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Introduction.

We consider a closed connected surface F embedded in a homology 4-
sphere M4 with normal bundle N(F). Of course N(F) always exists as a
regular neighborhood of F in the smooth or PL category. The exterior X of F
is defined by X = M4 - IntΛf(F). If F is non-orientable (resp. orientable),
then Hl(X)^H2(F)^Z2 (resp. Z) by the Alexander duality, and we have the
double covering space X2 over X associated with the kernel of the non-trivial
homomorphism π1(X)-+Z2 through the Hurewicz homomorphism π^X)
-^H^X). In this paper, we determine the finitely generated Λ2-modules
Hχ(X2) and H^(X2, dX2). Here Λ2 denotes the integral group ring of Z2

which is generated by ί, and t acts on these homology groups by the induced
isomorphism of the covering transformation.

THEOREM 1. If F is non-orientable, we have the following.

(1) H1(X2) * Hl(X29 dX2) s 0 A2/(t + 1, c^ where ct (l<i< n)
, , . i = l

are odd integers.
(2) H2(X2)*H2(X2,dX2)sA2 -1®A2/(t + l)®Hί(X2), where g

is the genus of F.
(3) H,(X2) = 0 (i > 3), Ht(X2, dX2) = 0 (j = 0, 3 or i>5), and

H0(X2)^H4(X2,dX2)^Λ2/(t~l).

THEOREM Γ. If F is orientable, we have the following.

(!') H,(X2, dX2) ^ 0 A 2 / ( t + 1, cj and H^XJ S A 2 / ( t - 1)
i = l

®H^(X2, dX2), where ct (1 < i < n) are odd integers.
(2r) H2(X2) ^ H2(X29 dX2) ^ Λ\9 Θ HV(X2, dX2)9 where g is the

genus of F.
(3') Hi(X2) = Q (i>3), Ht(X29dX2) = Q (i = 0 or i > 5), and

2, dX2) s H4(X2, dX2) * A2/(t - 1).

REMARK. In the case that π^X) is an abelian group, the above theorems
are well known because F is stably unknotted (cf. [2]).
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As for the realization problem of homology modules, we first prove the

following theorem.

THEOREM 2. For any odd integers cί9 c2,...,cn and positive integer g, there

exists a closed connected non-orientable (resp. orientable) surface of genus g
n n

embedded in S4 such that Hi(X2) ^ 0 Λ2/(t + 1, cj (resp. 0 Λ2/(t + 1, ct)

®A2/(t-l)).

Moreover, in Section 3, we consider the torsion pairing

/: t^izHl(X2) x torzH2(X29 dX2) -> Q/Z,

which is Λ2-bilinear and nonsingular. Here torzH denotes the Z-torsion part
of H. Let 91 be the monoid of isomorphism classes of odd order finite abelian
groups with nonsingular symmetric bilinear form. According to Poincare

duality and Universal coefficient theorem, toτzHi(X2) is canonically isomorphic
to torzH2(X2, dX2). Since these groups are of odd order by Theorems 1 and

\\{ determines an element of 91. Since the structure of 5ft is known (cf. [5]),
we can prove the following

THEOREM 3. Let f be an element of 91 and g be a positive integer. Then

there exists a closed connected non-orientable surface of genus g embedded in S*
such that its torsion pairing corresponds to i '. There also exists an orientable

one.

§ 1. Proof of Theorems 1 and 1'.

We will give a rather detailed proof of Theorem 1 and only an outline of
that of Theorem Γ. First we assume that F is non-orientable. Let C^(X) be
the cellular chain complex of X with integral coefficients. Tensoring the chain

complex of Z-free modules C^(X) to the exact sequence 0-> A 2 / ( t + !)-> Λ2

->Λ2/(t — 1)->0, we have a short exact sequence of chain complexes of Λ2-
modules

0 -* C*(X) ® (Λ2/(t + 1)) -> C*(X) ®Λ2-^ C*(X) (g) (Λ2/(t - 1)) -> 0
z z z

(1.1).

Note that C^(X) (x) Λ2 (resp. C+(X) (x) (A2/(t — 1))) is naturally isomorphic to
z z

C*(^2) (resP C*(X)) and we introduce the abbreviation C^ = C+(X)

®(A2/(t + 1)). Since C+®Z2 is isomorphic to CJX)®Z2, we have
z Λ z z

H#(C'9 Z2) ^ H^(X\ Z2). In the derived homology exact sequence of (1.1), it
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is easily seen that d: Hί(X)-+H0(C) is an isomorphism. Thus H^C; Z2)

^H^X; Z2) £ Z2 implies H^C) (x) Z2 = 0. So we see that H ̂ A^) is finite
z

of odd order and so is Hl(X2, dX2) Now we remark that (ί + 1)H^(C) = 0,
n

therefore we obtain (ί + l)/f1(A r

2) = 0 and #ι(A2) is isomorphic to 0

Λ2/(t + 1, ct)9 where cf are odd integers.

LEMMA 1.1. As Λ2-modules, Hί(X2)9 H1(X2, dX2)9 toτzH2(X2) and
torz(X29 dX2) are isomorphic to each other.

PROOF. Using H3(X2, dX2) ^ Hl(X2) = 0, we consider the homology
exact sequence of the pair (X29 dX2):

0 -* H2(dX2) -> H2(X2) -> H2(X2, dX2) -> HΛδXJ -> -.

Since dX2 is not only an orientable 3-manifold but also the total space of S1-
bundle over the non-oricntable surface F, H2(dX2) is isomorphic to Z9'1 and

H1(5X2) is isomorphic to Z9'1 0 Z2 φ Z2 (resp. Z^"1 0 Z4) if e = 0 (mod 4)

(resp. e = 2 (mod 4)), where e is the Euler number of the normal bundle N(F)
—>F and even in our situation. For the reason that the Z-torsion of

H2(X2, dX2) is odd torsion, the above exact sequence implies that torzJ
cί2(Jί2)

is isomorphic to toτzH2(X2, dX2) as Λ2-module. On the other hand,

torz#2(Jf2) (resp. toτzH2(X2, dX2)) is isomorphic to H^(X2, dX2) (resp.
H1(ΛΓ2)) as Z-module by Poincare duality and universal coefficient theorem.

So, to conclude the proof of the lemma, we have only to show that (ί + 1)
torzH2(X2) = 0. We consider the derived homology exact sequence of (1.1):

H3(X) -> H2(C) Λ H2(X2) ^ H2(X) (1.2).

Note that H 3 ( X ) = 0 and H2(X)^Z9~1 by Alexander duality. Since
torzH2pf2) is a Λ2-submodule of Im/ and (t + 1)#2(C) = 0, we obtain the

desired result.

n

This lemma and the fact Hί(X2) ^ 0 Λ2/(t 4- 1, c, ) imply (1) of Theorem
i = l

1. It is also easy to see that (3) of Theorem 1 holds. So, we shall prove (2) of

Theorem 1 hereafter.

For a finitely generated Λ2-module #, we denote the Λ2-module H/toτzH

by H. Then, the induced short exact sequence 0->ίf2(C) -+H2(X2) -^Im h

^0 from (1.2) reduces to the following short exact sequence of Λ2-modules

0 -> (Λ2/(t + l)Y -. H2(X2) -, (A2/(t - l)r1 -. 0.

By the calculation of Euler characteristic, we have τankzH2(X2) = 2g — 1 and
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rankz#2(C) = g. Since Ext1

Λ2(A2/(t - 1), Λ2/(t + 1)) £ Z2 and the corre-

sponding extended module is A2 or (Λ2/(ί + l))θ(Λ2/(ί — !))» we have

S A\ Θ (A2/(t + l)Y + x ® (Λ2/(ί - 1))' (1.3),

for some non negative integers k and f satisfying k + £ = g — 1. To prove (2)
of Theorem 1 for H2(X2), it is enough to show t = 0. We first show the
following lemma.

LEMMA 1.2. H2(X2) ^ isomorphίc to H2(X2) ®torzH2(X2) as A2-module.

PROOF. We will show that Ext^2(#2(JT2), torzH2(AΓ

2)) = 0. By the
above argument and lemma 1.1, it is sufficient to show that

Ext\2((Λ2/(t + 1)), Λ2/(t + 1, c)) = 0 (1.4)

and E*l\2((Λ2l(t - 1)), Λ2/(t + 1, c)) = 0 (1.5),

where c is odd. To calculate the Ext group (1.4), we take a Λ2-free resolution
of Λ2/(t+l):

---- >Λ2 ^^Λ2 ^±Λ2 -+Λ2/(t + 1) ->0

Applying HomΛ 2(— , Λ2/(t + 1, c)) to this, we obtain the following.

Λ2/(t + 1, c)-±+Λ2/(t + 1, c) ^Λ2/(ί + 1, c) -, -

Since c is odd, — 2: Λ2/(f + 1, c) -» /ί2/(ί + 1, c) is an isomorphim. and hence
(1.4) holds. Similarly, (1.5) also holds.

Next we calculate H\2(X2; Λ2/(t — 1)) the third cohomology of
HomΛ2(C#(X2), A2/(t — 1)) by using the universal coefficient spectral sequence
(cf. [3]). This spectral sequence induces a filtration

H3

Λ2(X2l A2/(t - 1)) = J3,0 ID J2Λ ID J 1 > 2 ID JQ 3 ̂  J_, 4 = 0

with Jp,q/Jp-ltq+1 * E™ and E%* = Ert*A2(Hp(X2), A2/(t - 1)) and differential
dr has degree (1 - r, r). To obtain the E2-term, we need the following lemma.

Lemma 1.3.

(1) Ext^2(Λ2/(ί + 1), A2/(t - 1)) s Z2(i = odΰ) or 0 (i =
(2) Ext l

Λ2(τl2/(ί- 1), A2/(t- 1)) ̂  Z2(i = eΌβn >2) or 0 (i = odd) or A2/(t-l)
(i = 0).

(3) Ext'Λ2(Λ2/(ί H- 1, c), A2/(t - 1)) = 0 for all i, where c is an odd integer.
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PROOF. (1) and (2) are easily seen, so we omit the proofs. To calculate
(3), take the following Λ2-free resolution of A2/(t + 1, c).

dt are represented by the following matrices:

d5;l ^ j, and δn+2 = 3ll for π > 4 ,

where every element of Λ™ is represented by a row vector. Applying HomΛ2

(— , Λ2/(t — 1)) to this resolution, we obtain the desired result.

Now we are in a position to prove that f — 0 in (1.3). First by Lemma 1.3
and (1), (3) of Theorem 1, we have E%q = 0 for p =£ 0, 2. Thus dr is the zero
map for r ^ 3. Hence we obtain

#Λ2(*2; Λ2/(ί - 1)) £ E' 1 £ E' 1 = Keryf ' 1 : Ef 1 ->ES*4].

Substituting the right hand side of (1.3) for H2(X2) in Lemma 1.2, we obtain

Ef» 1 ^Z 2

] + 1 and £°>4^Z2.

On the other hand, HomΛ2(C^(X2)9 Λ2/(t — 1)) is naturally isomorphic to
Homz(C5|ί(AΓ), Z) with the trivial action of t. So H%2(X2'9 Λ2/(t - 1)) is

isomorphic to H*(X). Since H3(X) = 0 by the Alexander duality, E^ 1 =0
and ά\Λ is injective. We have proved that df ' 1 : Z^ + 1->Z2 in the
above. Thus we obtain t = 0 and determine the structure of //2(AΓ2). The

relative homology group H2(X2^ SX2) can be similarly determined and
isomorphic to H2(X2) but not canonically. This ends the proof of (2) of
Theorem 1 and also that of Theorem 1.

To prove Theorem Γ we assume that F is orientable. In this case, we

note that H^X^ is isomorphic to ( H l ( X ) / ( t + ϊ ) H 1 ( X ) ) ( & Λ 2 / ( t - 1) as Λ2-
module, where X is the infinite cyclic covering. (See (2.1) in the next

section.) Since it is known that t - 1 induces an automorphism on the first

summand, H^(X)l(t + \)H±(X) is finite of odd order. Thus we obtain (Γ) of
Theorem Γ. Moreover, the structure of the second homology can be

determined by using the spectral sequence as is the non-orientable case. So we

omit the proof.
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§2. Proof of Theorem 2.

In the rest of this paper, we consider a knotted surface (S4, F), that is, an
embedded closed connected surface F in S4 and use the following notation;
φ.(F) = Hi(X2). If F is orientable, then we denote Φ;(F) = Ht(X). Here X is
the infinite cyclic universal abelian covering of X. For knotted surfaces (S4, F)

and (S4, F'), we consider the connected sum

Then it is easy to see that X2 « X 2 ( J X 2 and X2ϊ\X2 « D2 x S1, where X2 is
the double covering of the exterior of F#F' and « means a
homeomorphism. Using this splitting, we obtain the following

LEMMA 2.1. torzΦ2(F)0 torzΦ2(F') is ίsomorphic to torzΦ2(F#F') as
Λ2-module.

PROOF. Consider the Mayer- Vietoris exact sequence of the splitting

If F is non-orientable, then torzH2(X2) ^ //1(AΓ2) by Theorem 1. So we
have the following as a corollary of Lemma 2.1.

COROLLARY 2.2. If F and F' are non-orientable, then Φi(F)@Φl(Ff) is
isomorphic to Φ1(F#F') as Λ2-module.

LEMMA 2.3. If F is orientable and F' is non-orientable, then Φ1(F#Ff) is
isomorphic to (Φ^F)/^ + IJΦ^F)) © Φ^F') as Λ2-module.

PROOF. Consider the exact sequence

which is derived from the short exact sequence

0 — C ( X ) î C ( X ) ^^ C(X2) —> 0.

Here, p is the projection map X^X2 and H0(X)^Z. This induces an
isomorphism of Z-module

H1(X2)^(Hl(X)/(t2^l)Hl(X))φH0(X) (2.1).

Now, it is well known that H 1 ( X ) is of type K, that is, ί-1 is an
automorphism. Hence (ί2 - tyH^X) £ (ί + tfH^X). Moreover, we remark
that the second direct summand is the image of the infinite cyclic group
generated by the meridian element, which is a generator of
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H ^ ( X 2 [ \ X ' 2 ) . Finally notice that the direct sum decomposition (2.1) induces an
isomorphism of yi2-module, because t + 1 is the zero map. So this completes
the proof.

The above argument also shows the following lemma.

LEMMA 2.4. If F and F' are orίentable, then toτzΦ1(F#F') is isomorphic to
torzΦ1(F)0torzΦ1(F/) as A2-module.

Let (S4, Sc) be the 2-sphere in S4 which is called the 2-twist spun of the
(2, c)-torus knot (cf. [6]), where c is an odd integer, and (S4, P) (resp. (S4, T))
be unknotted real projective plane (resp. unknotted torus). It is easy to see
that ΦX(5C) s A/(t + 1, c), Φi(P) = 0 and ΦX(T) * Λ2/(t - 1). Here A is the
integral group ring of the infinite cyclic group generated by ί. We denote
(S4, Fc) = (S4, SC)#(S4, P) and (S4, F'c) = (S4, 5C)#(54, T). Then Φ,(FC)
^ A2/(t + 1, c) and Φ^F',) ^ A2/(t + 1, c) © Λ2/(ί - 1) by Lemmas 2.3 and 2.4.

Thus we can prove Theorem 2 by taking # (S4, SC)#(#(S4, P)) (non-orientable
0 ί = 1

case) or # (S4, SCi)#(#(S4, T)) (orientable case).
i = l

§3. Proof of Theorem 3.

First we present the following proposition. The first isomorphism is easily
obtained by the direct calculation. The other isomorphisms can be proved by

the same method of Levine [3, p. 12] and we omit the proofs.

PROPOSITION 3. 1. Let A be a finitely generated A2-module of odd order and
assume that (t + 1) A = 0. Then

A * Extiμ, A2) * HomΛμ, Q/Z® A2) ^ Homz(Λ, β/Z),
z

where = means a A2-isomorphίsm.

REMARK. For a finite Λ-module A, A is always isomorphic to
Homz(A, Q/Z) as Z-module, but, in general, not isomorphic as Λ-module (cf.

[4]).

Poincare duality and universal coefficient theorem induce a canonical A2-

isomorphism torzH1(X2) ^ torzH2(X2, dX2). Using Proposition 3.1 and this
isomorphism, we have the pairing (\ torz/f1(Ar

2) x torzH2(X2, dX2)-+ Q/Z,

which is stated in Introduction.
The monoid 91, as stated in Introduction, is decomposed into direct sum of

monoids 9lp corresponding to p-primary groups for odd primes p. 9lp is
generated by A(pk) and B(pk) (k > 1). Here A(pk) (resp. B(pk)) denotes the form
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{ over the cyclic group of order pk, generated by x, with /(*, x) = a/pk, where a
is a residue (resp. a non-residue) (cf. [5]). We consider the 2-twist spun of the

2-bridge knot of type n/m with G.C.D. (m, n) = 1 and m = odd. We denote it

by (S4, Sm „). It is a fibered knot and its fiber is the punctured lens space

L(m, n). Farber [1] and Levine [3] showed that the torsion pairing on

Φι(Sm,n)> which we denote by /, is isomorphic to the linking pairing on
//!(L(m, n)). Note that Φ^S^J ̂  A/(t + 1, m). Therefore when m = pk this
pairing is A(pk) or B(pk), if n is a residue or a non-residue

respectively. Moreover, Φι(Sm>M) is isomorphic to Φι(SWflI) as Λ2-module and ί

is also isomorphic to t by the natural projection X ->X2 Since it is easy to
see that the connected sum of knotted surfaces induces a direct sum
decomposition of the corresponding linking pairing, Theorem 3 holds by taking
an appropriate connected sum of (S4, 5m>n) with m = pk, (S4, P) and (S4, T).
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