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Abstract. We are concerned with Stokes equations in the half-space or in an exterior

domain of Rn when slip conditions are imposed on the boundary. We present a mixed

velocity-pressure formulation and we show its well posedness. A weighted variant of

Korn’s inequality in unbounded domains is the cornerstone of our approach.

1. Introduction

We are interested in the Stokes system

�nDuþ ‘p ¼ f in W;

div u ¼ r in W;

�
ð1Þ

where W is an unbounded connected open subset of Rn, typically an exterior

domain or a half-space, f is a body force and r a given function.

The Stokes system (1) is often considered with no-slip conditions which

could be seen as a Dirichlet boundary condition (see, e.g., [2], [8], [11]). None-

theless, situations can arise where slip conditions are imposed on the boundary

(see, e.g., [20], [7], [19], [13], [22], [21], [24, 14] and references therein). Other

kinds of boundary conditions could also be considered as in [4].

In this work, slip conditions without friction are expressed into the form

u:n ¼ g on qW; ð2Þ

ðsðu; pÞ:nÞt ¼ ht on qW; ð3Þ

where n is the unit outward normal to boundary, g and ht are, respectively,

a function and a tangential vector field given on qW. Here (2) is a non

penetration condition. In (3), sðu; pÞ designates the Cauchy stress tensor and
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ðsðu; pÞ:nÞt stands for the tangential component of sðu; pÞ:n on qW. It can be

recalled that

sðu; pÞ ¼ �pI þ 2neðuÞ; ð4Þ

where n > 0 is the viscosity coe‰cient and eðuÞ is the symmetric part of the

gradient, that is

ei; jðuÞ ¼
1

2

qui

qxj
þ quj

qxi

� �
; 1a i; ja n: ð5Þ

Another aspect of the problem is the unboundedness of the geometric region W.

Specifically, equations (1) must be complemented by an asymptotic conditions

at fareway regions, i.e. when jxj ! þy. In some sense we require that u

satisfies a decay condition of the form

juðxÞj ! 0 when jxj ! þy: ð6Þ

A precise meaning of this asymptotic condition will be given afterwards in

terms of a well chosen weighted functions space to which u belongs. From a

geometrical point of view, focus in this paper is on the following two cases:
� case 1: W is an exterior set of the form Rnno, where o is a bounded

domain of Rn.
� case 2: W is an open upper half-space of Rn:

Rn
þ ¼ fx ¼ ðx1; . . . ; xnÞ A Rn j xn > 0g:

The key di¤erence between these two types of geometries lies in the fact that

the boundary is bounded in the former case, while it is unbounded in the latter

one. We target to establish and study a mixed formulation of the Stokes

system (1), when it is completed with a slip boundary conditions of the form

(2)–(3) and with an asymptotic condition when jxj ! þy. When W ¼ Rn
þ, a

direct approach was proposed in [8] for treating the same problem in weighted

L2 spaces, and in [8] and [5] in weighted Lp spaces. The generalized resolvent

problem similar to (1), that is, when �nDuþ ‘p is replaced by lu� nDuþ ‘p,

with l A Cnf0g, has been studied in [23].

In this work, we first present some basics concerning the functional

framework employed. Then, we lay out a mixed formulation of the problem

in terms of the pair ðu; pÞ. Well-posedness of this formulation is also shown

by means of a weighted variant of Korn’s inequality.

2. Preliminaries

Let W designate the exterior of a bounded domain o or the upper half-

space of Rn. In the former case, o is supposed to be of class C2. In both
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cases, L2ðWÞ designates the usual Lebesgue space of real square integrable

functions over W, equipped with the norm

kukL2ðWÞ ¼
ð
W

juðxÞj2dx
� �1=2

:

For all m A N and l A R, define Wm
l ðWÞ as the space of all the functions

satisfying

ðjxj2 þ 1Þðl�mþjljÞ=2
Dlu A L2ðWÞ for all jljam:

We may notice that Wm
l ðWÞ is a Banach space with respect to the norm

kukW m
l
ðWÞ ¼

X
jajam

ð
W

ðjxj2 þ 1Þðl�mþjajÞjDauðxÞj2dx

0
@

1
A
1=2

:

The following property can easily be proved by means of spherical coordinates:

if nb 2ðm� lÞ then

ðP A Wm
l ðWÞ and P polynomialÞ ) P ¼ 0: ð7Þ

When W is an exterior domain, the first trace operator can be defined from

W 1
l ðWÞ onto the usual boundary space H 1=2ðqWÞ.

Lemma 1. Let W ¼ Rnno, where o is a bounded domain of Rn. The

trace operator g0 : v A DðWÞ ! vjqW can be extended to a linear and continuous

operator from W 1
l ðWÞ into H 1=2ðqWÞ.

Proof. Let O be a bounded open subset of W containing a neighborhood

of qW ¼ qo (that is there exists �0 > 0 such that fx A W j distðx; qWÞ < �0g � O).

For every function v A W 1
l ðWÞ, its restriction to O (still denoted v) belongs to

H 1ðOÞ where

H 1ðOÞ ¼ fv A L2ðOÞ j‘v A L2ðOÞng:

Moreover,

Ev A W 1
l ðWÞ; kvkH 1ðOÞ aCkvkW 1

l
ðWÞ;

where C is a constant not depending on v. It follows that the trace operator

g0 : v A DðWÞ ! vjqW can be extended by continuity to a linear and continuous

operator from W 1
l ðWÞ into H 1=2ðqWÞ.

The situation is slightly di¤erent when W is the upper half-space since the

boundary qW ¼ fxn ¼ 0g is not compact. In the latter case, Hanouzet [17]

showed that the operator v A DðWÞ 7! vð:; 0Þ can be extended to a continuous

trace operator from W 1
l ðWÞ into W

1=2
0 ðqWÞ, where W

1=2
0 ðqWÞ denotes the space
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of all (generalized) functions u A D 0ðqWÞ ¼ D 0ðRn�1Þ such that ð1þ jxj2Þ�1=4
u A

L2ðRn�1Þ andðy
0

t�2

ð
R n�1

juðxþ teiÞ � uðxÞj2dxdt < y; Ei ¼ 1; 2; . . . ; n� 1:

Throughout this paper, we set

W 1=2ðqWÞ ¼
H 1=2ðqWÞ if W is an exterior domain;

W
1=2
0 ðqWÞ if W is the upper half-space Rn

þ:

(

Let W �1=2ðqWÞ designate the dual of W 1=2ðqWÞ. As consequence, W �1=2ðqWÞ
¼ H�1=2ðqWÞ when W is an exterior domain, and W �1=2ðqWÞ ¼ W

�1=2
0 ðqWÞ

when W ¼ Rn
þ (see, e.g., [17] or [9]). The symbol h: ; :i will be used to

designate the duality pairings between W �1=2ðqWÞ and W 1=2ðqWÞ. We also

introduce the space H�ðdiv;WÞ of all vector fields v A L2ðWÞn satisfying

ðjxj2 þ 1Þ1=2 div v A L2ðWÞ: This space is equipped with the norm

kvkH�ðdiv;WÞ ¼ ðkvk2L2ðWÞn þ kðjxj2 þ 1Þ1=2 div vk2L2ðWÞÞ
1=2:

It is well known that DðWÞn is dense in H�ðdiv;WÞ (see [9] Lemma 5 when

W ¼ Rn
þ. The proof can be adaped to the case of an exterior domain. By

sake of completeness, we give a proof in appendix A for the latter case).

On the basis of the argument mentioned herein above, the normal trace

operator v A DðWÞn ! v:n can be extended by continuity to a linear continuous

operator from H�ðdiv;WÞ into W �1=2ðqWÞ. As consequence, the following

Green’s formula can be easily established by density: for all v A H�ðdiv;WÞ and

c A W 1
0 ðWÞ,ð

W

div v:c dx ¼ �
ð
W

v:‘c dxþ hv:n;ciW �1=2ðqWÞ;W 1=2ðqWÞ: ð8Þ

Consider also the following space of vector fields which are tangential on the

boundary

XtðWÞ ¼ fv A W 1
0 ðWÞn j v:n ¼ 0 on qWg;

and

W 1=2
t ðqWÞ ¼ fv A W 1=2ðqWÞn j v:n ¼ 0 on qWg:

It is obvious that XtðWÞ is a closed subspace of W 1
0 ðWÞn and

g0ðXtðWÞÞ ¼ W 1=2
t ðqWÞ: ð9Þ

Supposing that ht is the tangential component of a vector function h A
W�1=2ðqWÞn makes the slip boundary condition (3) meaningful since it can be
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understood in the following weak sense: for every v A W 1=2
t ðqWÞ

hsðuÞ:n; viW �1=2ðqWÞn;W 1=2ðqWÞn ¼ hh; viW �1=2ðqWÞ n;W 1=2ðqWÞ n : ð10Þ

3. The mixed formulation

We need the following lemma:

Lemma 2. Assume that nb 3 and let r A L2ðWÞ and g A W 1=2ðqWÞ.
Then, there exists a unique c A W 2

0 ðWÞ=R if n ¼ 3 and c A W 2
0 ðWÞ if nb 4

such that

Dc ¼ r in W;
qc

qn
¼ g on qW; ð11Þ

and there exists a constant C0 depending only on W such that

kckW 2
0
ðWÞ aC0ðkgkW 1=2ðqWÞ þ krkL2ðWÞÞ: ð12Þ

The proof of this lemma can be found in [3] when W is an exterior domain

and in [9] when W is the half-space.

One may observe here that unlike in bounded domains no compatibility

condition on the data r and g is required for the Neumann problem (11). This

can be construed as a consequence of the fact that the asymptotic condition

on c when jxj ! þy is slightly released. Compatibility conditions on r and g

could appear when a stronger decay of c at remote distances is requested (see

[3] and [9]).

Throughout this paper we set

u0 ¼ ‘c A W 1
0 ðWÞn; ð13Þ

where c A W 2
0 ðWÞ is the unique solution of (11). It follows that

div u0 ¼ r; Du0 ¼ ‘r; div eðu0Þ ¼ ‘r; in W;

u0:n ¼ g on qW:

Now, we are able to give a mixed formulation of the main problem:

Proposition 1 (mixed formulation). Let f A W 0
1 ðWÞn, r A W 1

1 ðWÞ, g A
W 1=2ðqWÞ and h A W �1=2ðqWÞn. Then, the pair ðu; pÞ A W 1

0 ðWÞn � L2ðWÞ is a

solution of (1)-(2)-(3) if and only if the pair ðw ¼ u� u0; pÞ is solution in

XtðWÞ � L2ðWÞ of the problem:
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ðP 0Þ

2n

ð
W

eðwÞ : eðvÞdx�
ð
W

p div v dx

¼
ð
W

f0:v dxþ hw0; vi; for all v A XtðWÞ;ð
W

ðdiv wÞq dx ¼ 0 in W; for all q A L2ðWÞ;

8>>>>>>><
>>>>>>>:

ð14Þ

where f0 ¼ f þ n‘r A W 0
1 ðWÞn and w0 ¼ h� 2neðu0Þ:n A W �1=2ðqWÞn.

Proof. Let ðu; pÞ A W 1
0 ðWÞn � L2ðWÞ be solution of (1)-(2)-(3). Then

sðu; pÞ A L2ðWÞn
2

; and w ¼ u� u0 A XtðWÞ: Combining identity

2 div eðuÞ ¼ ‘ðdiv uÞ þ Du; ð15Þ

with equations (1) yields

�div sðu; pÞ ¼ f � n‘r: ð16Þ
Since

sðw; pÞ ¼ sðu; pÞ � 2neðu0Þ; ð17Þ

we obtain that

�div sðw; pÞ ¼ f þ n‘r ¼ f0: ð18Þ

Hence, sðw; pÞ A H�ðdiv;WÞn. Since ‘r A W 0
1 ðWÞ it follows that eðu0Þ A

H�ðdiv;WÞn and eðu0Þ:n A W �1=2ðqWÞn: The boundary condition (3) can be

written as follows:

hsðw; pÞ:n; hi ¼ hh; hi� 2nheðu0Þ:n; hi:

Multiplying (18) by v A XtðWÞ and using formula (8) we deduce that u is

solution of ðP 0Þ.
The converse is obtained by a standard argument.

Remark 1. In the case of the half-space, we can write

XtðRn
þÞ ¼ X T

0 ðRn
þÞ ¼ fv A W 1

0 ðRn
þÞ

n j vn ¼ 0 at xn ¼ 0g

¼ W 1
0 ðRn

þÞ
n�1 �W

� 1
0ðRn

þÞ;

with W
� 1
0ðRn

þÞ ¼ fw A W 1
0 ðRn

þÞ jw ¼ 0 at xn ¼ 0g. It can easily be proved that

assertion of Proposition 1 holds true when f A W 0
1 ðRn

þÞ
n�1 �W �1

0 ðRn
þÞ, where

W�1
0 ðRn

þÞ is the dual space of W
� 1
0ðRn

þÞ.

4. Well posedness of the mixed formulation

The next theorem concerns well posedness of the problem considered here:
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Theorem 1. Assume that W is a half-space of Rn or W ¼ Rnno, where o

is a bounded and convex open susbet of Rn with qo of class C2. Suppose

also that nb 3, f A W 0
1 ðWÞn, r A W 1

1 ðWÞ, g A W 1=2ðqWÞ and h A W �1=2ðqWÞn.
Then, problem (1)-(2)-(3) has one and only one solution ðu; pÞ A XtðWÞ � L2ðWÞ.
Moreover,

kukW 1
0
ðWÞ n þ kpkL2ðWÞ aCðk f kW 0

1
ðWÞ n þ krkW 1

1
ðWÞ

þ kgkW 1=2ðqWÞ þ khkW �1=2ðqWÞ nÞ; ð19Þ

for a constant C > 0 depending only on W.

For proving Theorem 1 we need the following Korn’s inequality:

Lemma 3. Under assumptions of Theorem 1 on n and W, there exists two

constants C1 > 0 and C2 > 0 such that

kð1þ jxj2Þ�1=2
vkL2ðWÞ n aC1keðvÞkL2ðWÞ n2 ; ð20Þ

k‘vk
L2ðWÞ n2 aC2keðvÞkL2ðWÞ n2 ; ð21Þ

for all v A XtðWÞ.

Proof. This proof is inspired by the reference [18] which contains a proof

when W is the exterior of a bounded convex domain (see also [10]). For the

sake of completeness we give a proof of this theorem only when W ¼ Rn
þ. Let

j A DðRn
þÞ

n�1 �DðRn
þÞ. Then,

j‘jj2 ¼ 2jeðjÞj2 þ jdiv jj2 þ 2j:‘ðdiv jÞ �
Xn

i; j¼1

qiqjðjijjÞ: ð22Þ

Integrating over Rn
þ yieldsð

Rn
þ

j‘jj2dx ¼
ð
Rn

þ

ð2jeðjÞj2 þ jdiv jj2 þ 2j:‘ðdiv jÞÞdx

þ
Xn

j¼1

ð
qo

qjðjnjjÞds

Since jn ¼ j:en ¼ 0 on qRn
þ ¼ fxn ¼ 0g, we get

Xn

j¼1

ð
qo

qjðjnjjÞds ¼
ð
qo

ðdiv jÞjn dsþ
ð
qo

j:‘ðjnÞds ¼ 0;
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and ð
Rn

þ

j:‘ðdiv jÞdx ¼ �
ð
Rn

þ

jdiv jj2dx:

We obtain ð
Rn

þ

j‘jj2dx ¼
ð
Rn

þ

ð2jeðjÞj2 � jdiv jj2Þdx: ð23Þ

Since DðRn
þÞ

n�1 �DðRn
þÞ is dense in XtðRn

þÞ, identity (23) is still valid for

every j A W 1
0 ðRn

þÞ
n�1 �W

� 1
0ðRn

þÞ. This completes the proof of (21).

Inequality (20) is a consequence of the usual Hardy inequality which is

valid for nb 3 (see, e.g., [16], [3], [9]):

Ev A W 1
0 ðRn

þÞ;
ð
Rn

þ

jvj2

jxj2 þ 1
dxaC

ð
Rn

þ

j‘vj2dx: ð24Þ

Remark 2. The reader may be surprised by inequality (24) since it is valid

without any boundary condition on v. Qualitatively speaking, this may be inter-

preted as follows: for nb 3, belonging to W 1
0 ðWÞ is in some way like vanishing at

infinity (in other words, infinity acts, in some sense, as a boundary). The proof

can be found in [16] and [3] for the whole space and exterior domaines, and in [9]

for the half-space. In the case of the whole space and the exterior of a ball BR

ðRb 0Þ, the proof is straightforward since it can be deduced from the identityðþy

R

jjðrsÞj2dr ¼ �RjjðRsÞj2 �
ðþy

R

rjðrsÞ q
qr

jðrsÞdr;

which is valid for all j A DðRnÞ, s A S2 and R > 0. Observing that the term

�RjjðRsÞj2 is nonpositive and using Cauchy-Schwarz inequality givesðþy

R

jjðrsÞj2dra
ðþy

R

r2
q

qr
jðrsÞ

� �2

dr:

Integrating with respect to s and using the density of DðWÞ in W 1
0 ðWÞ, we obtain

(24) when W ¼ RnnBR.

Proof of Theorem 1. The proof uses the well known theorem due to

Brezzi [12] (Theorem 1.1) and Babuska [6] (see also [15] Theorem 4.1 and

Corollary 4.1):

Theorem 2. Let X and M be two Hilbert spaces and consider the abstract

problem: find ðw; pÞ A X �M such that

aðw; vÞ þ bðv; pÞ ¼ lðvÞ; Ev A X ;

bðw; qÞ ¼ 0; Eq A M;
ð25Þ
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where a (resp. b) is a continuous bilinear form defined on X � X (resp. X �M)

and l A X 0 (the dual of X). Suppose that there exists two constants a > 0 and

b > 0 such that

Ev A V ; aðv; vÞb akvk2X ; inf
q AM

sup
v AX

bðv; qÞ
kvkXkqkM

b b;

where V ¼ fv A X j bðv; qÞ ¼ 0; Eq A Mg. Then, problem (25) has one and only

one solution ðw; qÞ A X �M. Moreover, there exists a constant C > 0 not

depending on l, w and p such that

kwkX þ kpkM aCklkX 0 :

Formulation (P 0) can be writen into the form

a0ðw; vÞ þ b0ðv; pÞ ¼ l0ðvÞ; for all v A XtðWÞ;

b0ðw; qÞ ¼ 0; for all q A L2ðWÞ;

with

a0ðw; vÞ ¼ 2n

ð
W

eðwÞ : eðvÞdx;

b0ðw; qÞ ¼ �
ð
W

ðdiv wÞq dx;

l0ðvÞ ¼
ð
W

f0:v dxþ hw0; vi:

It is obvious that the bilinear form a0ð: ; :Þ (resp. b0ð: ; :Þ) is continuous on

XtðWÞ2 (resp. on XtðWÞ � L2ðWÞ). The linear form l0 is also continuous over

XtðWÞ and a0ð: ; :Þ is XtðWÞ-elliptic, thanks to Korn’s inequalities (20) and (21).

It remains to prove the inf-sup condition on b0. Let q A L2ðWÞ, with q0 0,

and let c the unique solution in W 2
0 ðWÞ=R if n ¼ 3 and in W 2

0 ðWÞ if nb 4 of

the Poisson equation with a Neumann boundary data

Dc ¼ q in W;
qc

qn
¼ 0 on qW:

Let v0 ¼ ‘c0 0. It’s obvious that v0 A XtðWÞ and we have

kv0kW 1
0
ðWÞ n ¼ k‘ckW 1

0
ðWÞ n a kckW 2

0
ðWÞ aCkqkL2ðWÞ;

for some constant C > 0. In addition, div v0 ¼ q and

b0ðv0; qÞ ¼ kqk2L2ðWÞ b
1

C
kqkL2ðWÞkv0kW 1

0
ðWÞn :
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We conclude that

sup
v AXtðWÞ

b0ðv; qÞ
kqkL2ðWÞkvkW 1

0
ðWÞ n

b
1

C
:

This completes the proof of Theorem 1.

Remark 3. It is worth noting that the solution u A W 1
0 ðWÞ satisfies

kuðr:ÞkL2ðS nÞ ¼ o
1

rn�2

� �
when r ! þy; ð26Þ

where Sn denotes the unit sphere of Rn if W is an exterior domain or the upper

half of the unit sphere of Rn if W is a half-space (see, e.g., [1]). It follows in

particular that

lim
r!þy

kuðr:ÞkL2ðSnÞ ¼ 0:

Remark 4. In [8], the author proposed a reflection approach for solving the

system (1)-(2)-(3) in the half-space.

Discussion

The approach we propose here can be extended for many other situations.

On the one hand, other kinds of unbounded domains can be considered. In

this regard, weighted Korn’s inequality, which is the corner stone in proving

well posedness, could be very useful (see, e.g., [18]). On the other hand, one

can also consider slip boundary conditions with friction instead of (3), that is

ðsðu; pÞ:nÞt þ ku ¼ 0;

with k a constant. Finally, it should be noted that a mixed formulation of the

form ðP 0Þ can also be done in the two-dimensional case ðn ¼ 2Þ, provided that

the underlying functional spaces are slightly adapted by considering logarithmic

weights (see, e.g., [3]).

Appendix A. Density of DðWÞn in H�ðdiv;WÞ when W is an exterior domain

The proof is inspired by [17]. Assume that W ¼ Rnno, where o is a

bounded domain of Rn. Throughout this section, for every real number r > 0

Br designates the open ball of radius r centered at the origin and Wr ¼ W \ Br.

Let v A H�ðdiv;WÞ and � > 0. Consider a function y A DðRnÞ such that

0a yðxÞa 1 for all x A Rn;

yðxÞ ¼ 1 when jxja 1 and yðxÞ ¼ 0 when jxjb 2:
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Since o is bounded, there exists an integer k0 b 1 such that o � Bk0 , where Bk0

is the ball of radius k0 centered at the origin. Set

vk ¼ ykðxÞvðxÞ for kb 1 with ykðxÞ ¼ y
x

k

� �
:

For kb k0 we have

kvk � vk2H�ðdiv;WÞ ¼
ð
jxjbk

jyk � 1j2jvj2dxþ
ð
kajxja2k

ðjxj2 þ 1Þjdiv v� div vkj2dx

þ
ð
jxjb2k

ðjxj2 þ 1Þjdiv vj2dx

¼
ð
jxjbk

jyk � 1j2jvj2dxþ 2

ð
kajxja2k

ðjxj2 þ 1Þð1� ykÞ2jdiv vj2dx

þ 2

ð
kajxja2k

ðjxj2 þ 1Þj‘yk:vj2 þ
ð
jxjb2k

ðjxj2 þ 1Þjdiv vj2dx:

¼ C1

ð
jxjbk

jvj2dxþ 2

ð
kajxja2k

ðjxj2 þ 1Þjdiv vj2dx

þ 4k2 þ 1

k2

ð
kajxja2k

jvj2 þ
ð
jxjb2k

ðjxj2 þ 1Þjdiv vj2dx:

Obviously, kvk � vkH�ðdiv;WÞ ! 0, and there exists an integer lb k0 such

that

kvl � vkH�ðdiv;WÞ < �

Observe now that vl has a compact support included in W2l. Since DðW4lÞ is

dense in the usual space Hðdiv;W4lÞ, there exists a function cl A DðRnÞn such

that

kcl � vlkHðdiv;W4lÞ < �:

Set

jlðxÞ ¼ y
x

2l

� �
cðxÞ:

Hence, jl A DðRnÞn and jl ¼ cl in W2l. Thus,

kjl � vlk2H�ðdiv;WÞ ¼ kjl � vlk2H�ðdiv;W4lÞ

¼ kcl � vlk2W2l
þ kjlk

2
H�ðdiv;W4lnW2lÞ
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a kcl � vlk2W2l
þ
ð
2lajxja4l

jy2lj2jclj
2
dx

þ 2

ð
2lajxja4l

ðjxj2 þ 1Þðj‘y2lj2jclj
2 þ jy2lj2jdiv clj

2Þdx

a kcl � vlk2W2l
þ 2kclk

2
H�ðdiv;W4lnW2lÞ

þ 2ky 0ky
ð4lÞ2 þ 1

4l2

ð
2lajxja4l

jclj
2
dx

aCkcl � vlk2Hðdiv;W4lÞ

aC 0�2;

where the constants C and C 0 are not depending on �. This competes the

proof.
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sciences et de l’institut de France, pages 389–440, 1823.

[21] C. Neto, D. R. Evans, E. Bonaccurso, Butt H.-J., and V. S. J. Craig. Boundary slip in

newtonian liquids: a review of experimental studies. Reports on Progress in Physics Volume

68 Number 12, 68(12):2859–2897, 2005.

[22] I. J. Rao and K. R. Rajagopal. The e¤ect of the slip boundary condition on the flow of

fluids in a channel. Acta Mechanica, (135):113–126, 1999.

[23] Y. Shibata and R. Shimada. On a generalized resolvent estimate for the stokes system with

robin boundary condition. J. Math. Soc. Japan., 59(2):469–519, 2007.

[24] J. M. Urquiza, A. Garon, and M.-I. Farinas. Weak imposition of the slip boundary

condition on curved boundaries for Stokes flow. J. Comput. Phys., 256:748–767, 2014.

Nabil Kerdid

Al-Imam Mohammad Ibn Saud Islamic University (IMSIU)

College of Sciences

Department of Mathematics and Statistics

PO-Box 90950, Riyadh 11623, Saudi Arabia

E-mail: nkerdid@gmail.com

131Stokes equations in exterior domains and in the half-space


