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Abstract. Cassels proved that projectively equivalent integral quadratic forms are

commensurable. In this note, an elementary proof of the converse of this theorem,

for indefinite forms, is given. This was proved in [3] for forms of Sylvester signature

þþþ . . .þ� or ��� . . .�þ (hyperbolic forms) and it was left there, as an open

problem, for non-hyperbolic indefinite forms of any Sylvester signature.

1. Introduction

We follow the notation of [3]. In particular, if F is an integral, symmetric

n� n matrix with non-zero determinant, both F and the expression

f ðxÞ ¼ xtFx

are refered to as an n-ary integral quadratic form, whose associated bilinear

form is

f ðx; yÞ ¼ xtFy:

Two n-ary integral quadratic forms F and G are rationally equivalent if there

is an n� n, rational matrix M such that MtFM ¼ G. If, moreover, M is

integral, and det M ¼G1, then F and G are integrally equivalent.

An n� n matrix U with integral entries is an automorph of the integral

quadratic form F if U tFU ¼ F . Then det U ¼G1. The set of automorphs

of F , which will be denoted by AutðFÞ, is called the group of automorphisms

of F .

Let F and G be two n-ary integral quadratic forms. Say that they

are commensurable, denoted by F @
c
G, if there is M A GLðn;RÞ such that

MtFM ¼GG and M�1SFM ¼ SG, for some finite index subgroups SF and SG

of the groups of automorphisms, AutðF Þ and AutðGÞ, of F and G, respectively.
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This definition is relevant only if the groups of automorphisms are infinite:

two n-ary definite integral quadratic forms are always commensurable.

Say that F and G are projectively equivalent, denoted by F @
P

G, if

there is a rational matrix R and a rational number l such that RtFR ¼ lG.

Equivalently, there is an integral matrix T and a nonzero integer a such

that T tFT ¼ aG.

Cassels [1] proved that two rationally equivalent n-ary integral quadratic

forms are commensurable.

The converse of this result, namely that commensurability implies pro-

jective equivalence, is false for definite integral quadratic forms, since they

have finite groups of automorphisms. It was proved to be true for indefinite

integral quadratic forms of Sylvester signature þþþ . . .þ� or ��� . . .�þ
(hyperbolic forms), in [3, Theorem 3], and it was left there, as an open question,

for indefinite forms of any Sylvester signature. Professor Souto gave a non-

elementary proof of the a‰rmative answer to this question in [5]. The purpose

of this Addendum is to o¤er an elementary proof of the following theorem.

Theorem 1. Let F and G be two n-ary indefinite integral quadratic forms.

Then, the following three statements are equivalent.

(1) F @
c
G.

(2) There are finite index subgroups of AutðF Þ and AutðGÞ which are

conjugate in GLðn;RÞ.
(3) F @

P
G.

2. Proof of Theorem 1

In this section we prove Theorem 1. By definition, (1) implies (2). The

proof that (3) implies (1) is due to Cassels [1]. He proved that two rationally

equivalent n-ary integral quadratic forms are commensurable. This is a con-

sequence of the following more detailed statement (see [3, Proposition 2]) that

we will use later in this paper.

Proposition 1. Let F and G be two n-ary integral quadratic forms.

Assume there is an integral matrix T and a nonzero integer a such that

T tFT ¼ aG. Then, there are finite index subgroups SF of AutðFÞ and SG

of AutðGÞ such that M�1SFM ¼ SG and M tFM ¼ eG, where M ¼ T=
ffiffiffiffiffiffi
jaj

p
,

e ¼ a
jaj .

Proof. Let m ¼ det T . If m ¼G1, then F and G are integrally equiv-

alent. Hence

T�1 AutðFÞT ¼ AutðaGÞ ¼ AutðGÞ:
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If m0G1, consider the subgroups

SF ¼ fU A AutðFÞ : T�1UT A AutðGÞg
and

SG ¼ fV A AutðGÞ : TVT�1 A AutðFÞg:

Then, T�1SFT ¼ SG.

To show that SF has finite index in AutðF Þ consider the homomorphism

o : AutðF Þ ! GLðn;Z=mZÞ;

defined by oðUÞ ¼ U mod m. Obviously, the kernel of o has finite index in

AutðF Þ. Moreover, it is contained in SF . Indeed, if U ¼ I þmA, A integral,

we have T�1UT ¼ I þmT�1AT which, being integral, belongs to AutðGÞ.
An analogous argument shows that SG has finite index in AutðGÞ. This

completes the proof.

We will need some previous results to see that (2) implies (3). The first

such result will simplify condition (2).

Lemma 1. Let S and T be two non empty subsets of GLðn;ZÞ which are

conjugate in GLðn;RÞ. Then, they are conjugate in GLðn;QÞ.

Proof. Let M A GLðn;RÞ such that M�1SM ¼ T . Then, for every

U A S there exists VU A T such that M�1UM ¼ VU . Each equation

UX ¼ XVU , where X ¼ ðxijÞ, can be viewed as a set of n2 linear equations

with integral coe‰cients in the n2 unknowns xij . The (possibly infinite) set of

all these equations, for all U A S, has a subset of maximal rank r. This rank is

less than n2 because there exists the solution M of the system of equations.

Then, the general solution of the system is an n� n matrix Wðt1; . . . ; tmÞ
whose entries are linear forms with rational coe‰cients in m ¼ n2 � r inde-

terminates t1; . . . ; tm, which can attain arbitrary real values.

The equation det W ¼ 0 is a polynomial equation in the variables

t1; . . . ; tm, which defines an algebraic subvariety V of Rm. The matrix R ¼
Wðq1; . . . ; qmÞ, where ðq1; . . . ; qmÞ A RmnV is a rational vector, belongs to

GLðn;QÞ and R�1SR ¼ T . This concludes the proof.

Say that U A GLðn;ZÞ is hyperbolic if it has the eigenvalue 1 with

multiplicity n� 2 and two real eigenvalues l > 1 and l�1 < 1. Note that

U has infinite order and det U ¼ 1. The eigenvectors of eigenvalues l and

l�1 span a 2-dimensional linear subspace of Rn that we call the support of U ,

denoted by spðUÞ. We will say that U is supported by spðUÞ. Each of the

1-dimensional linear subspaces of spðUÞ, spanned by the eigenvectors with

eigenvalues l and l�1, respectively, will be called a limit vector-line of U .
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The support and the limit vector-lines of U define, respectively, a pro-

jective line and two projective points in RPn�1. They will be called, axis of U

and limit points of U .

Denote by Sm�1
t the ðm� 1Þ-sphere Sm�1

t ¼ fv A Rm : vtv ¼ tg. Any n-ary

indefinite quadratic form is real equivalent to a diagonal quadratic form

F ¼ 1; . . . ; 1
zfflfflfflffl}|fflfflfflffl{r

;�1; . . . ;�1
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{s* +

; n ¼ rþ s;

and we will say that it has signature ðr; sÞ. A vector v ¼ ðx1; . . . ; xr; y1; . . . ; ysÞ
A Rn, lying in the intersection of Sn�1

1 with the cone vtFv ¼ 0, satisfies the

equations

x2
1 þ � � � þ x2

r ¼ 1

2

y21 þ � � � þ y2s ¼ 1

2
:

Therefore, this intersection is Sr�1
1=2 � Ss�1

1=2 .

The hyperquadric QF HRPn�1 defined by the cone vtFv ¼ 0 is homeo-

morphic to the quotient of Sr�1
1=2 � Ss�1

1=2 by the antipodal map. The subspaces

Rr � f0g and f0g � Rs define linear projective subvarieties of RPn�1, denoted

by Lþ and L�. Given a particular point q A QF it determines univocally two

points qþ A Lþ and q� A L�, defined as follows. The point q and L� (resp.

Lþ) span a projective subvariety intersecting Lþ (resp. L�) in one point,

denoted by qþ (resp. q�).

The point q has a neighborhood basis Bq in QF whose members are

constructed as follows. Take a basis of convex neighborhoods Yþ (resp. Y�)

of qþ (resp. q�) in Lþ (resp. L�). Join every point in Yþ with every point in

Y� with a projective line. The union of all points lying in these projective

lines is the join of Yþ and Y�, denoted by YþY�. We assume that Yþ and Y�
are so small that the intersection of YþY� with QF has always two connected

components. Denote by ðYþY�Þq the connected component containing q.

The set of the di¤erent ðYþY�Þq, thus obtained, is the neighborhood basis Bq

of q in QF .

All these concepts are transferred, with analogous notation, to any indef-

inite n-ary integral quadratic form F of signature ðr; sÞ, via the real equivalence

with the standard diagonal form of the same signature, discussed above.

Denote by e1; . . . ; en the columns of the identity matrix of order n. The

following proposition is the key ingredient for the proof of Theorem 1.

Proposition 2. Let F ¼ ha1; . . . ; ar;�b1; . . . ;�bsi, where a1; . . . ; ar;

b1; . . . ; bs are positive, square-free integers and 0 < sa r < n; n ¼ rþ s > 2.
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Let v ¼
Pr

i¼1 liei be a vector with integral coordinates li , and let u ¼
Pn

i¼rþ1 mjej
be a vector with integral coordinates mi. Assume �f ðvÞ f ðuÞ is not the square of

an integer. Then, there is a hyperbolic automorph U of F supported by the

2-dimensional linear space spanned by v and u.

Proof. Working with the r-ary positive definite, integral quadratic form

f restricted to the r-dimensional linear space W generated by e1; . . . ; er, we can

complete v ¼ v1 to a vector basis v1; . . . ; vr of W such that the r� r matrix

T ¼ ðlikÞ is integral, where vk ¼
Pr

i¼1 likei, and f ðvi; vjÞ ¼ 0 if i0 j (Gram-

Schmidt process [4, p. 83]). Similarly, working with the s-ary positive definite,

integral quadratic form �f restricted to the s-dimensional linear space W1

generated by erþ1; . . . ; en, complete u ¼ u1 to a vector basis u1; . . . ; us of W1

such that the s� s matrix T1 ¼ ðmikÞ is integral, where uk ¼
Pn

i¼rþ1 mikei, and

f ðui; ujÞ ¼ 0 if i0 j. Consider the n-ary integral quadratic form

H ¼ T tha1; . . . ; ariT lT t
1h�b1; . . . ;�bsiT1 ¼ hc1; . . . ; cr;�d1; . . . ;�dsi;

where ck ¼ f ðvkÞ is a positive integer and dh ¼ �f ðuhÞ is a positive integer.

Note that H ¼ StFS, where S ¼ T lT1 (the columns of S are the vectors

v1; . . . ; vr; u1; . . . ; us). Thus, F and H are rationally equivalent.

Moreover, by hypothesis, c1d1 is not the square of an integer. The binary

integral quadratic form hc1;�d1i possesses the automorph

V ¼ 1

2
w

1 0

0 1

� �
þ t

0 d1

c1 0

� �� �
;

where w and t are positive integers satisfying the Pell equation w2 � c1d1t
2 ¼ 4

in such a way that they make V integral. Since c1d1 is not a square, the Pell

equation has infinite solutions, and the automorph V is hyperbolic ([2] or [1]).

Now we can complete V to a hyperbolic automorph V1 of H by letting V1

act on the vectors

e2; . . . ; er; erþ2; . . . ; es

by the identity map. Then the linear space spanned by e1 and erþ1 is the

support spðV1Þ of V1.

Since H ¼ StFS, there are finite index subgroups SF and SH of AutðF Þ
and AutðHÞ such that S�1SFS ¼ SH (Proposition 1). Some power V a

1 of V1

belongs to SH . Then, U ¼ SV a
1 S

�1 is an automorph of F .

Now,

Se1 ¼ v; Serþ1 ¼ u;

and

Uvi ¼ SV a
1 S

�1vi ¼ SV a
1 ei ¼ Sei ¼ vi; for i ¼ 2; . . . ; r
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and, similarly, Uui ¼ ui, for i ¼ 2; . . . ; s. Hence U is a hyperbolic automorph

of F supported by

spðUÞ ¼ SðspðV1ÞÞ;

which is spanned by u and v. This completes the proof.

The proof of Proposition 2 is constructive.

Example 1. Let F be the diagonal indefinite integral quadratic form h1; 1;
�1;�1i. We want to obtain a hyperbolic automorph U of F with support

generated by v1 ¼ 2e1 þ e2 and u1 ¼ e3. It must exist because �f ðv1Þ f ðu1Þ ¼ 5

is not the square of an integer. To obtain U, we first complete v1 to a basis

v1; v2 ¼ e1 � 2e2 and, then, we complete u1 to the basis u1; u2 ¼ e4. Then

S ¼ 2 1

1 �2

� �
l

1 0

0 1

� �
:

Hence H ¼ StFS ¼ h5; 5;�1;�1i. The binary integral quadratic form

hc1;�d1i ¼ h5;�1i possesses the automorph

V ¼ 1

2
w

1 0

0 1

� �
þ t

0 d1

c1 0

� �� �
;

where w and t are positive integers satisfying the Pell equation w2 � 5t2 ¼ 4,

so that V is integral. Take w ¼ 18, t ¼ 8. Then,

V ¼ 9 4

20 9

� �
is an automorph of h5;�1i.

Now, we can complete V to the automorph

V1 ¼

9 0 4 0

0 1 0 0

20 0 9 0

0 0 0 1

2
6664

3
7775

of h, by letting V1 act on the vectors e2, e4 by the identity map. The rational

automorph SV1S
�1 of F is

SV1S
�1 ¼

37
5

16
5 8 0

16
5

13
5 4 0

8 4 9 0

0 0 0 1

2
66664

3
77775;
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and its second power,

U ¼ SV 2
1 S

�1 ¼

129 64 144 0

64 33 72 0

144 72 161 0

0 0 0 1

2
6664

3
7775;

is already an integral automorph of F ¼ h1; 1;�1;�1i. The eigenvalues of this

automorph U are l ¼ 161þ 72
ffiffiffi
5

p
, l�1 ¼ 161� 72

ffiffiffi
5

p
; 1 and 1, corresponding,

respectively, to the eigenvectors

a ¼ 2ffiffiffi
5

p ;
1ffiffiffi
5

p ; 1; 0

� �

b ¼ � 2ffiffiffi
5

p ;� 1ffiffiffi
5

p ; 1; 0

� �
e4 ¼ ð0; 0; 0; 1Þ

and

v2 ¼ ð1;�2; 0; 0Þ:

The support of U is generated by the first two eigenvectors. It is also generated

by v1 ¼
ffiffiffi
5

p
a and u1 ¼ 1

2 ðaþ bÞ.

Proposition 3. Let F be an n-ary indefinite integral quadratic form.

Assume U A AutðF Þ is hyperbolic. Then, the limit points of U belong to the

hyperquadric QF .

Proof. Let q ¼ ½q� be a limit point of U . Then Uq ¼ tq, where t0G1

is a real number. Then

f ðqÞ ¼ f ðUqÞ ¼ t2f ðqÞ

implies f ðqÞ ¼ 0. This concludes the proof.

Proposition 4. Let F be a binary positive definite integral quadratic form

that is not necessarily primitive. Let u1, u2 be two Q-linearly independent ele-

ments of Z2. Then, there is a pair of non-negative integers x, y, such that

f ðxu1 þ yu2Þ

is not the square of an integer.

Proof. If f ðu1Þ or f ðu2Þ is not the square of an integer, there is nothing

to prove. Assume then, that f ðu1Þ ¼ l2 and f ðu2Þ ¼ m2, where l > 0, m > 0

are integers. Let v1 ¼ mu1 and v2 ¼ lu2. Then f ðv1Þ ¼ f ðv2Þ ¼ a2, where
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a ¼ lm > 0. If f ðv1 þ v2Þ ¼ 2a2 þ 2f ðv1; v2Þ is not the square of an integer,

there is nothing to prove. Assume then, that f ðv1 þ v2Þ is the square of a,

necessarily even, positive integer 2b. Then f ðv1; v2Þ ¼ 2b2 � a2. Hence

f ðxv1 þ yv2Þ ¼ a2ðx� yÞ2 þ 4b2xy ¼ ðx; yÞG x

y

� �
;

G ¼ a2 2b2 � a2

2b2 � a2 a2

� �
¼ T tFT ;

where T is the integral matrix whose columns are the coordinates of the vectors

v1, v2. Since these vectors are Q-linearly independent, G is a positive definite

integral quadratic form. In particular,

det G ¼ 4b2ða2 � b2Þ > 0:

Hence a > b > 0.

Take any integer zb a2. Then, a2 � b2 < 2zþ 1 and z > b. Then,

z2 < z2 þ a2 � b2 < ðzþ 1Þ2:

Hence, z2 þ a2 � b2 ¼ m is not the square of an integer. Setting x ¼ z� b > 0

and y ¼ zþ b > 0, we have that

a2ðx� yÞ2 þ 4b2xy ¼ 4b2ðz2 þ a2 � b2Þ ¼ 4b2m

is not the square of an integer. This completes the proof.

Theorem 2. Let F be an n-ary indefinite integral quadratic form. Assume

n > 2. Let H be a finite index subgroup of AutðF Þ. Then, the union of the

limit-points of all the axes of the hyperbolic elements of H is dense in the

hyperquadric QF .

Proof. The set of axes of the hyperbolic elements of H coincides with the

set of axes of the hyperbolic elements of AutðF Þ. Indeed, if U A AutðF Þ is a

hyperbolic automorph, supported by spðUÞ, the powers of U have the same

support. Since some power of U belongs to H, the axis of U is the axis of a

hyperbolic element of H. That some power of U belongs to H is a conse-

quence of H having finite index in Aut f , since this implies that there is a finite

index subgroup KaHaAutðF Þ which is normal in AutðFÞ.
Note that the quadratic form F is rationally equivalent to a diagonal

integral quadratic form G (see [2, Theorem 1]). Then F and G are projectively

equivalent. By Proposition 1, there is M A GLðn;RÞ such that M�1SFM ¼ SG,

where SF and SG are finite index subgroups of AutðFÞ and AutðGÞ, respec-

tively, and also MtFM ¼ G. Hence the union of the limit-points of all the

axes of the hyperbolic elements of H is dense in the hyperquadric QF if and
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only if the union of the limit-points of all the axes of the hyperbolic elements

of AutðGÞ is dense in the hyperquadric QG. Thus, we may assume that F is

diagonal and H ¼ AutðFÞ. Since F and �F have the same axes, we may

assume also that F ¼ ha1; . . . ; ar;�b1; . . . ;�bsi, where a1; . . . ; ar; b1; . . . ; bs are

positive square-free integers and sa r < n.

Let Wþ be the r-dimensional linear space generated by e1; . . . ; er and let

W� the s-dimensional linear space generated by erþ1; . . . ; en. The subspaces

Wþ and W� define linear projective subvarieties of RPn�1, denoted by Lþ and

L�. Let q ¼ ½q� be a point in the hyperquadric QF . It determines univocally

the two points qþ ¼ ½qþ� A Lþ and q� ¼ ½q�� A L�, defined as in the paragraph

prior to Proposition 2. Given any neighborhood Z of q in QF there are

convex neighborhoods Yþ of qþ in Lþ and Y� of q� in L� such that Y ¼
ðYþY�Þq HZ is a neighborhood of q in QF .

If there are projective points ½u� A Yþ and ½v� A Y� such that the vectors

u and v satisfy the hypothesis of Proposition 2, then, there is a hyperbolic

automorph U of F supported by the 2-dimensional linear space generated by v

and u. Then, the axis of U is the projective line passing through ½u� A Yþ and

½v� A Y�. The axis of U intersects the hyperquadric QF in the limit points of

U (Proposition 3). One of these limit points belongs to Z. Hence, the proof

will be completed by proving that there are projective points ½u� A Yþ and

½v� A Y�, such that the vectors u and v satisfy the hypothesis of Proposition 2.

Say that a vector u of Rn (and the corresponding projective point ½u�) is

integral if u has integral coordinates. First, note that the set of integral points

of RPn�1 is dense because they correspond to a‰ne points with rational co-

ordinates in the standard a‰ne charts, x1 ¼ 1; . . . ; xn ¼ 1, covering RPn�1.

Take an arbitrary integral point ½v� A Y�. Write �f ðvÞ ¼ a, where a

is a positive integer. Take two arbitrary integral points ½u1�0 ½u2� A Yþ.

Applying Proposition 4 to the positive definite, integral quadratic form af ,

restricted to the span of u1 and u2, there exist integers xb 0 and yb 0 such

that af ðuÞ ¼ m is not the square of an integer, where u ¼ xu1 þ yu2. Note

that ½u� A Yþ, since Yþ is convex. Then, u A Wþ and v A W� satisfy the

hypothesis of Proposition 2, because

�f ðvÞ f ðuÞ ¼ m

is not the square of an integer. This completes the proof.

Though we will not make use of it, we record the following Corollary.

Corollary 1. Let F be an n-ary indefinite integral quadratic form F,

n > 2. Then, any finite index subgroup H of Aut f is R-irreducible. Namely,

the only linear subspaces of Rn left globally invariant by all the elements of H

are of dimensions zero and n.
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Proof. By Theorem 2, the only linear subspaces of Rn left globally

invariant by all hyperbolic elements of H are of dimensions zero and n.

Hence H is R-irreducible.

Now, we are ready to prove that (2) implies (3) in Theorem 1. For n ¼ 2,

there is an ad hoc proof in [3, Proposition 4]. Therefore we assume n > 2.

Assume that there are finite index subgroups SF aAutðFÞ and

SG aAutðGÞ which are conjugate in GLðn;RÞ. By Lemma 1, they are

conjugate in GLðn;QÞ. Let R A GLðn;QÞ be such that

R�1SFR ¼ SG:

Write R ¼ 1
m
E, where E is integral and m is an integer. Then

R�1SFR ¼ E�1SFE ¼ SG:

Let H ¼ EtFE. Then H is an n-ary integral, indefinite quadratic form such

that SG aAutðHÞ. By Proposition 3 and Theorem 2, QG HQH . Then

H ¼ lG, where l A Q since H and G are rational. Hence EtFE ¼ lG, where

l A Q and E is integral. That is, F @
P

G. This completes the proof of

Theorem 1.
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Universidad Complutense

28040 Madrid

Spain

E-mail: montesin@mat.ucm.es
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