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ABSTRACT. In this paper, we prove that a localization principle for biholomorphic
mappings between equidimensional Fock-Bargmann-Hartogs domains holds. As an
application of this, we show that any proper holomorphic mapping between two
equidimensional Fock-Bargmann-Hartogs domains satisfying some condition is neces-
sarily a biholomorphic mapping.

1. Introduction and results

Let D; and D, be two domains in CV. Then we say that the localization
principle for biholomorphic mappings between D; and D, holds if the following
(1) is fulfilled:

(t) For some open subsets U;, U, in €V with U, néD; # &, U, N D,
# (&, any biholomorphic mapping f : U} — U, satisfying

f(UlﬂDl)CDz, f(UlﬂaDl)CaDz

extends to a biholomorphic mapping F : D; — D,.

Of course, the localization principle for biholomorphic mappings does not
hold, in general, without any other assumptions on the domains D; or D,.
Indeed, as a typical example, consider the following domains D;, D, in € and
a mapping /s : €> — C? defined by

Dy ={(zw) e CHlz + wl* <1}, Dy={(u,v) e €% Jul* +[o]” < 1}
and (u,0) = h(z,w) = (z,w?) for (z,w) e C*.

Take a point (z,,w,) € Dy with w, # 0 and let U; be a sufficiently small open
neighborhood of (z,,w,) in @©?. Then h gives rise to a biholomorphic
mapping, say f : U — U, := h(U;) satisfying the condition in (f); while f
does not extend to a biholomorphic mapping from D; onto D,. However,
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there already exist several articles showing the existence of domains D, D, in
C” for which the localization principle (t) holds. See, for instance, Alexander
[1, 2], Pinchuk [18, 19, 20], Dini-Primicerio [§8] and Kodama [13].

The main purpose of this paper is to prove that the localization prin-
ciple for biholomorphic mappings between equidimensional Fock-Bargmann-
Hartogs domains in €" holds. In order to state our precise results, let us
define the Fock-Bargmann-Hartogs domain D, ,,(u) according to Yamamori
[27] as follows:

Do) = {(z.w) € € x € = Vs Jw]|> < e #I17},

where 0 < g€ R and n,m e N with N =n+m. This is an unbounded strictly
pseudoconvex domain in €V with real analytic boundary. Since the complex
Euclidean space C" is now imbedded in D, ,,(#) in the canonical manner, it is
not hyperbolic in the sense of Kobayashi [12].

Now we can state our results as follows:

THEOREM 1. Let Dy = Dy, (1t1), D2 = Dy m, (1t2) be two equidimensional
Fock-Bargmann-Hartogs domains in CV with p;, € dD\, p» € 0D,. Assume that

(1) my >2, nmp >2;

(2) there are open neighborhoods U, of pi, U, of p, in €V and a biholo-
morphic mapping f: Uy — Uy such that f(p1) = p2, f(U NDy)C Dy and
f(U] n 6D1) C 0D;.

Then [ extends to a biholomorphic mapping from D onto D,. In par-
ticular, we have (nj,my) = (ny,my).

Recall that any proper holomorphic mapping f : D; — D, between two
equidimensional Fock-Bargmann-Hartogs domains D, D, in €V extends holo-
morphically to an open neighborhood of Dy, the closure of D; in €V, by
Tu-Wang [23; Theorem 2.5]. Then, as an application of Theorem 1, we can
prove the following:

THEOREM 2. Let Dy = Dy, (1), D2 = Dy, (1p) be two equidimensional
Fock-Bargmann-Hartogs domains in C". Assume that my >2. Then every
proper holomorphic mapping f : Di — D, is necessarily a biholomorphic mapping
from Dy onto D-.

This Theorem 2 was first proved by Tu-Wang in [23; Theorem 1.1]. In
fact, after showing the theorem on the holomorphic extendability beyond the
boundary dD; of proper holomorphic mapping f : D; — D, between equidi-
mensional Fock-Bargmann-Hartogs domains D;, D, in cV , they proved
Theorem 2 as their main result in [23] by making use of some known facts
in algebraic geometry. Our proof here of Theorem 2 is completely different
from theirs; we employ an elementary method in Lie group theory.
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Finally it should be remarked that the assumptions m; > 2, m; > 2 in
Theorem 1 and m; > 2 in Theorem 2 cannot be dropped. Indeed, as in Tu-
Wang [23], consider the following Fock-Bargmann-Hartogs domain D, ;(u)
and the mapping @ : C" x C — C" x C defined by

Dy i(p) = {(z,w) e C" x C; |w|* < e”‘”z“z} and
D(z,w) = (V2z,w?) for (z,w) e C" x C.

Then it is easily checked that @ gives rise to a proper holomorphic self-
mapping of D, (x) that is not injective on D, (u). Moreover, for any
point p; € 0D, 1(u), one can choose open neighborhoods U; of p; and U, of
p2:=®D(p1) € 0D, 1 () in such a way that @ defines a biholomorphic map-
ping f: Uy — U, satisfying the same condition as in (2) of Theorem 1. But
S Uy — U, does not extend to an automorphism of D, i(u).

Our proof of Theorem 1 is based on three main facts: a well-known fact
concerning the global extension of locally defined CR-diffeomorphisms between
two strictly pseudoconvex real analytic hypersurfaces in €V by Pinchuk [19,
20]; an important fact regarding the existence of CR-invariant Riemannian
metrics on strictly pseudoconvex real analytic hypersurfaces without umbilical
points by Webster [25, 26]; and a fact on the structure of holomorphic auto-
morphism groups of the Fock-Bargmann-Hartogs domains by Kim-Ninh-
Yamamori [10]. On the other hand, for the proof of Theorem 2, we need
some lemma, which will be shown by using an elementary method in Lie group
theory. Once this lemma has been verified, we obtain Theorem 2 as a direct
consequence of Theorem 1.

After investigating the structure of the Fock-Bargmann-Hartogs domains
closely in Section 2, we prove our theorems in Sections 3 and 4.

Notation. Throughout this paper we use the following notation: For a
given n e IN and open subsets V', W of C", we denote by

* U(n) the unitary group of degree n;

* (-,-> (resp. ||-]|) the standard Hermitian inner product (resp. its
associated norm) on C";

o B"={{eC"|| <1}, the unit open ball in C";

e 0V (resp. V) the boundary (resp. closure) of V in C”;

e VEW if the closure V of V is a compact subset of W.
Let D be a domain in C" and F : D — €" a holomorphic mapping. Then we
denote by

e Aut(D) the group of all holomorphic automorphisms of D equipped
with the compact-open topology. Thus the topology of Aut(D) satisfies the
second axiom of countability;
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* (D) the set consisting of all complete holomorphic vector fields on D;
* F|g:S8— C" the restriction of F to S, where S is a subset of D;

* Jr({) the complex Jacobian determinant of F at (e D; and

. Vp={CeDJr() =0}

2. Preliminaries

For later purpose, we collect several facts on the structure of Fock-
Bargmann-Hartogs domains in this section.
For a given Fock-Bargmann-Hartogs domain

Dym(p) = {(z,w) € €" x €3 |w||* < e‘””"”z}
in €Y =" x C", we set for a while
D = D, ,(1), Ap ={(z,w) e D;w =0} = C" and D* = D\4p.
First of all, we have the following:

THEOREM A (Kim-Ninh-Yamamori [10; Theorem 10]). The automorphism
group Aut(D) of the Fock-Bargmann-Hartogs domain D is generated by the
Sfollowing mappings:

0y (z,w) = (Az,w), A e U(n);

@g: (z,w) — (z, Bw), Be U(m);

0, (2,w) = (2 + v, e GO W2y, ve "
Hence the following assertions are easily verified:

Fact 1. The boundary 0D of D is a connected, strictly pseudoconvex real
analytic hypersurface in C"; moreover, it is simply connected if m > 2;

FACT 2. Aut(D) can be regarded as a closed subgroup of Aut(CY) and the
Aut(D)-action on D (resp. on 0D) is just the restriction of the Aut(D)-action on
cV to D (resp. to 0D);

Fact 3. 0D is invariant under the Aut(D)-action and moreover Aut(D)
acts transitively on 0D as a real analytic CR-automorphism group of 0D.

In particular, via the natural action of the product group U(n) x U(m) on
C" x €", one can identify U(n) x U(m) with a compact connected subgroup
of Aut(D). Accordingly, the compact connected Lie groups U(n), U(m) and
SU(m) can be naturally regarded as topological subgroups of Aut(D), where
SU(m) is the special unitary group of degree m.
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For later use, let us investigate the structure of Aut(D) more closely. Let
Fp and dp be the infinitesimal Kobayashi pseudometric and the Kobayashi
pseudodistance of D, respectively, introduced by Kobayashi [12]. Then it
is well-known that Fp and dp are invariant under the Aut(D)-action on D.
Here, putting { = ({;,...,{y) = (z,w), let us define a real analytic function u
on CV by

u(C) = |w]’e"FI” for ce” 2.1

and consider its complex Hessian form

N a2u(c) B N
H,((1) = =i for t=(11,...,t oV
(C ) l; 0(,0@ J or ( . N) .

Then, for any point {, = (a,b) e €" x €" = C", we have
1) = el £ 2112 2 21112 YORDY 2
Hy({o3 1) = VU {2 ||bI17<a, up ™ + w7l |~ + 2 Re(<a, up<b, v)) + [|v]| "}
> el { (bl [<a, ] = [[ol])? + wl| b |ul|*} = 0

for all £ = (u,v) e €" x €™ = C" by Schwarz’s inequality. Thus u is a pluri-
subharmonic function on €V with 0 <u({) <1 on D and moreover it is a
strictly plurisubharmonic function on D* with 0 < u({) < 1 on D*. Hence, by
a result of Sibony [22; Theorem 3], D is hyperbolic at every point p € D*, that
is, there are an open neighborhood U of p in D and a positive constant ¢ such
that Fp(q; &) = c||€|| for all ¢ € U, where ||£|| denotes the norm of the tangent
vector ¢ with respect to a fixed Hermitian metric on D. Therefore, dp induces
a true distance on D* by a result of Royden [21]; accordingly, D* is hyperbolic
in the sense of Kobayashi [12], since dp-(p,q) = dp(p,q) for any p,qe D*.
On the other hand, it is trivial that dp =0 on 4p = €". Consequently, A4p is
just the degeneracy set for the pseudodistance dp (cf. [12; p. 68]). In par-
ticular, Aut(D*) has the structure of a real Lie group. Moreover, since dp as
well as Fp is invariant under the action of Aut(D), we have

p(4p) = dp,  @(D*)=D*  for all p e Aut(D).

Thus the natural restriction mapping @ : Aut(D) — Aut(D*) gives now an
injective continuous homomorphism from Aut(D) into Aut(D*). Here we
assert that the image ®(Aut(D)) is closed in Aut(D*); consequently, Aut(D)
has also the structure of a real Lie group. Although, in the proof below of
this assertion, there is some overlap with the recent paper by Nagata [15],
we carry out the proof in detail for the sake of completeness and self-
containedness. So, take a sequence {¢,} in Aut(D) arbitrarily and assume
that {&(p,)} converges to an element ¢ € Aut(D*). Since the Kobayashi dis-
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tance dp+ induces the Euclidean topology on D* by Barth [3], this assumption
is equivalent to the following:

lim dp-(p,(x),p(x)) =0 uniformly on compact subsets of D*.

V—00

Thus, for any compact subset K of D*, we have

lim dp-(p, " (x), 9 (x)) = lim dp-(p, " (p(»)), »)

V— 00 V— 00

= VILIE dp-(p(y),0,(»)) =0  uniformly on K,
since Aut(D*) is an isometry group of D* with respect to dp-, where we have
put y = ¢~ !(x) for x € K; accordingly, {®(p,!)} converges to ¢p~! in Aut(D*).
Here we claim that ¢ (resp. ¢~ ') extends to a holomorphic mapping ¢ (resp.
¢~!) from D into D C € such that the sequence {p,} (resp. {p;'}) converges
to ¢ (resp. ¢~!) uniformly on compact subsets of D. To prove our claim, it
suffices to show that, for any point p € 4p, there exists an open neighborhood
U, of p such that ¢ (resp. ¢~') extends to a holomorphic mapping ¢ (resp. )
from U, into €V such that {p,} (resp. {p;'}) converges to ¢ (resp. p~1)
uniformly on U,. For this purpose, letting p = (z{,...,z7,0,...,0), we con-
sider the polydisc

A(p;r) ={(z,w); |z} —zi| <r, lw| <r (1<i<m 1<j<m)}

in C" x €. Then, for a sufficiently small r > 0, we have p € 4(p;r) € D and

on A(p,r),v=12,...,

1 (2, Wi W1, E)
AGE] =5 d
#(2,W) 2mi Jflr E—wy, ¢

by the Cauchy integral formula. Define now a holomorphic mapping
¢:A(p;r) — €V by setting

1 J (p(szlv'“;wmflvé)
<]=r

3 — dé on A(p,r).

o(z,w) =

Since {¢p,} converges to ¢ uniformly on compact subsets of D*, it then follows
that {p,} converges to ¢ uniformly on any connected open neighborhood
U, of p with U, €4(p;r) and ¢ =¢ on U,\4p. Analogously we have the
same conclusion for ¢!, as claimed. Moreover, note that, if #: D — C" is a
non-constant holomorphic mapping with A(D) C D, then h(D) C D. Indeed,
assume that A({,) =: pedD for some point {,e D. Then u(h({,)) =1,
u(h(¢)) <1 on D and hence u(h({))=1 for all {e D by the maximum
principle for the plurisubharmonic function o/ defined on D, where u is
the function appearing in (2.1). In view of the strict plurisubharmonicity of u
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on D* this implies that 4#({)=p on D, a contradiction. Therefore we
conclude that

—

¢(D) C D, p~Y(D)C D and po@p~ o1 = =idp = o1 o 17 on D.

Thus ¢ € Aut(D) and @(¢) = ¢; proving the closedness of @(Aut(D)) in
Aut(D*), as asserted.

Now, denoting by IT the subgroup of Aut(D) generated by all elements
of {p,;ve C"}, we assert that IT is a connected closed subgroup of Aut(D) of
dimg /7 =2n+ 1. For this, we introduce the one-parameter subgroup # of
Aut(D) consisting of all transformations Ry : (z,w) +— (z,ew), 0 e R. Then
Z is the center of the subgroup U(m) of Aut(D) with U(m) = # - SU(m) and,
for any two elements v,v’ € €", we have

0,0 0,(z,w) = (z4 v+, e*ﬂ<z,v+v’>7(ﬂ/2)HUH"Hze(*u Im<v’-,v>)iw)
= @y © Ry(z,w) with 0 = —u Im{v', v).

Thus ¢, =idp and ¢;! = ¢_, for every ve €". In addition to this, note that
¢,0Rg=Ryogp, for all ve C" and all 6 e R. Then it is not difficult to check
that the set I7':= {p, 0 Ry;v e C",0 € R} becomes a connected closed sub-
group of Aut(D) of dimg [’ =2n+1 and IT C II'. Once it is shown that
2 C II, we conclude that [T’ C IT and hence IT = IT' satisfies all the require-
ments in our assertion. Therefore we have only to show that 2 C II. To
this end, take two elements ¢,, ¢, arbitrarily and compute their commutator
[0, 00] =0, 1 op,t op,0p,. Then we have

[@,, 9,/] = Ry with 0 = —2u Im<{v’, v);
accordingly, for any v, € €" with |jv,]| =1,

[¢tv07 wtivu] = R72,u127 [¢tivn’ (ptva] = R2,ut2 for all 7€ IR.

Clearly this implies that # C I1, as desired.

Next we consider the centralizer of SU(m) in Aut(D) and denote it by
Cauw(p)(SU(m)). Then it is obvious by Theorem A that Cayyp)(SU(m)) is
generated by all the elements of the set {p,;veC"}UU(n)UR; so that
Aut(D) = Cauyp)(SU(m)) - SU(m) and IT is a subgroup of Cayyp)(SU(m)).
More precisely, since ¢, 0¢,0¢,' =¢,, for any A€ U(n) and ve C", IT is
a normal subgroup of Cay(p)(SU(m)) and, in fact, Cayyp)(SU(m)) = I1 - U(n)
with [TNU(n) = {idp}. Notice that Cauyp)(SU(m)) N SU(m) = %N SU(m)
is a finite subgroup of Aut(D) of order m. Hence Aut(D) =1 -U(n)- - SU(m)
and dimg Aut(D) = 2n+ 1) +n? + (m> — 1) = n*> + m? + 2n.  As a result, we
have obtained the following:
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Fact 4. Aut(D) is a connected Lie group of dimg Aut(D) = n?> + m? + 2n.

In this case, it is well-known that the Lie algebra g of Aut(D) can be
canonically identified with some Lie subalgebra g* of ¥(D), the Lie algebra
consisting of all differentiable vector fields on D (cf. [14; pp. 236-237]). More
precisely, we here assert that g can be identified with g(D), that is, the set
g(D) of all complete holomorphic vector fields on D becomes a Lie subalgebra
of X(D) and g* coincides with g(D). Indeed, the Lie group Aut(D) endowed
with the compact-open topology acts continuously on D. Hence, the action
is real analytic by [6]. Moreover, we know that Aut(D) satisfies the second
axiom of countability. Then, by Theorem VI in [17; p. 101], the group Aut(D)
is a Lie transformation group of D in the sense of Definition V in [17; p. 101];
consequently, the Lie algebra g can be identified with g(D) (cf. [17; p. 103,
Theorem VII]), as asserted. Anyway, this fact will be used in Section 4.

Next, let D be the Fock-Bargmann-Hartogs domain in €V and let K
be the Bergman kernel function for D. Then, by making use of an explicit
formula for Kp in terms of the polylogarithm function by Yamamori [27],
Tu-Wang [23; Theorem 2.3] verified that Kp({,#) extends holomorphically in {
to some open neighborhood of the closure D of D. Thanks to this extension
theorem together with Bell’s transformation rule for Bergman kernels under
proper holomorphic mappings, they obtained the following:

THEOREM B (Tu-Wang [23; Theorem 2.5]). Let Dy, D, be two equidimen-
sional Fock-Bargmann-Hartogs domains in C~ and f : Dy — D> a proper holo-
morphic mapping. Then f extends holomorphically to an open neighborhood W
of Di.

We finish this section by the following fact which is an immediate con-
sequence of the invariance of degeneracy sets for Kobayashi pseudodistances
under biholomorphic mappings (cf. [23; Theorem 1.2]):

Fact 5. Let Dy = Dy, (1) and Dy = Dy, m,(1t5) be two Fock-Bargmann-
Hartogs domains in €' and €, respectively, where N;=n;j+m; for j=1,2.
Then D is biholomorphically equivalent to D, if and only if Dy is linearly
equivalent to D, that is, there exists a non-singular linear mapping L : C"' —
C™ such that L(D\) = D,. Moreover, this can only happen when (ny,m;) =
(na,my); and every biholomorphic mapping f : Dy — D, can be written in the
form

fz,w) = o(N 1y /paz, w), (z,w) € Dy, with some ¢ € Aut(D).

In fact, it is clear that D; is biholomorphically equivalent to D,, if D is
linearly equivalent to D,. Conversely, assume that there exists a biholomor-
phic mapping ¢ : D; — D,. Then we have that Ny = N, and dp,(g(p),9(q)) =
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dp,(p,q) for any points p,q € D;. On the other hand, we know that 4p,, 4p,
are the degeneracy sets for dp,, dp,, respectively. Thus it follows at once that
g(4p,) = 4p, and ¢ induces a biholomorphic mapping from 4p, =~ C™ onto
Ap, = €C™. Consequently, we have n; =n, and so m; =m,. In the case
where (n1,m;) = (ny,my), it is easy to see that the non-singular linear map-
ping L: C" x €™ — €™ x C"™ defined by L(z,w) = (\/u;/thz,w) for (z,w) €
C™ x C™ gives a linear equivalence between D; and D,. In particular, for
every biholomorphic mapping f : D; — D,, we obtain that ¢:= foL '€
Aut(D,) and hence f =¢o L on Dj; proving our assertion.

3. Proof of Theorem 1

Our proof of Theorem 1 will be carried out along the same line as in the
previous paper [13]. Before undertaking the proof, we need to introduce one
terminology. Let D be a domain in €V and let p € dD. Then the boundary
point p is said to be spherical if the following condition (f) is fulfilled:

(1) There are an open neighborhood U of p in €" and a biholomorphic
mapping f from U into €V such that f(UN D)= f(U)NBY and f(U N D)
= f(U)noBY.

The following lemma will play a crucial role in our proof of Theorem 1.

Lemma 1. Let D = D, ,,(u) be the Fock-Bargmann-Hartogs domain in
CV.  Assume that m > 2. Then there is not a spherical boundary point of D.

Proor. To derive a contradiction, assume to the contrary that there exists
a spherical boundary point p of D, so that the condition (1) is fulfilled for some
connected open neighborhood U of p and a biholomorphic mapping f: U —
f(U)c V. Since dD is a connected strictly pseudoconvex real analytic
hypersurface in €%, it follows from a result of Pinchuk [19; Proposition 1.2],
[20; p. 193] that f can be continued along any path lying in ¢D as a locally
biholomorphic mapping. Since 0D is now simply connected by our assump-
tion m > 2, the monodromy theorem guarantees that f extends to a locally
biholomorphic mapping F defined on some connected open neighborhood V' of
aD in €V such that F(0D) c 0BY and F(V N D) c BY. Now we will proceed
in steps.

(1) F extends to a holomorphic mapping F from D into BN. To prove
this, take an arbitrary r € R with r > 1 and put

K ={(zw) e @ x € |lzl| <, [w] = e WY,

Since K, C 0D C V and K, is compact in ¥, one can choose a small ¢ =
¢(r) > 0 in such a way that
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Uo = {(z,w) e C" x C"; ||z]| <,

e WP g < |l < e W2 1 g)

Clearly, U, , is a bounded Reinhardt domain in €. Moreover, since m > 2,
we have that

U N{e@;, =0} # F for k=1,...,N

where we have set (z,w)=({,...,{y)={_ Hence, by a well-known fact
[16; p. 15], every component function F; of F has a holomorphic extension Fj
to the domain

Uy o= {(z,w) € ©" x € |lz]| < 1, |[w]| < ™" 4 g3,

the smallest complete Reinhardt domain in €V containing U, .. In particular,
putting
D, = {(z,w) e ©" x T ||z[| < r, |[w]| < e~ W27,

we see that F = (Fy,...,Fy) has a holomorphic extension F":= (F/,...,Fy)
to D,UV. Note that D, C Dy for 1 <r<s, J;.,.., Dr =D and that the
holomorphic extensions F” are uniquely determined by the values of F on a
small neighborhood of an arbitrarily given point (0,w,) € dD. Then, by stan-
dard argument, one can define a holomorphic extension F: DUV — €V o
F:V -V

Now we wish to show that F(D)cC BY. To this end, let us fix an
arbitrary point (z,,w,) € D and define an open ball

D(Zo) = {W € (]:m; HW||2 < e*l‘”Zqu} in €™,

Clearly w, € D(z,). Consider here the non-constant, real analytic plurisub-
harmonic function V : w— —1 + ||F(z,, w)||* defined on some open neighbor-
hood of the closure D(z,) in €". Then Y (dD(z,)) =0 and yY(w) <0 on
D(z,) NV (regarding D(z,) as a subset of D in the canonical manner). This,
combined with the maximum principle for plurisubharmonic functions, guar-
antees that y(w,) <0, ie., F(z,,w,) € BY and accordingly F(D)cC BY, as
desired.

(2) There is a locally injective, real analytic homomorphism @ : Aut(D) —
Aut(BY) such that ®(p)oF=Fo¢ on D for all p € Aut(D). Indeed, fix
a point p e dD and take an arbitrary element ¢ € Aut(D). Then one can
choose a connected, small open neighborhood W of p in such a way that
W Ug(W)C V and F is injective on W and on ¢(W). Let us consider the
biholomorphic mapping

¢:=Fopo(Fly) : F(W) — Fp(W)).



A localization principle for biholomorphic mappings 181

Clearly ¢ satisfies the following:
pFW)NBY)YcBY  and  @(F(W)naBY) c oB".

Hence, by the main result of Alexander [1], ¢ extends to a holomorphic auto-
morphism, say again ¢, of BY. Note that W ND and F(W N D) are non-
empty open subsets of D and BY, respectively. Then, by the principle of
analytic continuation, we have that o F = Fogp on D and ¢ e Aut(B") is
uniquely determined by ¢. Accordingly, one can define a mapping

@ : Aut(D) — Aut(BY) by setting D(p) = ¢,

so that ®@(p)oF = Fog on D for all ¢ e Aut(D).

It is easy to check that @ is a group homomorphism. Once it is shown
that @ is continuous at the identity element idp of Aut(D), it follows that @ is
real analytic on the Lie group Aut(D) (cf. [9; p. 117]). Since the topology of
Aut(D) satisfies the second axiom of countability, we have only to show that @
is sequentially continuous at idp. For this, let us take an arbitrary sequence
{p,} in Aut(D) which converges to idp and assume that {&D(p,)} does not
converge to the identity element idgy of Aut(BY). Passing to a subsequence,
if necessary, we may assume that there is an open neighborhood O of idg~v in
Aut(BY) such that @(p,) ¢ O for all v. Pick an arbitrary point { € D. Then

lim @(p,)(F(0)) = lim F(p,(0) = F(O) € B,

which implies that {@(p,)(F({))} lies in a compact subset of BY. Hence, after
taking a subsequence if necessary, we may assume that {®(¢p,)} converges to
some element g € Aut(BY) (cf. [16; p. 82]). Since g ¢ O, we see that g # idgv.
On the other hand, we have
g(F(0) = lim @(p,)(F(0)) = lim F(p,()) = F()  for all Le WD,

consequently, g =idgy by analytic continuation. This is a contradiction.
Therefore @ is continuous at idp, as desired.

Next we claim that @ is locally injective. It is sufficient to prove that @ is

injective on some open neighborhood O of idp. To this end, choose two open
sets Wi, Wy in €V with dEW €W, WnNnD. We claim that

0 := {p € Aut(D); p(W1) C W>}

is what is required. Indeed, it is clear that O is an open neighborhood of
idp in Aut(D). Moreover, assume that @(p,) = @(p,) for ¢,,p, € O. It then
follows that

F(pi(0) = @(p)(F(Q) = P(02)(F(Q) = F(p2(Q))  for all {eD.
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Since F is injective on W, C W and since ¢,(), p,(() € W, for all { € Wy, this
says that ¢; =@, on Wj; and hence, ¢, = ¢, on D by analytic continuation.
Therefore @ is locally injective on Aut(D).

(3) F:D— BN is a locally biholomorphic mapping from D into BY.
However this is absurd. We first prove that the set V= {{ e D;Jz({) =0}
is empty. To derive a contradiction, assume to the contrary that V; # .
Then Vj; is a complex analytic subset of D of dimg¢ Vi=N—-1=n+m— 1.
If VzCdp=C", then we obtain a contradiction, since dimg Vz>n=
dime 4p by our assumption m > 2. Hence Vi € 4p and there exists a point
(o= (20,w,) € Vi with w, #0. Let Aut(D)-{, be the Aut(D)-orbit passing
through the point {,. This is a real analytic submanifold of D. Here we
assert that Aut(D)-{, is contained in V. To this end, take an arbitrary
element ¢ € Aut(D). Then, since

Je(0(C0) - Ip(C0) = Ja)(F () - Js(C,)  and  Jz(L,) =0, J,(C,) #0,

we have that J;(¢({,)) = 0 or equivalently ¢({,) € Vj; hence, Aut(D) -, C Vj,
as asserted. Therefore we have dimg (Aut(D)-{,) <2(N —1). On the other
hand, by using the explicit description of the generators of Aut(D) given
in Theorem A, it is easily checked that dimg(Aut(D)-{,)=2n+2m—1>
2(N —1). This is a contradiction. Thus we conclude that V= ¥ and
F:D — BV is, in fact, a locally biholomorphic mapping. However, this is
absurd. Indeed, consider the holomorphic mapping /: C" — BY given by
h(z) = F(z,0) for (z,0) € 4p = C". Then it follows at once from the classical
Liouville theorem on bounded entire functions that /& is a constant mapping
on C". Consequently, for any point {, € 4p, F is never injective on any open
neighborhood of {,, a contradiction.

Therefore we have proved that there is not a spherical boundary point of
D; completing the proof of Lemma 1. O

REMARK. Let D be a strictly pseudoconvex domain in €V with simply
connected and real analytic boundary dD. Assume that D is bounded in €V
and there exists a spherical boundary point p € dD, so that there are open
neighborhood U of p and a biholomorphic mapping f : U — C" satisfying the
condition (). Then D is biholomorphically equivalent to BY by a result of
Pinchuk [18; Theorem 2]. Here the assumption that D is a bounded domain in
€V cannot be avoided. Indeed, in the proof of this assertion, he first proved
that f: U — €V extends to a locally biholomorphic mapping F: V — €V
from some open neighborhood ¥V of aD into €V. After that, he used the
Osgood-Brown theorem (Hartogs extension theorem) to obtain a holomorphic
mapping F:D — BN c €V that is an extension of F:V — €V (see [I8;
p. 390], also [19; p. 518]). Thus D has to be a bounded domain enclosed by
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the connected compact hypersurface dD imbedded in €V. On the other hand,
the Fock-Bargmann-Hartogs domain D = D, ,,(u) is not bounded and 0D is
not compact in €V. Therefore, our Lemma 1 is not an immediate conse-
quence of Pinchuk [18; Theorem 2].

We can now prove our theorem as follows. First we claim that, for each
i=1,2, the strictly pseudoconvex real analytic hypersurface dD; has no
umbilical points in the sense of CR-geometry; hence, Webster’s CR-invariant
Riemannian metric g; can be defined on the whole space 0D;. (For the
notion of umbilical points and Webster’s CR-invariant metrics in CR-geometry,
see [25, 26] and also [7], [24].) To prove our claim, assume that there exists
an umbilical point on dD;. Then, all the points of dD; are umbilical, since
Aut(D;) acts transitively on dD; by Fact 3. Hence, dD; must be locally
biholomorphically equivalent to the sphere dBY (see, for example, [7; p. 153],
[24; p. 213]). However this is impossible by Lemma 1; proving our claim.
Moreover, we see that (0D;,g;) is complete as a Riemannian manifold, be-
cause ¢D; is homogeneous under the CR-automorphism group Aut(D;). As
a result, each (dD;,g;) is a connected and simply connected, complete real
analytic Riemannian manifold. On the other hand, f: Uy NdD; — U, NadD,
is a local isometry with respect to the CR-invariant metrics g; and g¢».
Hence, by a well-known fact in Riemannian geometry [11; p. 256], f can
be uniquely extended to a global isometry F:(dDi,g1) — (0D2,g>). From
the fact that F is induced by the biholomorphic mapping f : Uy — U, and
from the construction of Webster’s CR-invariant metric, it follows at once
that F : dD; — 0D; is a real analytic CR-diffeomorphism. Accordingly, as an
immediate consequence of Bell [5; Theorem 2|, one can find open neighbor-
hoods V; of @D, and V, of 0D, in €V such that F : dD; — &D, and its inverse
G:=F~':0D, — 0D; extend to locally biholomorphic mappings written in
the same notation F:V; — CY and G:V, —» CV satisfying F(V; N D) C
D, and G(V>ND,;) C D;. Hence, in exactly the same way as in (1) of the
proof of Lemma 1, it can be shown that F and G extend to holomorphic
mappings F:D; — €Y and G: D, — €. Moreover, replacing Y(w) by
(W) == p,(F(z,,w)) in (1) of the proof of Lemma 1, we can prove that
F (D) C D,, where p, is the real analytic plurisubharmonic function on cV
defined by

,/)2(27 W) =1+ ||WH26'“2HZH2 for (27 W) ce@™ x C™ = (]:N.

Analogously, we see that G(Dz) c Dy. Since GoF =idp, near dD; and
FoG=idp, near dD,, we conclude by analytic continuation that Go F =
idp, and F o G = idp,; consequently, F : D; — D, is a biholomorphic mapping.
Therefore the proof of Theorem 1 is completed.
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4. Proof of Theorem 2

By Theorem B there exists an open neighborhood W of D; such that f
extends to a holomorphic mapping, say again, f: W — CV. Since each 0D;
for i = 1,2 is strictly pseudoconvex real analytic hypersurface in €%, it follows
from the same method as in the proof of [4; Theorem 2] or [18; Lemma 1.3]
that J;({) # 0 for every point {e€ dD;. Thus, for an arbitrarily given point
p1 € 0Dy, there exists an open neighborhood U; of p; in €V such that f gives
rise to a biholomorphic mapping F : U; — U, := f(U;) ¢ €V with

F(UiNnD))=U,ND, and F(UlmaDl): U, N oD;. (4.1)

Consequently, if m, > 2, then F extends to a biholomorphic mapping F : D; —
D; by Theorem 1; and moreover, in such a case, it is clear that f = F on D;.
Hence the proof of Theorem 2 is now reduced to showing the following:

LEMMA 2. Under the same situation as in Theorem 2, we have my > 2.
Proor. Once it is shown that
n? +mi 4 2n; = dim Aut(D;) = dim Aut(D,) = n3 + mj + 2ny,

then we conclude that my > 2, since n; +my =ny, +my and my > 2 by our
assumption. Thus it suffices to show that there exists an injective linear
mapping L : g(D,;) — g(D;) from the Lie algebra g(D,) of Aut(D,) into the
Lie algebra g(D;) of Aut(D;). To this end, we shall construct a mapping
@ : 0, — Aut(D;) from some open neighborhood O, of the identity element
idp, of Aut(D;) into Aut(D;) that induces such a mapping L : g(D2) — g(D1).
We will carry out this by two steps as follows:

(1) A construction of a mapping @ : O, — Aut(Dy): We fix two con-
nected open neighborhoods W, V, of p, := F(p;) in CV with W, €V, € Uy
and put W, = F~Y(W,), V1 = F~(V,) C U; respectively, where F: Uy — U,
is the biholomorphic mapping appearing in (4.1). Then W;, V; are open
neighborhoods of p; with W, € ¥V} € U;. Here, recalling that Aut(D,) can be
regarded as a topological subgroup of Aut(C") by Fact 2, we define a subset
O, of Aut(D;) by setting

0, = {p € Aut(D,); p(W>) C V2, p(V>) C Us}.

Then O, is an open neighborhood of idp, € Aut(D;) and, for any element
@ € Oy, we obtain a biholomorphic mapping

G:=F lopoF: V) — Vi :=F (p(V) CU (4.2)

with ¢(V1 N D) = VyND; and ¢(V,NdD;) =V, NdD;. Recall that m; > 2.
Then, as an immediate consequence of Theorem 1, ¢ extends to a holomorphic
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automorphism written in the same notation ¢ : D; — D;. Thus

p(f(0) = f(@(C))  for all {e D,

by analytic continuation; and moreover, it is obvious that this ¢ € Aut(D;) is
uniquely determined by ¢. Accordingly, one can define a mapping

@ : 0, — Aut(Dy) by setting @(¢p) = ¢, (4.3)

so that po f = fo®(p) on Dy for all ¢ € O,.

(2) There exists an injective linear mapping L :g(D,) — g(Dy): We
would like to induce such a mapping L from the mapping @ in (4.3).
For this, let us take an arbitrary element X € g(D,) and consider the one-
parameter subgroup {¢, =exp tX}, g of Aut(D;) generated by X. Then one
can choose a constant €, > 0 such that ¢, € O, for all 1€ R with [¢f] < ¢,; and
moreover, it is easy to check that

D(0,)(P(9,)(0) = P(pg,)(0), (e WiN Dy, whenever [sl,[t],|s + 1] < &;

consequently, @(¢,) o @(p,) = P(¢p,,,) on D; by analytic continuation. Thus
{@(9,)}<., is a local one-parameter group of local holomorphic transforma-
tions of D). Let X be the holomorphic vector field on D; induced by this
local one-parameter group {d)((pl)}‘,‘ <, Then X is also a complete holomor-
phic vector field on Dy, that is, X € g(Dl) (cf. [14; p. 83]) and {CD((/)E)}‘,KEU is
the restriction of the global one-parameter subgroup {@, =exptX}, g of
Aut(D;) to |f| <€, Clearly this X is uniquely determined by the given X;
accordingly, one can define a mapping

L:g(Dy) — g(Dy) by setting L(X) =X
for every X € g(D,). Since F:U; — U, is a biholomorphic mapping, the
differential (dF~') Fe) Of F ~at F() is a linear isomorphism for every point
(e U,. Moreover, it follows from (4.2) that

= (dF "), o Xr@) for all e ViNDy, X €g(Ds).

Thus, by analytic continuation, we conclude that L : g(D,) — g(D;) is, in fact,
an injective linear mapping, as desired.

More precisely, we assert that &: 0, — Aut(D;) is a real analytic
imbedding of O, into Aut(D;) and so dim Aut(D,) < dim Aut(D;). Indeed,
let {X1,..., X4} be a basis of g(D,), where d» = dim Aut(D;). Then, for each
j=1,...,d>, there is a small constant ¢; > 0 such that exp tX; € O, for all
te R with |tf| < ¢; consequently we have

D(exp 1;X;) = exp t;L(X)) for all ;e R with 1] < ¢;.
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On the other hand, by just the definition of @, one can choose a constant
0, > 0 so small that

D(exp h Xy ---exp ty,Xg) =exp H L(X1) - -exp t4, L(Xy)

for all #; € R with |;| <6, (1 <j<d,). Hence, taking a basis {Xi,..., Xy}
of g(Dy) in such a way that X; = L(X;) for 1 < j < dp, we obtain the following:
With respect to the canonical coordinate systems of the second kind

lpl . €Xp x1X1-~-exp xdlz?dl — (xl,...,xdl),
WZ : expy1X1 "'expydedz = (yla~--7ydz)

defined on some open neighborhoods of idp, € Aut(D,), idp, € Aut(D;) respec-
tively, @ has the expression

Yooy (t,. . ty) = (t1,. . 14,0,...,0)  on ,(0,)

(after shrinking O, sufficiently small, if necessary). Clearly this means that
@ : 0, — Aut(Dy) is a real analytic imbedding of O, into Aut(D;), as asserted.
]

Therefore the proof of Theorem 2 is completed.
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