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A mixed formulation of the Stokes equations with slip conditions
in exterior domains and in the half-space
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ABSTRACT. We are concerned with Stokes equations in the half-space or in an exterior
domain of R” when slip conditions are imposed on the boundary. We present a mixed
velocity-pressure formulation and we show its well posedness. A weighted variant of
Korn’s inequality in unbounded domains is the cornerstone of our approach.

1. Introduction

We are interested in the Stokes system

{—vAu+Vp:f in Q,

1
divu=p in Q, (1)

where Q is an unbounded connected open subset of IR”, typically an exterior
domain or a half-space, f is a body force and p a given function.

The Stokes system (1) is often considered with no-slip conditions which
could be seen as a Dirichlet boundary condition (see, e.g., [2], [8], [11]). None-
theless, situations can arise where slip conditions are imposed on the boundary
(see, e.g., [20], [7], [19], [13], [22], [21], [24, 14] and references therein). Other
kinds of boundary conditions could also be considered as in [4].

In this work, slip conditions without friction are expressed into the form

un=yg on 09, (2)
(o(u, p).n), = h, on 0Q, (3)

where n is the unit outward normal to boundary, g and %, are, respectively,
a function and a tangential vector field given on 0Q. Here (2) is a non
penetration condition. In (3), o(u, p) designates the Cauchy stress tensor and
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(o(u, p).n), stands for the tangential component of a(u, p).n on 0Q. It can be
recalled that

o(u, p) = —pl + 2ve(u), 4)

where v > 0 is the viscosity coefficient and ¢(u) is the symmetric part of the
gradient, that is

1 au,- 0uj
) ==(—+=2], 1<ij<n S

6‘](7/1) 2<0xj+axl) L] n ( )
Another aspect of the problem is the unboundedness of the geometric region £2.
Specifically, equations (1) must be complemented by an asymptotic conditions
at fareway regions, i.e. when |x| — +co. In some sense we require that u
satisfies a decay condition of the form

lu(x)| — 0 when |x| — +o0. (6)

A precise meaning of this asymptotic condition will be given afterwards in
terms of a well chosen weighted functions space to which u belongs. From a
geometrical point of view, focus in this paper is on the following two cases:
e case 1: Q is an exterior set of the form IR"\@, where w is a bounded
domain of R".
e case 2: £ is an open upper half-space of R":

]R:’_:{x:(xl,...,xn)GIRn|xn>O}~

The key difference between these two types of geometries lies in the fact that
the boundary is bounded in the former case, while it is unbounded in the latter
one. We target to establish and study a mixed formulation of the Stokes
system (1), when it is completed with a slip boundary conditions of the form
(2)—(3) and with an asymptotic condition when |x| — +00. When Q ="}, a
direct approach was proposed in [§] for treating the same problem in weighted
L? spaces, and in [8] and [5] in weighted L? spaces. The generalized resolvent
problem similar to (1), that is, when —vAu + Vp is replaced by lu — vAu + Vp,
with 1 € €\{0}, has been studied in [23].

In this work, we first present some basics concerning the functional
framework employed. Then, we lay out a mixed formulation of the problem
in terms of the pair (u, p). Well-posedness of this formulation is also shown
by means of a weighted variant of Korn’s inequality.

2. Preliminaries

Let Q designate the exterior of a bounded domain w or the upper half-
space of R”. In the former case, w is supposed to be of class 2. In both
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cases, L%(Q) designates the usual Lebesgue space of real square integrable
functions over Q, equipped with the norm

N
el = (| ola)

For all me N and /e R, define W/"(Q) as the space of all the functions
satisfying

(Ix?+ DD ply e L2(Q)  for all 2] < m.

We may notice that /() is a Banach space with respect to the norm
1/2

iy = | 32 ]+ 0 Dt

lof <m

The following property can easily be proved by means of spherical coordinates:
if n>2(m—/) then

Pe W (Q) and P polynomial) = P = 0. (7)
/

When Q is an exterior domain, the first trace operator can be defined from
W} (Q) onto the usual boundary space H'/2(0Q).

LemMA 1. Let Q =R"\@, where w is a bounded domain of R”". The

trace operator y, : v € Z(Q) — vjaq can be extended to a linear and continuous
operator from W (Q) into H'?(0Q).

Proor. Let @ be a bounded open subset of 2 containing a neighborhood
of 0Q = dw (that is there exists ¢y > 0 such that {x e Q| dist(x,dQ) < ¢} C 0O).
For every function ve W!(Q), its restriction to ¢ (still denoted v) belongs to
H'(0) where

H'(0) = {ve L*(0)|Vve L*(0)"}.
Moreover,
Yo e WH(Q), ol 1) < Cllvllw) @),

where C is a constant not depending on v. It follows that the trace operator
% :0€E D(Q) — vjo can be extended by continuity to a linear and continuous
operator from W,'(Q) into H'/?(0Q).

The situation is slightly different when  is the upper half-space since the
boundary 02 = {x, =0} is not compact. In the latter case, Hanouzet [17]

showed that the operator v e 2(Q) — v(.,0) can be extended to a continuous
trace operator from W,!(Q) into WO1 / 2(6.(2), where WO1 / 2(6!2) denotes the space
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of all (generalized) functions u € 2'(0Q) = 2'(R"") such that (1 + |x|*) Y *u e
L*(R"") and

J t’zj |u(x + te;) — u(x)|*dxdt < oo, Vi=1,2,...,n— L.
0 R

Throughout this paper, we set
. H'?(0Q) if Q is an exterior domain,
W, 7(0Q) if Q is the upper half-space R’ .

Let W~1/2(0Q) designate the dual of W'/2(0Q). As consequence, W ~'/2(6Q)
— H™'2(0Q) when Q is an exterior domain, and W~Y2(0Q) = W, '*(0Q)
when Q =IR" (see, e.g., [17] or [9]). The symbol <.,.> will be used to
designate the duality pairings between W ~1/2(3Q) and W'/?(0Q). We also
introduce the space H,(div;Q) of all vector fields ve L*(Q)" satisfying
(Ix* + 1)1/2 divve L*(Q). This space is equipped with the norm

2 2 1/2 4 2 1/2
19017, (give) = (101720 + (X7 + 1)1 div o] 720)) 2.

It is well known that 2(Q)" is dense in H,.(div;Q) (see [9] Lemma 5 when
@ =1R". The proof can be adaped to the case of an exterior domain. By
sake of completeness, we give a proof in appendix A for the latter case).
On the basis of the argument mentioned herein above, the normal trace

operator ve 2(Q)" — v.n can be extended by continuity to a linear continuous
operator from H,(div;Q) into W~1/2(dQ). As consequence, the following
Green’s formula can be easily established by density: for all v € H.(div; Q) and

Ve Wy (Q),
J div oy dx = — J vV dx + o.n, ) 2 0), wire)- (8)
Q Q

Consider also the following space of vector fields which are tangential on the
boundary

X.(Q) ={ve W} (Q)"|v.n=0 on 0Q},
and
W2(0Q) = {ve W'?(0Q)" |v.n =0 on 0Q}.
It is obvious that X.(Q) is a closed subspace of W/ (Q)" and
70(X:(2)) = W2 (0Q). ©)

Supposing that #/; is the tangential component of a vector function /e
W=1/2(0Q2)" makes the slip boundary condition (3) meaningful since it can be
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understood in the following weak sense: for every ve W)!/2(0Q)

Co(u).n, )y 1100y wiree)y = <V w1r060)" wiree) (10)

3. The mixed formulation

We need the following lemma:

LEMMA 2. Assume that n>3 and let pe L*(Q) and ge W'/?(0Q).
Then, there exists a unique y € WZ(Q)/R if n=3 and Yy e W(Q) if n>4
such that

0

My =p in Q, a—l’f:g on 09, (11)

and there exists a constant Cy depending only on Q such that

1¥llw20) < Colllglwinee) + P12 g)- (12)

The proof of this lemma can be found in [3] when £ is an exterior domain
and in [9] when Q is the half-space.

One may observe here that unlike in bounded domains no compatibility
condition on the data p and g is required for the Neumann problem (11). This
can be construed as a consequence of the fact that the asymptotic condition
on { when |x| — +oo is slightly released. Compatibility conditions on p and g
could appear when a stronger decay of i at remote distances is requested (see
[3] and [9]).

Throughout this paper we set

up =V e Wy (2)", (13)
where € W$(Q) is the unique solution of (11). It follows that
divug =p, Aduy=Vp, dive(up)="Vp, in Q,
uyp.n =g on 0%.
Now, we are able to give a mixed formulation of the main problem:
PrOPOSITION 1 (mixed formulation). Let fe W)(Q)", pe WHQ), ge
W12(0Q) and he W='2(0Q)".  Then, the pair (u,p) e W (2)" x L*(Q) is a

solution of (1)-(2)-(3) if and only if the pair (w=u—up,p) is solution in
X.(2) x L*(Q) of the problem:
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2vJ e(w) : e(v)dx — J pdivvdx
Q Q

(2 = Jgfo.u dx + {xo,vy, for all ve X, (Q), (14)

J (divw)gdx =0 in Q, for all ge L*(Q),
Q

where fo= f+Wpe WXQ)" and y,=h— 2ve(uog).ne W=12(0Q)".

PrOOF. Let (u,p) € WH(R)" x L*(2) be solution of (1)-(2)-(3). Then
o(u, p) e L>(2)", and w = u — uy € X;(Q). Combining identity

2 div g(u) = V(div u) + Au, (15)
with equations (1) yields
—diva(u, p) = f — Wp. (16)
Since
a(w, p) = o(u, p) — 2ve(uy), (17)
we obtain that
—diva(w, p) = f+Wp = fo. (18)

Hence, o(w,p) e H.(div;Q2)". Since Vpe W)(Q) it follows that &(ug)e
H.(div; Q)" and e(ug).ne W-1/2(6Q)". The boundary condition (3) can be
written as follows:

Ka(w, p).n,ny = <hny — 2v<e(uo).n, ).

Multiplying (18) by ve X;(Q) and using formula (8) we deduce that u is
solution of (2').
The converse is obtained by a standard argument.

REMARK 1. In the case of the half-space, we can write
X(R") = X/ (R") = {ve W (R")"|v, =0 at x, =0}
= Wi (RY)" < w(RY),

with WE(RL) = {we W} (R%) |w=0 at x, =0}. It can easily be proved that
assertion of Proposition 1 holds true when f € WIO(H{i)”_] x Wy ' (RY), where
Wy Y(R") is the dual space of W{(R™).

4. Well posedness of the mixed formulation

The next theorem concerns well posedness of the problem considered here:
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THEOREM 1. Assume that Q is a half-space of R" or Q = R"\®@, where @
is a bounded and convex open susbet of R" with éw of class €>. Suppose
also that n >3, fe WXQ)", pe WHQ), ge WY2(0Q) and he W~1/2(3Q)".
Then, problem (1)-(2)-(3) has one and only one solution (u, p) € X.(Q2) x L*(Q).
Moreover,

Hu”WO‘(Q)” + Pl < C(Hf”wlo(g)" + ||/7||W11(Q)
+ 19llwiro) + 1illw-12000)")s (19)
for a constant C > 0 depending only on Q.
For proving Theorem 1 we need the following Korn’s inequality:

LemMmA 3.  Under assumptions of Theorem 1 on n and Q, there exists two
constants C; >0 and C, > 0 such that

11+ 1) 20]| 12 < Cilla(v) ) (20)

||LZ(Q)’7
170l 2 g < Colle®l]2 g

Jor all ve X (Q).

Proor. This proof is inspired by the reference [18] which contains a proof
when Q is the exterior of a bounded convex domain (see also [10]). For the
sake of completeness we give a proof of this theorem only when 2 = R”. Let

Z(R")" x Z(R’). Then,

Vo> = 2le(p)]* + |div o|* + 2.V (div ¢) Z 0:0i(¢:0;)- (22)

Integrating over R’ yields

J \Vo|dx = J (2le(p)|* + |div ¢|* + 20.V (div ¢))dx
R R

+ ZJ 1(0,0,)d

Since ¢, = ¢.e, =0 on R’} = {x, =0}, we get

n

3 L 8)(pupy)do = L (div p)p, do + j 0V (p)do =0,

=1 o



126 Nabil KERDID

JRI!

+

and
p.V(div p)dx = — J |div ¢|2dx.
RY

We obtain
| Wwolax = @lto)f - aiv o). 23)
R" R"

Since ;@(R—’i)"*l x Z(R') is dense in X;(R’}), identity (23) is still valid for
every ¢ e W] (]R’i)”*1 x W{(R"). This completes the proof of (21).

Inequality (20) is a consequence of the usual Hardy inequality which is
valid for n >3 (see, e.g., [16], [3], [9]):

2
we Wiy, | -y < c | wi (24)
R X"+ 1 R!

REMARK 2. The reader may be surprised by inequality (24) since it is valid
without any boundary condition on v. Qualitatively speaking, this may be inter-
preted as follows. for n > 3, belonging to Wol (Q) is in some way like vanishing at
infinity (in other words, infinity acts, in some sense, as a boundary). The proof
can be found in [16] and [3] for the whole space and exterior domaines, and in [9]
for the half-space. In the case of the whole space and the exterior of a ball Bg
(R =0), the proof is straightforward since it can be deduced from the identity

A

+00 +0o0
j |<p(ro>|2dr=—R|¢<Ra>|2—j ro(re) 2 p(ro)dr,
R R @r

which is valid for all p € Z(R"), 6 €S> and R > 0. Observing that the term
—R|p(Ro)|? is nonpositive and using Cauchy-Schwarz inequality gives

[ tporiar< [ (%o(m))zdr.

R

Integrating with respect to o and using the density of 2(Q) in W} (Q), we obtain
(24) when Q = IR"\Bg.

ProOOF OF THEOREM 1. The proof uses the well known theorem due to
Brezzi [12] (Theorem 1.1) and Babuska [6] (see also [15] Theorem 4.1 and
Corollary 4.1):

THEOREM 2. Let X and M be two Hilbert spaces and consider the abstract
problem: find (w, p) e X x M such that

a(w,v) + b(v, p) = £(v), Yve X,
(25)
b(w,q) =0, Vge M,
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where a (resp. b) is a continuous bilinear form defined on X x X (resp. X x M)
and ¢ € X' (the dual of X). Suppose that there exists two constants o > 0 and
p >0 such that

. b(v,
YvoeV, a(v,v) > a\|v\|§(» inf sup _blva) > B,
geM yex [|vllxllglln

where V ={ve X |b(v,q) =0, Vge M}. Then, problem (25) has one and only
one solution (w,q) € X x M. Moreover, there exists a constant C >0 not
depending on {, w and p such that

Iwlly + 117 llar < ClllL
Formulation (2’) can be writen into the form
aog(w,v) + bo(v, p) = Lo (v), for all v e X, (Q),
bo(w, q) =0, for all ¢ e L*(Q),

with

ap(w,v) =2v JQ e(w) : g(v)dx,

bow.q) = = | (div wig ax,

0(e) = | fow -Gt

It is obvious that the bilinear form ao(.,.) (resp. bo(.,.)) is continuous on
X,(Q)? (resp. on X,(Q) x L%(2)). The linear form /; is also continuous over
X:(Q) and ay(.,.) is X;(Q)-elliptic, thanks to Korn’s inequalities (20) and (21).
It remains to prove the inf-sup condition on by. Let g € L?*(2), with ¢ # 0,
and let ¥ the unique solution in WZ(Q)/R if n =3 and in WZ(Q) if n >4 of
the Poisson equation with a Neumann boundary data

oy

Ay =¢q in Q, —=0 on 0Q.
on

Let vo =Vy #£0. It’s obvious that vy € X;(Q) and we have

HUO||W01(Q)” = ||VWHW01(Q)” = ||W||W02(g> < Cllqll2(0),

for some constant C > 0. In addition, div vy = ¢ and

1
2
bo(vo, q) = ||q||L2(Q) = EHq”LZ(Q)HUOHWOI(Q)"'
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We conclude that

sup bO (Uv q) > 1

veX:(Q) ||q||L2(Q)HUHWOI(Q)” C

This completes the proof of Theorem 1.

REMARK 3. [t is worth noting that the solution ue WJ(Q) satisfies

1
u(r )l p2sm) = 0<r"2> when r — 40, (26)

where S" denotes the unit sphere of R" if Q is an exterior domain or the upper
half of the unit sphere of R" if Q is a half-space (see, e.g., [1]). It follows in
particular that

VETT l[u(r)llL2sm = 0
REMARK 4. In [8], the author proposed a reflection approach for solving the
system (1)-(2)-(3) in the half-space.

Discussion

The approach we propose here can be extended for many other situations.
On the one hand, other kinds of unbounded domains can be considered. In
this regard, weighted Korn’s inequality, which is the corner stone in proving
well posedness, could be very useful (see, e.g., [18]). On the other hand, one
can also consider slip boundary conditions with friction instead of (3), that is

(o(u, p).n), +ku=0,

with k a constant. Finally, it should be noted that a mixed formulation of the
form (2') can also be done in the two-dimensional case (n = 2), provided that
the underlying functional spaces are slightly adapted by considering logarithmic
weights (see, e.g., [3]).

Appendix A. Density of Z(Q)" in H.(div;Q) when Q is an exterior domain

The proof is inspired by [17]. Assume that Q = R"\@, where w is a
bounded domain of IR”. Throughout this section, for every real number » > 0
B, designates the open ball of radius r centered at the origin and Q, = Q N B,.
Let ve H.(div;Q) and ¢ > 0. Consider a function 6 € Z(R") such that

0<0(x) <1 for all xe R",
O0(x) =1 when |x| <1 and 0(x) =0 when |x| > 2.
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Since w is bounded, there exists an integer ky > 1 such that w C By,, where By,
is the ball of radius ky centered at the origin. Set

o = Oc(x)u(x)  for k> 1 with O(x) = 0(%).

For k > ky we have

lox = vll 71 @ive2) = J |0k — 1)?|0]*dx +J (Jx* + 1)|div v — div v]*dx
x| >k k<|x|<2k

+J (Ix|* + 1)[div o|*dx
x| >2k

:J |9k—1|2|v|2dx+2J (Ix* + 1)(1 = 6)?|div v|*dx
x| >/ k<|x|<2k

+2J (\x|2+1)|V0k.v|2+J (%[ + 1)|div o] dx.
k<|x|<2k

|x] =2k

_ clj \U|2dx—|—2j (% + 1)[div o] dx
x| =k k<|x| <2k

4k? + 1 .
+72J o] +J (%1 + 1)[div o] .
k ke<|x| <2k x| > 2k

Obviously, |[vx — vlly,(giv;0) — 0, and there exists an integer / >k such
that

07 = vll . (aivs0) < €

Observe now that v, has a compact support included in Q,,. Since %(Qy,) is
dense in the usual space H(div;Q4/), there exists a function ¥, € Z(IR")" such
that

W, — vrll i aiviay) < €

Set

X

0, =05, )W)

Hence, ¢, € Z(R")" and ¢, =, in Q,,. Thus,

2 _ 2
o, — vl H.(div;Q) = o, — vl H.(div; Q4/)

2 2
= Wy — velidy, + 101 a0
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2 2 2
swwfmnwj 10u/ 2l 2 dx
20 <|x| <4/

+2J (x> + DAV O 0 > + 02 [div ) lx
20 <|x| <4/

2 2
< I, = velldy, + 200012 a0

(40)* +1

+ 2|10’ J
197 4% )ar<ix<ar

|W/|2dx

2
< Clly, — W”H(div;m,)

< C'é?,

where the constants C and C’ are not depending on e. This competes the
proof.
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