alpha \in\{0,1, \ldots, m-1\}\right) .
$$

From the above equation, we can see that the following statements are true:

$$
\begin{equation*}
s_{\alpha}^{2}-t_{\alpha+1} \leq 0 \Rightarrow s_{\alpha+1}^{2}-t_{\alpha+1} \leq 0, \quad s_{\alpha}^{2}-t_{\alpha}>0 \Rightarrow s_{\alpha-1}^{2}-t_{\alpha}>0 \tag{A1}
\end{equation*}
$$

Moreover, the following statements are also true because $t_{1} \leq \cdots \leq t_{m}$ holds:

$$
\begin{equation*}
s_{\alpha}^{2}-t_{\alpha} \leq 0 \Rightarrow s_{\alpha}^{2}-t_{\alpha+1} \leq 0, \quad s_{\alpha}^{2}-t_{\alpha+1}>0 \Rightarrow s_{\alpha}^{2}-t_{\alpha}>0 . \tag{A2}
\end{equation*}
$$

Suppose that an integer a_{*} exists. Combining (A1) and (A2) yields

$$
s_{a_{*}}^{2}-t_{a_{*}+1} \leq 0 \Rightarrow s_{a_{*}+1}^{2}-t_{a_{*}+1} \leq 0 \Rightarrow s_{a_{*}+1}^{2}-t_{a_{*}+2} \leq 0 \Rightarrow \cdots \Rightarrow s_{m}^{2}-t_{m} \leq 0
$$

and

$$
s_{a_{*}}^{2}-t_{a_{*}}>0 \Rightarrow s_{a_{*}-1}^{2}-t_{a_{*}}>0 \Rightarrow s_{a_{*}-1}^{2}-t_{a_{*}-1}>0 \Rightarrow \cdots \Rightarrow s_{0}^{2}-t_{1}>0
$$

Hence, we find

$$
s_{\alpha}^{2} \leq t_{\alpha} \quad\left({ }^{\forall} \alpha \in\left\{a_{*}+1, \ldots, m\right\}\right), \quad s_{\alpha}^{2}>t_{\alpha+1} \quad\left({ }^{\forall} \alpha \in\left\{0,1, \ldots, a_{*}-1\right\}\right) .
$$

These equations indicate that $s_{\alpha}^{2} \notin R_{\alpha}$ when $\alpha \neq a_{*}$, where R_{α} is given by (12). Consequently, the integer a_{*} is uniquely determined if a_{*} exists. Next we show the existence of the integer a_{*}. Since $R_{\alpha}^{c}=\left(0, t_{\alpha}\right] \cup\left(t_{\alpha+1}, \infty\right)$, we can see that the following statement is true:

$$
\begin{equation*}
\left\{s_{\alpha}^{2}-t_{\alpha}>0\right\} \cap\left\{s_{\alpha}^{2} \notin R_{\alpha}\right\} \Rightarrow s_{\alpha}^{2}-t_{\alpha+1}>0 \tag{A3}
\end{equation*}
$$

Suppose that the integer a_{*} does not exist, i.e., $s_{\alpha}^{2} \notin R_{\alpha}$ holds ${ }^{\forall} \alpha=\{0,1, \ldots, m\}$. This implies that $s_{0}^{2}>t_{1}$. Combining (A1) and (A3) yields

$$
s_{0}^{2}-t_{1}>0 \Rightarrow s_{1}^{2}-t_{1}>0 \Rightarrow s_{1}^{2}-t_{2}>0 \Rightarrow \cdots \Rightarrow s_{m}^{2}-t_{m}>0
$$

However, $s_{m}^{2}-t_{m}>0$ contradicts the assumption $s_{m}^{2} \notin R_{m}$. Consequently, by reductio ad absurdum, the integer a_{*} exists.

Next, we derive an upper bound for $s_{a_{*}}^{2}$. Let $x_{1}=\cdots=x_{n-m-1}=s_{0}^{2}$ and $x_{n-m-1+j}=t_{j} \quad(j=1, \ldots, m)$. Then s_{α}^{2} is regarded as the sample mean of $x_{1}, \ldots, x_{n-m-1+\alpha}$. It follows from a property of the sample mean that

$$
\begin{equation*}
s_{\alpha}^{2} \leq \max _{j \in\{1, \ldots, n-m-1+\alpha\}} x_{j}=\max \left\{s_{0}^{2}, t_{\alpha}\right\} \quad\left({ }^{\forall} \alpha \in\{1, \ldots, m\}\right) . \tag{A4}
\end{equation*}
$$

Since $s_{0}^{2}>0$ and $\bigcup_{j=0}^{m} R_{j}=(0, \infty]$ hold, an integer $b \in\{0,1, \ldots, m\}$ exists such that $s_{0} \in R_{b}$. When $b=m$, it follows from the inequality $s_{0}^{2}>t_{m}$ and (A4) that

$$
s_{\alpha}^{2} \leq \max \left\{s_{0}^{2}, t_{\alpha}\right\} \leq \max \left\{s_{0}^{2}, t_{m}\right\}=s_{0}^{2} \quad\left({ }^{\forall} \alpha \in\{1, \ldots, m\}\right) .
$$

When $b \leq m-1$, inequalities $s_{0}^{2} \leq t_{\alpha}{ }^{\forall} \alpha \in\{b+1, \ldots, m\}$ and $s_{0}^{2}>t_{\alpha}{ }^{\forall} \alpha \in\{1, \ldots$, b\} are satisfied, because $s_{0}^{2} \in R_{b}$. It follows from these results and (A4) that

$$
s_{\alpha}^{2} \leq \max \left\{s_{0}^{2}, t_{\alpha}\right\}=\left\{\begin{array}{cc}
t_{\alpha} & \left({ }^{\forall} \alpha \in\{b+1, \ldots, m\}\right), \tag{A5}\\
s_{0}^{2} & \left({ }^{\forall} \alpha \in\{1, \ldots, b\}\right) .
\end{array}\right.
$$

The upper equation on the right side of (A5) indicates that $s_{\alpha}^{2} \notin R_{\alpha}$ holds ${ }^{\forall} \alpha \in\{b+1, \ldots, m\}$. Hence it holds that the integer a_{*} is less than or equal to b. This result and the lower equation on the right side of (A5) lead us to the conclusion that $s_{a_{*}}^{2} \leq s_{0}^{2}$.

Finally, we give the proof of Lemma 1 (2). When $s_{0}^{2}=0, s_{\alpha}^{2}$ is expressed as the sample mean of $t_{1}, \ldots, t_{\alpha}$, i.e., $s_{\alpha}^{2}=\alpha^{-1} \sum_{j=1}^{\alpha} t_{j}(\alpha=1, \ldots, m)$. It is clear that $s_{0}^{2} \notin R_{0}$. Moreover, from a property of the sample mean and the inequality $t_{1} \leq \cdots \leq t_{m}$, we derive

$$
s_{\alpha}^{2} \leq \max _{j \in\{1, \ldots, \alpha\}} t_{j}=t_{\alpha} \quad\left({ }^{\forall} \alpha \in\{1, \ldots, m\}\right) .
$$

The above equation indicates that $s_{\alpha}^{2} \notin R_{\alpha}$ holds ${ }^{\forall} \alpha \in\{1, \ldots, m\}$. Therefore, Lemma 1 (2) is proved.

A.2. Proof of Lemma 2

Let \boldsymbol{P} be an $n \times n$ orthogonal matrix that diagonalizes $\boldsymbol{X} \boldsymbol{X}^{\prime}$ as

$$
\boldsymbol{P}^{\prime} \boldsymbol{X} \boldsymbol{X}^{\prime} \boldsymbol{P}=\left(\begin{array}{cc}
\boldsymbol{D} & \boldsymbol{O}_{m, n-m} \tag{A1}\\
\boldsymbol{O}_{n-m, m} & \boldsymbol{O}_{n-m, n-m}
\end{array}\right)
$$

where \boldsymbol{D} is an $m \times m$ diagonal matrix given by (3). The singular value decomposition of \boldsymbol{X} is expressed as

$$
\boldsymbol{X}=\boldsymbol{P}\left(\begin{array}{cc}
\boldsymbol{D}^{1 / 2} & \boldsymbol{O}_{m, k-m} \tag{A2}\\
\boldsymbol{O}_{n-m, m} & \boldsymbol{O}_{n-m, k-m}
\end{array}\right) \boldsymbol{Q}^{\prime}
$$

where \boldsymbol{Q} is given by (2). Let $\boldsymbol{\Theta}_{1}=\operatorname{diag}\left(\theta_{1}, \ldots, \theta_{m}\right)$ and $\boldsymbol{\Theta}_{2}=\operatorname{diag}\left(\theta_{m+1}, \ldots\right.$, θ_{k}). It follows from (A2) that

$$
\boldsymbol{M}_{\boldsymbol{\theta}}^{+} \boldsymbol{X}^{\prime} \boldsymbol{y}=\boldsymbol{Q}\left(\begin{array}{cc}
\left(\boldsymbol{D}+\boldsymbol{\Theta}_{1}\right)^{-1} \boldsymbol{D}^{1 / 2} & \boldsymbol{O}_{m, n-m} \tag{A3}\\
\boldsymbol{O}_{k-m, m} & \boldsymbol{O}_{k-m, n-m}
\end{array}\right) \boldsymbol{P}^{\prime} \boldsymbol{y}
$$

Moreover, the equations (A2) and (A3) imply that

$$
\boldsymbol{X} \boldsymbol{M}_{\boldsymbol{\theta}}^{+} \boldsymbol{X}^{\prime}=\boldsymbol{P}\left(\begin{array}{cc}
\boldsymbol{D}^{1 / 2}\left(\boldsymbol{D}+\boldsymbol{\Theta}_{1}\right)^{-1} \boldsymbol{D}^{1 / 2} & \boldsymbol{O}_{m, n-m} \tag{A4}\\
\boldsymbol{O}_{n-m, m} & \boldsymbol{O}_{n-m, n-m}
\end{array}\right) \boldsymbol{P}^{\prime}
$$

The results in (A3) and (A4) indicate that $\hat{\boldsymbol{\beta}}_{\boldsymbol{\theta}}$ in (4) and $\operatorname{tr}\left(\boldsymbol{M}_{\boldsymbol{\theta}}^{+} \boldsymbol{M}\right)$ in (7) are independent of $\boldsymbol{\Theta}_{2}$. Consequently, Lemma 2 is proved.

A.3. Proof of Lemma 3

Let \boldsymbol{u} be an n-dimensional vector derived by centralizing \boldsymbol{y}, i.e., $\boldsymbol{u}=$ $\left(\boldsymbol{I}_{n}-\boldsymbol{J}_{n}\right) \boldsymbol{y}$. Moreover, let us decompose \boldsymbol{P} in (A1) to

$$
\begin{equation*}
\boldsymbol{P}=\left(\boldsymbol{P}_{1}, \boldsymbol{P}_{2}\right) \tag{A1}
\end{equation*}
$$

where \boldsymbol{P}_{1} and \boldsymbol{P}_{2} are $n \times m$ and $n \times(n-m)$ matrices, respectively. It follows from the equation $\boldsymbol{X}^{\prime} \mathbf{1}_{n}=\mathbf{0}_{k}$ and (A2) that

$$
\begin{aligned}
\boldsymbol{P}_{1}^{\prime} \boldsymbol{u} & =\left(\boldsymbol{D}^{-1 / 2}, \boldsymbol{O}_{m, k-m}\right) \boldsymbol{Q}^{\prime} \boldsymbol{Q}\left(\begin{array}{cc}
\boldsymbol{D}^{1 / 2} & \boldsymbol{O}_{m, n-m} \\
\boldsymbol{O}_{k-m, m} & \boldsymbol{O}_{k-m, n-m}
\end{array}\right) \boldsymbol{P}^{\prime} \boldsymbol{u} \\
& =\left(\boldsymbol{D}^{-1 / 2}, \boldsymbol{O}_{m, k-m}\right) \boldsymbol{Q}^{\prime} \boldsymbol{X}^{\prime} \boldsymbol{y}
\end{aligned}
$$

Since $\boldsymbol{P}_{1}^{\prime} \boldsymbol{u}$ is equal to $\left(z_{1}, \ldots, z_{m}\right)^{\prime}$ in (8), we write the following n-dimensional vector as z :

$$
\begin{equation*}
\boldsymbol{z}=\left(z_{1}, \ldots, z_{n}\right)^{\prime}=\binom{\boldsymbol{z}_{1}}{\boldsymbol{z}_{2}}=\binom{\boldsymbol{P}_{1}^{\prime} \boldsymbol{u}}{\boldsymbol{P}_{2}^{\prime} \boldsymbol{u}} . \tag{A2}
\end{equation*}
$$

Notice that $\boldsymbol{P}_{2} \boldsymbol{P}_{2}^{\prime}=\boldsymbol{I}_{n}-\boldsymbol{X} \boldsymbol{M}^{+} \boldsymbol{X}^{\prime}$ and $\boldsymbol{X}^{\prime} \boldsymbol{J}_{n}=\boldsymbol{O}_{k, n}$. Thus, we have

$$
\begin{align*}
\boldsymbol{z}_{2}^{\prime} \boldsymbol{z}_{2} & =\boldsymbol{u}^{\prime}\left(\boldsymbol{I}_{n}-\boldsymbol{X} \boldsymbol{M}^{+} \boldsymbol{X}\right) \boldsymbol{u}=\boldsymbol{y}^{\prime}\left(\boldsymbol{I}_{n}-\boldsymbol{J}_{n}\right)\left(\boldsymbol{I}_{n}-\boldsymbol{X} \boldsymbol{M}^{+} \boldsymbol{X}\right)\left(\boldsymbol{I}_{n}-\boldsymbol{J}_{n}\right) \boldsymbol{y} \\
& =(n-m-1) s_{0}^{2} \tag{A3}
\end{align*}
$$

where s_{0}^{2} is given by (10). By using the equation $\boldsymbol{X}^{\prime} \mathbf{1}_{n}=\mathbf{0}_{k}$, and (A4) and (A3), the residual sum of squares in (7) can be rewritten as

$$
\begin{align*}
\left(\boldsymbol{y}-\hat{\boldsymbol{y}}_{\boldsymbol{\theta}}\right)^{\prime}\left(\boldsymbol{y}-\hat{\boldsymbol{y}}_{\boldsymbol{\theta}}\right) & =\boldsymbol{u}^{\prime}\left(\boldsymbol{I}_{n}-\boldsymbol{X} \boldsymbol{M}_{\boldsymbol{\theta}}^{+} \boldsymbol{X}^{\prime}\right)^{2} \boldsymbol{u} \\
& =\boldsymbol{u}^{\prime} \boldsymbol{P}\left\{\boldsymbol{I}_{n}-\left(\begin{array}{cc}
\boldsymbol{D}^{1 / 2}\left(\boldsymbol{D}+\boldsymbol{\Theta}_{1}\right)^{-1} \boldsymbol{D}^{1 / 2} & \boldsymbol{O}_{m, n-m} \\
\boldsymbol{O}_{n-m, m} & \boldsymbol{O}_{n-m, n-m}
\end{array}\right)\right\}^{2} \boldsymbol{P}^{\prime} \boldsymbol{u} \\
& =\boldsymbol{z}_{1}^{\prime}\left\{\boldsymbol{I}_{m}-\boldsymbol{D}^{1 / 2}\left(\boldsymbol{D}+\boldsymbol{\Theta}_{1}\right)^{-1} \boldsymbol{D}^{1 / 2}\right\}^{2} \boldsymbol{z}_{1}+\boldsymbol{z}_{2}^{\prime} \boldsymbol{z}_{2} \\
& =(n-m-1) s_{0}^{2}+\sum_{j=1}^{m}\left(\frac{\theta_{j}}{d_{j}+\theta_{j}}\right)^{2} z_{j}^{2} \tag{A4}
\end{align*}
$$

Moreover, from (A4), $\operatorname{tr}\left(\boldsymbol{M}_{\boldsymbol{\theta}}^{+} \boldsymbol{M}\right)$ can be rewritten as

$$
\begin{align*}
\operatorname{tr}\left(\boldsymbol{M}_{\boldsymbol{\theta}}^{+} \boldsymbol{M}\right) & =\operatorname{tr}\left\{\left(\begin{array}{cc}
\boldsymbol{D}^{1 / 2}\left(\boldsymbol{D}+\boldsymbol{\Theta}_{1}\right)^{-1} \boldsymbol{D}^{1 / 2} & \boldsymbol{O}_{m, n-m} \\
\boldsymbol{O}_{n-m, m} & \boldsymbol{O}_{n-m, n-m}
\end{array}\right)\right\} \\
& =\operatorname{tr}\left\{\left(\boldsymbol{D}+\boldsymbol{\Theta}_{1}\right)^{-1} \boldsymbol{D}\right\}=m-\sum_{j=1}^{m}\left(\frac{\theta_{j}}{d_{j}+\theta_{j}}\right) \tag{A5}
\end{align*}
$$

By substituting (A4) and (A5) into (7), $\operatorname{GCV}(\boldsymbol{\theta})$ is expressed as (13).

A.4. Proof of Theorem 1

Let $\boldsymbol{\delta}=\left(\delta_{1}, \ldots, \delta_{m}\right)^{\prime}$ be an m-dimensional vector whose j th element $\delta_{j} \in[0,1](j=1, \ldots, m)$ is defined by

$$
\delta_{j}=\frac{\theta_{j}}{d_{j}+\theta_{j}}
$$

From Lemma 3, $g\left(\boldsymbol{\theta}_{1}\right)$ in (13) is expressed as the following function with respect to $\boldsymbol{\delta}$:

$$
\begin{equation*}
g\left(\boldsymbol{\theta}_{1}\right)=f(\boldsymbol{\delta})=\frac{r(\boldsymbol{\delta})}{c(\boldsymbol{\delta})^{2}}, \tag{A1}
\end{equation*}
$$

where

$$
r(\boldsymbol{\delta})=\frac{1}{n}\left\{(n-m-1) s_{0}^{2}+\sum_{j=1}^{m} \delta_{j}^{2} z_{j}^{2}\right\}, \quad c(\boldsymbol{\delta})=1-\frac{1}{n}\left\{m+1-\sum_{j=1}^{m} \delta_{j}\right\}
$$

and z_{j} and s_{0}^{2} are given by (8) and (10), respectively. Let $\hat{\boldsymbol{\delta}}=\left(\hat{\delta}_{1}, \ldots, \hat{\delta}_{m}\right)^{\prime}$ be a minimizer of $f(\boldsymbol{\delta})$ in (A1), i.e.,

$$
\hat{\boldsymbol{\delta}}=\arg \min _{\boldsymbol{\delta} \in[0,1]^{m}} f(\boldsymbol{\delta}),
$$

where $[0,1]^{m}$ is the m th Cartesian power of the set $[0,1]$. Notice that

$$
\frac{\partial}{\partial \delta_{\alpha}} f(\boldsymbol{\delta})=\frac{2}{n c(\boldsymbol{\delta})^{3}}\left\{c(\boldsymbol{\delta}) \delta_{\alpha} z_{\alpha}^{2}-r(\boldsymbol{\delta})\right\} .
$$

Hence, we find that a necessary condition of $\hat{\boldsymbol{\delta}}$ is

$$
\hat{\delta}_{j}= \begin{cases}1 & \left(\text { if } h(\hat{\boldsymbol{\delta}})>z_{j}^{2}\right), \tag{A2}\\ h(\hat{\boldsymbol{\delta}}) / z_{j}^{2} & \text { (if } \left.h(\hat{\boldsymbol{\delta}}) \leq z_{j}^{2}\right),\end{cases}
$$

where $h(\hat{\boldsymbol{\delta}})=r(\hat{\boldsymbol{\delta}}) / c(\hat{\boldsymbol{\delta}})$.

Suppose that $h(\hat{\boldsymbol{\delta}}) \in R_{a}$, where $a \in\{0,1, \ldots m\}$, and R_{α} is a range defined by (12). The assumption naturally indicates that R_{a} is not an empty set. Then the equation (A2) leads us to the result that $\hat{\delta}_{j}=1$ when $j \in \mathscr{J}_{a}=\{j \in$ $\left.\{1, \ldots, m\} \mid z_{j}^{2} \leq t_{a}\right\}$ and $\hat{\delta}_{j}=h(\hat{\boldsymbol{\delta}}) / z_{j}^{2}$ when $j \in \mathscr{f}_{a}^{c}=\left\{j \in\{1, \ldots, m\} \mid z_{j}^{2}>t_{a}\right\}$, where t_{j} is given by (9). Notice that

$$
\begin{aligned}
\sum_{j=1}^{m} \hat{\delta}_{j} & =\sum_{j \in \mathscr{F}_{a}} 1+\sum_{j \in \mathscr{F}_{a}^{c}} \frac{h(\hat{\boldsymbol{\delta}})}{z_{j}^{2}}=a+h(\hat{\boldsymbol{\delta}}) \sum_{j=a+1}^{m} \frac{1}{t_{j}}, \\
\sum_{j=1}^{m} \hat{\delta}_{j}^{2} z_{j}^{2} & =\sum_{j \in \mathscr{F}_{a}} z_{j}^{2}+\sum_{j \in \mathscr{q}_{a}^{c}} \frac{h(\hat{\boldsymbol{\delta}})^{2}}{z_{j}^{4}} z_{j}^{2}=\sum_{j=1}^{a} t_{j}+h(\hat{\boldsymbol{\delta}})^{2} \sum_{j=a+1}^{m} \frac{1}{t_{j}} .
\end{aligned}
$$

These imply

$$
\begin{aligned}
& r(\hat{\boldsymbol{\delta}})=\frac{1}{n}\left\{(n-m-1+a) s_{a}^{2}+h(\hat{\boldsymbol{\delta}})^{2} \sum_{j=a+1}^{m} \frac{1}{t_{j}}\right\}, \\
& c(\hat{\boldsymbol{\delta}})=\frac{1}{n}\left\{n-m-1+a+h(\hat{\boldsymbol{\delta}}) \sum_{j=a+1}^{m} \frac{1}{t_{j}}\right\},
\end{aligned}
$$

where s_{α}^{2} is given by (10). It follows from the above equation and the definition of $h(\boldsymbol{\delta})$ that

$$
h(\hat{\boldsymbol{\delta}})=\frac{(n-m-1+a) s_{a}^{2}+h(\hat{\boldsymbol{\delta}})^{2} \sum_{j=a+1}^{m} 1 / t_{j}}{n-m-1+a+h(\hat{\boldsymbol{\delta}}) \sum_{j=a+1}^{m} 1 / t_{j}} .
$$

By solving the above equation, an explicit form of $h(\hat{\boldsymbol{\delta}})$ is given as

$$
h(\hat{\boldsymbol{\delta}})=\left\{\begin{array}{lll}
s_{a}^{2} ; & & \left(\text { when } s_{0}^{2} \neq 0\right) \\
\forall \\
\forall
\end{array},\left(0, t_{1}\right] \quad(a=0) ; \quad s_{a}^{2} \quad(a=1, \ldots, m) ; \quad\left(\text { when } s_{0}^{2}=0\right) .\right.
$$

From Lemma 1, we find that the integer $a \in\{0,1, \ldots m\}$ such that $s_{a}^{2} \in R_{a}$ is uniquely determined as a_{*} when $s_{0}^{2} \neq 0$, where a_{*} is defined by (11), and the integer $a \in\{1, \ldots m\}$ such that $s_{a}^{2} \in R_{a}$ does not exist when $s_{0}^{2}=0$. Therefore, we derive

$$
h(\hat{\boldsymbol{\delta}})= \begin{cases}s_{a_{*}}^{2} & \left(s_{0}^{2} \neq 0\right) \tag{A3}\\ { }^{\forall} h \in\left(0, t_{1}\right] & \left(s_{0}^{2}=0\right)\end{cases}
$$

Recall that $\hat{\delta}_{j}=\hat{\theta}_{j} /\left(d_{j}+\hat{\theta}_{j}\right)$. By using (A2) and (A3), the equations (14) and (15) are obtained.

Finally, from the same calculation as in (A4), the covariance matrix of $\hat{\boldsymbol{\beta}}_{\theta}$ is derived as

$$
\begin{aligned}
\operatorname{Cov}\left[\hat{\boldsymbol{\beta}}_{\boldsymbol{\theta}}\right] & =\sigma^{2} \boldsymbol{M}_{\boldsymbol{\theta}}^{+} \boldsymbol{M} \boldsymbol{M}_{\boldsymbol{\theta}}^{+} \\
& =\boldsymbol{Q}\left(\begin{array}{cc}
\left(\boldsymbol{D}+\boldsymbol{\Theta}_{1}\right)^{-1} \boldsymbol{D}\left(\boldsymbol{D}+\boldsymbol{\Theta}_{1}\right)^{-1} & \boldsymbol{O}_{m, k-m} \\
\boldsymbol{O}_{k-m, m} & \boldsymbol{O}_{k-m, k-m}
\end{array}\right) \boldsymbol{Q}^{\prime} .
\end{aligned}
$$

The equation indicates that a larger θ_{j} reduces the covariance matrix of $\hat{\boldsymbol{\beta}}_{\boldsymbol{\theta}}$. Since the largest h is t_{1}, equation (16) is obtained.

A.5. Proof of Theorem 4

Since \boldsymbol{V} given in (17) and \boldsymbol{D} given in (3) are diagonal matrices, $\boldsymbol{D}^{1 / 2} \boldsymbol{V} \boldsymbol{D}^{-1 / 2}=\boldsymbol{V}$ holds. By using this result, the definition of $\hat{\boldsymbol{\beta}}_{\hat{\boldsymbol{\theta}}}$ in (18), and the singular value decomposition of \boldsymbol{X} in (A2), we derive

$$
\begin{aligned}
\boldsymbol{X} \hat{\boldsymbol{\beta}}_{\hat{\boldsymbol{\theta}}}= & \boldsymbol{P}\left(\begin{array}{cc}
\boldsymbol{D}^{1 / 2} & \boldsymbol{O}_{m, k-m} \\
\boldsymbol{O}_{n-m, m} & \boldsymbol{O}_{n-m, k-m}
\end{array}\right) \boldsymbol{Q}^{\prime} \boldsymbol{Q}_{1} \boldsymbol{V} \boldsymbol{Q}_{1}^{\prime} \boldsymbol{Q} \\
& \times\left(\begin{array}{cc}
\boldsymbol{D}^{-1 / 2} & \boldsymbol{O}_{m, n-m} \\
\boldsymbol{O}_{k-m, m} & \boldsymbol{O}_{k-m, n-m}
\end{array}\right) \boldsymbol{P}^{\prime} \boldsymbol{y}=\boldsymbol{P}_{1} \boldsymbol{V} \boldsymbol{P}_{1}^{\prime} \boldsymbol{y}
\end{aligned}
$$

where \boldsymbol{P}_{1} is given by (A1). This equation leads to another expression of the predictor of $\hat{\boldsymbol{y}}_{\hat{\boldsymbol{\theta}}}$ as

$$
\hat{\boldsymbol{y}}_{\hat{\boldsymbol{\theta}}}=\left(\boldsymbol{J}_{n}+\boldsymbol{P}_{1} \boldsymbol{V} \boldsymbol{P}_{1}^{\prime}\right) \boldsymbol{y}
$$

It follows from the above equation and the result $\boldsymbol{P}_{1}^{\prime} \boldsymbol{P}_{1}=\boldsymbol{I}_{m}$ that

$$
\begin{align*}
\hat{\gamma} & =\frac{\partial}{\partial \boldsymbol{y}^{\prime}}\left(\boldsymbol{J}_{n}+\boldsymbol{P}_{1} \boldsymbol{V} \boldsymbol{P}_{1}^{\prime}\right) \boldsymbol{y}=\operatorname{tr}\left(\boldsymbol{J}_{n}+\boldsymbol{P}_{1} \boldsymbol{V} \boldsymbol{P}_{1}^{\prime}\right)+\sum_{i=1}^{n} \boldsymbol{e}_{i}^{\prime} \boldsymbol{P}_{1}\left(\frac{\partial}{\partial y_{i}} \boldsymbol{V}\right) \boldsymbol{P}_{1}^{\prime} \boldsymbol{y} \\
& =1+\operatorname{tr}(\boldsymbol{V})+\sum_{i=1}^{n} \sum_{j=1}^{m} \boldsymbol{e}_{i}^{\prime} \boldsymbol{p}_{j}\left(\frac{\partial v_{j}}{\partial y_{i}}\right) \boldsymbol{p}_{j}^{\prime} \boldsymbol{y} \\
& =1+\operatorname{tr}(\boldsymbol{V})+\sum_{j=1}^{m}\left(\frac{\partial v_{j}}{\partial \boldsymbol{y}^{\prime}}\right) \boldsymbol{p}_{j} \boldsymbol{p}_{j}^{\prime} \boldsymbol{y} \tag{A1}
\end{align*}
$$

where \boldsymbol{e}_{i} is an n-dimensional vector such that the i th element is 1 and the others are 0 , and \boldsymbol{p}_{j} is the j th column vector of \boldsymbol{P}_{1}, i.e., $\boldsymbol{P}_{1}=\left(\boldsymbol{p}_{1}, \ldots, \boldsymbol{p}_{m}\right)$.

At first, we consider the case of $s_{0}^{2} \neq 0$. Recall that the number of $v_{j} \mathrm{~s}$ that are zero is a_{*}, where a_{*} is given by (11). Thus, $\operatorname{tr}(\boldsymbol{W})=m-a_{*}$ is satisfied, where $\boldsymbol{W}=\operatorname{diag}\left(w_{1}, \ldots, w_{m}\right)$ is given in Theorem 4. Let \boldsymbol{L} be an $m \times m$ diagonal matrix defined by $\boldsymbol{L}=\operatorname{diag}\left(z_{1}^{2}, \ldots, z_{m}^{2}\right)$, where z_{j} is given by (8).

Then, we have

$$
\begin{equation*}
\sum_{j=1}^{m} \frac{w_{j}}{z_{j}^{2}} \boldsymbol{p}_{j} \boldsymbol{p}_{j}^{\prime} \boldsymbol{y}=\boldsymbol{P}_{1} \boldsymbol{W} \boldsymbol{L}^{-1} \boldsymbol{P}_{1}^{\prime} \boldsymbol{y}, \quad \frac{w_{j} s_{a_{*}}^{2}}{z_{j}^{2}}=w_{j}-v_{j}, \tag{A2}
\end{equation*}
$$

where s_{α}^{2} is given by (10). Notice that

$$
\begin{equation*}
\frac{\partial v_{j}}{\partial \boldsymbol{y}}=-\frac{w_{j}}{z_{j}^{4}}\left\{\left(\frac{\partial s_{a_{*}}^{2}}{\partial \boldsymbol{y}}\right) z_{j}^{2}-s_{a_{*}}^{2}\left(\frac{\partial z_{j}^{2}}{\partial \boldsymbol{y}}\right)\right\} \tag{A3}
\end{equation*}
$$

and $\partial s_{a_{*}}^{2} / \partial \boldsymbol{y}$ does not depend on j. From the above results and (A2), the last part of (A1) is expressed as

$$
\begin{align*}
\sum_{j=1}^{m}\left(\frac{\partial v_{j}}{\partial \boldsymbol{y}^{\prime}}\right) \boldsymbol{p}_{j} \boldsymbol{p}_{j}^{\prime} \boldsymbol{y} & =-\sum_{j=1}^{m} \frac{w_{j}}{z_{j}^{4}}\left\{\left(\frac{\partial s_{a_{*}}^{2}}{\partial \boldsymbol{y}^{\prime}}\right) z_{j}^{2}-s_{a_{*}}^{2}\left(\frac{\partial z_{j}^{2}}{\partial \boldsymbol{y}^{\prime}}\right)\right\} \boldsymbol{p}_{j} \boldsymbol{p}_{j}^{\prime} \boldsymbol{y} \\
& =-\left(\frac{\partial s_{a_{*}}^{2}}{\partial \boldsymbol{y}^{\prime}}\right) \boldsymbol{P}_{1} \boldsymbol{W} \boldsymbol{L}^{-1} \boldsymbol{P}_{1}^{\prime} \boldsymbol{y}+\sum_{j=1}^{m} \frac{w_{j}-v_{j}}{z_{j}^{2}}\left(\frac{\partial z_{j}^{2}}{\partial \boldsymbol{y}^{\prime}}\right) \boldsymbol{p}_{j} \boldsymbol{p}_{j}^{\prime} \boldsymbol{y} . \tag{A4}
\end{align*}
$$

On the other hand, by using the same method as in Appendix A.3, $s_{a_{*}}^{2}$ and z_{j}^{2} are rewritten as

$$
s_{a_{*}}^{2}=\frac{1}{n-m-1+a_{*}} \boldsymbol{y}^{\prime}\left\{\boldsymbol{P}_{2} \boldsymbol{P}_{2}^{\prime}+\boldsymbol{P}_{1}\left(\boldsymbol{I}_{m}-\boldsymbol{W}\right) \boldsymbol{P}_{1}^{\prime}\right\} \boldsymbol{y}, \quad z_{j}^{2}=\left(\boldsymbol{p}_{j}^{\prime} \boldsymbol{y}\right)^{2}
$$

where \boldsymbol{P}_{2} is given by (A1). These equations imply that

$$
\begin{equation*}
\frac{\partial s_{a_{*}}^{2}}{\partial \boldsymbol{y}}=\frac{2}{n-m-1+a_{*}}\left\{\boldsymbol{P}_{2} \boldsymbol{P}_{2}^{\prime}+\boldsymbol{P}_{1}\left(\boldsymbol{I}_{m}-\boldsymbol{W}\right) \boldsymbol{P}_{1}^{\prime}\right\} \boldsymbol{y}, \quad \frac{\partial z_{j}^{2}}{\partial \boldsymbol{y}}=2 \boldsymbol{p}_{j} \boldsymbol{p}_{j}^{\prime} \boldsymbol{y} \tag{A5}
\end{equation*}
$$

It follows from $\boldsymbol{P}_{1}^{\prime} \boldsymbol{P}_{1}=\boldsymbol{I}_{m}, \boldsymbol{P}_{2}^{\prime} \boldsymbol{P}_{1}=\boldsymbol{O}_{n-m, m}, \boldsymbol{W}^{2}=\boldsymbol{W}$, and $z_{j}=\boldsymbol{p}_{j}^{\prime} \boldsymbol{y}$ that

$$
\begin{equation*}
\boldsymbol{y}^{\prime}\left\{\boldsymbol{P}_{2} \boldsymbol{P}_{2}^{\prime}+\boldsymbol{P}_{1}\left(\boldsymbol{I}_{m}-\boldsymbol{W}\right) \boldsymbol{P}_{1}^{\prime}\right\} \boldsymbol{P}_{1} \boldsymbol{W} \boldsymbol{L}^{-1} \boldsymbol{P}_{1}^{\prime} \boldsymbol{y}=0, \quad \frac{1}{z_{j}^{2}} \boldsymbol{y}^{\prime} \boldsymbol{p}_{j} \boldsymbol{p}_{j}^{\prime} \boldsymbol{p}_{j} \boldsymbol{p}_{j}^{\prime} \boldsymbol{y}=1 . \tag{A6}
\end{equation*}
$$

By using (A6) after substituting (A5) into (A4), we derive

$$
\begin{equation*}
\sum_{j=1}^{m}\left(\frac{\partial v_{j}}{\partial \boldsymbol{y}^{\prime}}\right) \boldsymbol{p}_{j} \boldsymbol{p}_{j}^{\prime} \boldsymbol{y}=2 \sum_{j=1}^{m}\left(w_{j}-v_{j}\right)=2\{\operatorname{tr}(\boldsymbol{W})-\operatorname{tr}(\boldsymbol{V})\} . \tag{A7}
\end{equation*}
$$

Next, we consider the case of $s_{0}^{2}=0$. In order to give the proof, it is only necessary to replace $\partial s_{a_{*}}^{2} / \partial \boldsymbol{y}$ in (A3) with $\partial t_{1} / \partial \boldsymbol{y}$, where t_{j} is given by (9). Notice that $t_{j}=\boldsymbol{y}^{\prime} \boldsymbol{P}_{1}\left(\boldsymbol{I}_{m}-\boldsymbol{W}\right) \boldsymbol{P}_{1}^{\prime} \boldsymbol{y}$. Thus, by using the same method that
was used in the proof of the case $s_{0}^{2} \neq 0$, we can see that the equation (A7) is satisfied even when $s_{0}^{2}=0$. Consequently, equation (20) is derived from (A1) and (A7).

Acknowledgement

The author thanks Prof. Hirofumi Wakaki, Hiroshima University, for helpful comments on the proof of the uniqueness of the solution, and the referee for helpful suggestions.

References

[1] A. C. Atkinson, A note on the generalized information criterion for choice of a model, Biometrika, 67 (1980), 413-418.
[2] F. S. M. Batah, T. V. Ramanathan and S. D. Gore, The efficiency of modified jackknife and ridge type regression estimators: a comparison, Surv. Math. Appl., 3 (2008), 111-122.
[3] P. Craven and G. Wahba, Smoothing noisy data with spline functions: estimating the correct degree of smoothing by the method of generalized cross-validation, Numer. Math., 31 (1979), 377-403.
[4] N. R. Draper and H. Smith, Applied regression analysis (2nd. ed.). John Wiley \& Sons, Inc., New York, 1981.
[5] B. Efron, The estimation of prediction error: covariance penalties and cross-validation, J. Amer. Statist. Assoc., 99 (2004), 619-632.
[6] J. Fan and J. Lv, A selective overview of variable selection in high dimensional feature space, Stat. Sinica, 20 (2010), 101-148.
[7] G. H. Golub, M. Heath and G. Wahba, Generalized cross-validation as a method for choosing a good ridge parameter, Technometrics, 21 (1979), 215-223.
[8] C. Gu and G. Wahba, Minimizing GCV/GML scores with multiple smoothing parameters via the Newton method, SIAM J. Sci. Statist. Comput., 12 (1991), 383-398.
[9] D. A. Harville, Matrix algebra from a statistician's perspective, Springer-Verlag, New York, 1997.
[10] A. E. Hoerl and R. W. Kennard, Ridge regression: biased estimation for nonorthogonal problems, Technometrics, 12 (1970), 55-67.
[11] D. R. Jensen and D. E. Ramirez, Surrogate models in ill-conditioned systems, J. Statist. Plann. Inference, 140 (2010), 2069-2077.
[12] M. Jimichi, Exact moments of feasible generalized ridge regression estimator and numerical evaluations, J. Japanese Soc. Comput. Statist., 21 (2008), 1-20.
[13] J. F. Lawless, Mean squared error properties of generalized ridge regression, J. Amer. Statist. Assoc., 76 (1981), 462-466.
[14] R. X. Liu, J. Kuang, Q. Gong and X. L. Hou, Principal component regression analysis with SPSS, Comput. Meth. Prog. Bio., 71 (2003), 141-147.
[15] X. Q. Liu and H. Y. Jiang, Optimal generalized ridge estimator under the generalized crossvalidation criterion in linear regression, Linear Algebra Appl., 436 (2012), 1238-1245.
[16] C. L. Mallows, Some comments on C_{p}, Technometrics, 15 (1973), 661-675.
[17] C. L. Mallows, More comments on C_{p}, Technometrics, 37 (1995), 362-372.
[18] I. Nagai, H. Yanagihara and K. Satoh, Optimization of ridge parameters in multivariate generalized ridge regression by plug-in methods, Hiroshima Math. J., 42 (2012), 301-324.
[19] R. Smyth, P. K. Narayan and H. Shi, Substitution between energy and classical factor inputs in the Chinese steel sector, Appl. Energ., 88 (2011), 361-367.
[20] M. S. Srivastava and T. Kubokawa, Empirical Bayes regression analysis with many regressors but fewer observations, J. Statist. Plann. Inference, 137 (2007), 3778-3792.
[21] M. Stone, Cross-validatory choice and assessment of statistical predictions, J. Roy. Statist. Soc. Ser. B, 36 (1974), 111-147.
[22] S. G. Walker and C. J. Page, Generalized ridge regression and a generalization of the C_{p} statistic, J. Appl. Statist., 28 (2001), 911-922.
[23] S. N. Wood, Modelling and smoothing parameter estimation with multiple quadratic penalties, J. Roy. Statist. Soc. Ser. B, 62 (2000), 413-428.
[24] H. Yanagihara, A non-iterative optimization method for smoothness in penalized spline regression, Stat. Comput., 22 (2012), 527-544.
[25] H. Yanagihara and K. Satoh, An unbiased C_{p} criterion for multivariate ridge regression, J. Multivariate Anal., 101 (2010), 1226-1238.
[26] H. Yanagihara, I. Nagai and K. Satoh, A bias-corrected C_{p} criterion for optimizing ridge parameters in multivariate generalized ridge regression, Japanese J. Appl. Statist., 38 (2009), 151-172 (in Japanese).
[27] J. Ye, On measuring and correcting the effects of data mining and model selection, J. Amer. Statist. Assoc., 93 (1998), 120-131.

Hirokazu Yanagihara

Department of Mathematics
Graduate School of Science
Hiroshima University
1-3-1 Kagamiyama Higashi-Hiroshima Hiroshima 739-8626 Japan
E-mail: yanagi-hiro@hiroshima-u.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary 62J07; Secondary 62F07.
 Key words and phrases. Explicit optimal solution, Generalized ridge regression, Generalized crossvalidation criterion, Linear regression model, High-dimensional explanatory variables, Multiple ridge parameters, Principal component regression, Selection of ridge parameters.

