Chiral models and the Einstein-Maxwell field equations

Hideo Doi and Ryuichi Sawae
(Received December 25, 1989)

1. Introduction

The main objective in this paper is to provide a geometric picture of solutions of a $(1+1)$-dimensional reduction for the $(1+3)$-dimensional principal chiral model taking values in an arbitrary linear algebraic group.

Let G be a closed subgroup of the group scheme $G L_{N}$ and assume that G is defined over \boldsymbol{R}. The equations of motion for the $S O(1,2)$-invariant chiral model on flat Minkowski space can be written

$$
\begin{equation*}
d\left(t * d \sigma \cdot \sigma^{-1}\right)=0 \tag{1.1}
\end{equation*}
$$

for $\sigma \in G(C[[t, z]])$. Here t, z are real variables, d is exterior differentiation, and $*$ is the Hodge operator with respect to the Lorentz metric $(d t)^{2}-(d z)^{2}$.

Let λ be a real parameter. Let \mathscr{A} denote an algebra $\left\{a=\Sigma_{n \in Z} a_{n} \lambda^{n} \in\right.$ $\boldsymbol{C}\left[\left[t, z, \lambda, \lambda^{-1}\right]\right] ;$ ord $\left.a_{n} \geq n\right\}$, where ord $\varphi=\sup \{k \in \boldsymbol{Z} ; \varphi \in(\boldsymbol{C}[[t, z]] t+$ $\left.\boldsymbol{C}[[t, z]] z)^{k}\right\} . \quad$ Set $\mathscr{A}^{ \pm}=\mathscr{A} \cap \boldsymbol{C}\left[\left[t, z, \lambda^{ \pm 1}\right]\right], \mathscr{P}_{G}=G\left(\mathscr{A}^{+}\right)$and $\mathscr{N}_{G}=\left\{g \in G\left(\mathscr{A}^{-}\right)\right.$; $g(t, z, \infty)=1\}$. Then $G(\mathscr{A})=\mathscr{N}_{G} \mathscr{P}_{G}$ (Lemma 2.3 and K. Takasaki [6, (3.17)]). This decomposition is used for solving (1.1).

Theorem 1.1. There exist $w \in \mathscr{N}_{G}$ and $p \in \mathscr{P}_{G}$ such that $w^{-1} p=$ $\gamma\left(z+\lambda t^{2} / 2+1 / 2 \lambda\right)$ for each $\gamma \in G(C[[z]])$. Furthermore, if we set $\sigma=p(t, z, 0)$, then σ is a unique solution of (1.1) with $\sigma(0, z)=\gamma(z)$.

We give a proof of the theorem in $\S 2$ and derive an explicit formula for the solution σ with $\sigma(0, z) \in G(C[z])$. Also we consider a transformation group for solutions of (1.1). As an application, we show in $\S 3$ a variant of the Geroch conjecture [3], that is to say, a real form $\mathscr{S} \mathscr{U}(1,2)$ of $S L_{3}(C[[z]])$ acts transitively on the space of plane wave solutions of the Einstein-Maxwell field equations.

The authors would like to thank Prof. T. Kako for his aid to use the computer algebra system REDUCE 3.3.

2. The chiral models

To start with, we consider a manifest invariance of (1.1). We note that $d\left(t * d \tau^{-1} \cdot \tau\right)=-\operatorname{Ad} \tau^{-1}\left(d\left(t * d \tau \cdot \tau^{-1}\right)\right)$ for any $\tau \in G(C[[t, z]])$. The following result is obvious.

Lemma 2.1. Let $\theta: G \rightarrow G^{\prime}$ be a homomorphism or an antihomomorphism between linear algebraic groups G and G^{\prime}. If $\sigma \in G(C[[t, z]])$ satisfies (1.1), then $\theta(\sigma)$ does also.

We shall prove the solvability of (1.1) using this invariance.
Proposition 2.2. There exists a unique solution $\sigma \in G(C[[t, z]])$ of (1.1) with $\sigma(0, z)=\gamma(z)$ for each $\gamma \in \boldsymbol{G}(\boldsymbol{C}[[z]])$.

Proof. We rewrite (1.1) as follows:

$$
\begin{equation*}
\left(t \partial_{t}\right)^{2} \sigma=t^{2} \partial_{z}^{2} \sigma+t \partial_{t} \sigma \cdot \sigma^{-1} t \partial_{t} \sigma-t \partial_{z} \sigma \cdot \sigma^{-1} t \partial_{z} \sigma \tag{2.1}
\end{equation*}
$$

We set $\varphi[n]=\partial_{t}^{n} \varphi(0, z) / n$! for $\varphi \in \operatorname{gl}_{N}(C[[t, z]])$. By (2.1), $\sigma[0]$ determines $\sigma[n]$ for $n>0$. The proposition is now valid if $G=G L_{N}$.

Let ρ be a polynomial representation of $G L_{N}$ on V such that $G=\left\{g \in G L_{N}\right.$; $\left.v_{0} \rho(g) \in C v_{0}\right\}$ with $v_{0} \in V$. Let $\sigma \in G L_{N}(C[[t, z]])$ satisfy $d\left(t * d \sigma \cdot \sigma^{-1}\right)=0$ and $\sigma(0, z)=\gamma(z)$. Then (2.1) combined with Lemma 2.1 implies that

$$
\begin{aligned}
n^{2} v_{0} \tau[n]= & v_{0} \partial_{z}^{2} \tau[n-2]+\sum_{0<p, q, r<n, p+q+r=n}\left(v_{0} p \tau[p] \tau^{-1}[q] r \tau[r]\right. \\
& \left.-v_{0} \partial_{z} \tau[p-1] \cdot \tau^{-1}[q] \partial_{z} \tau[r-1]\right)
\end{aligned}
$$

for $\tau=\rho(\sigma)$ and $\rho(\sigma)^{-1}$. Hence $v_{0} \rho(\sigma)^{ \pm 1}[n] \in \boldsymbol{C}[[z]] v_{0}$. This means that $\sigma \in G(C[[t, z]])$.

We now consider a linearization of (1.1) (cf. K. Nagatomo [5]). Let α_{1} and $\alpha_{2} \in \mathfrak{g}(\boldsymbol{C}[[t, z]])$. If $\alpha_{1}=\partial_{t} \sigma \cdot \sigma^{-1}$ and $\alpha_{2}=\partial_{z} \sigma \cdot \sigma^{-1}$ with $\sigma \in G(C[[t, z]])$, then

$$
\begin{equation*}
\partial_{z} \alpha_{1}-\partial_{t} \alpha_{2}+\left[\alpha_{1}, \alpha_{2}\right]=0 \tag{2.2}
\end{equation*}
$$

Moreover, if σ satisfies (1.1), then

$$
\begin{equation*}
\partial_{t}\left(t \alpha_{1}\right)-\partial_{z}\left(t \alpha_{2}\right)=0 \tag{2.3}
\end{equation*}
$$

Conversely, if $\left(\alpha_{1}, \alpha_{2}\right) \in \mathfrak{g}(C[[t, z]]) \times \mathfrak{g}(C[[t, z]])$ is a solution of (2.2), then there exists a unique $\sigma \in G(C[[t, z]])$ satisfying $\partial_{t} \sigma=\alpha_{1} \sigma, \partial_{z} \sigma=\alpha_{2} \sigma$ and $\sigma(0,0)=\beta$ for each $\beta \in G(C)$. Therefore (1.1) is equivalent to the system (2.2-3).

Here we introduce two vector fields:

$$
D_{1}=\partial_{t}-\lambda t \partial_{z} \quad \text { and } \quad D_{2}=\partial_{z}-\lambda t \partial_{t}+2 \lambda^{2} \partial_{\lambda}
$$

If α_{1} and $\alpha_{2} \in \mathfrak{g}(C[[t, z]])$ satisfy

$$
\begin{equation*}
D_{i} w=\alpha_{i} w, \quad i=1,2 \quad \text { with } w \in G(\mathscr{A}) \tag{2.4}
\end{equation*}
$$

then $\left(\alpha_{1}, \alpha_{2}\right)$ is a solution of (2.2-3), since $\left[D_{1}, D_{2}\right]=-\lambda D_{1}$ and $D_{1} D_{2} w-$ $D_{2} D_{1} w=\left\{\partial_{t} \alpha_{2}-\partial_{z} \alpha_{1}+\left[\alpha_{2}, \alpha_{1}\right]-\lambda\left(t \partial_{z} \alpha_{2}-t \partial_{t} \alpha_{1}\right)\right\} w$.

In the remainder of this section, we study the space of solutions of (1.1). Our approach is based on a theory of transformation. We begin with a slight extension of the Birkhoff decomposition theorem due to K. Takasaki.

Lemma 2.3. The map $\mathscr{N}_{\mathbf{G}} \times \mathscr{P}_{G} \rightarrow G(\mathscr{A})$ given by $(h, q) \rightarrow h q^{-1}$ is bijective.
Proof. If $G=G L_{N}$, the lemma is nothing but [6, (3.17)]. Let ρ, V and v_{0} be as in the proof of Proposition 2.2. Let χ be a rational character of G such that $\chi(g) v_{0}=v_{0} \rho(g)$ for every $g \in G$. Also, without loss of generality, we may assume that χ is extended to a polynomial mapping on gl_{N}.

Let $h \in \mathscr{N}_{G L_{N}}$ and $q \in \mathscr{P}_{G L_{N}}$. Suppose that $g:=h q^{-1} \in G(\mathscr{A})$. We set $c=\chi(g)$. Then $c \in G L_{1}(\mathscr{A})$. Therefore there exist $a \in \mathscr{N}_{G L_{1}}$ and $b \in \mathscr{P}_{G L_{1}}$ such that $a^{-1} b=c$. Then $a v_{0} \rho(h)=b v_{0} \rho(q) \in \boldsymbol{C}[[t, z]] v_{0}$. This implies that h and $q \in G(\mathscr{A})$.

Proof of Theorem 1.1. Set $g=\gamma\left(z+\lambda t^{2} / 2+1 / 2 \lambda\right)$ for $\gamma \in G(C[[z]])$. Then $g=\exp \left(\lambda t^{2} \partial_{z} / 2\right) \gamma(z+1 / 2 \lambda) \in G(\mathscr{A})$. Lemma 2.3 implies that $g=w^{-1} p$ with $w \in \mathscr{N}_{G}$ and $p \in \mathscr{P}_{G}$. Then $\gamma(z+1 / 2 \lambda)=w(0, z, \lambda)^{-1} p(0, z, \lambda)$. Furthermore $p(0, z, \lambda)=\gamma(z)$ by the uniqueness of the Birkhoff decomposition.

Also $D_{i} g=0$. Hence $D_{i} w \cdot w^{-1}=D_{i} p \cdot p^{-1} \in \mathfrak{g}(C[[t, z]])$. Thus $D_{i} p(t, z, 0)=$ $\partial_{i} p(t, z, 0)=\alpha_{i} p(t, z, 0)$, where $\partial_{1}=\partial_{t}, \partial_{2}=\partial_{z}$ and $\alpha_{i}=D_{i} p \cdot p^{-1}$. In view of the linearization, we see that $\sigma:=p(t, z, 0)$ is a solution of (1.1) with $\sigma(0, z)=\gamma(z)$.

Example 2.4. Let $\gamma \in G(C[z])$ with $\operatorname{deg} \gamma=m$. Let $\Sigma_{|n| \leq m} h_{n} \lambda^{n}=\gamma(z+$ $\left.\lambda t^{2} / 2+1 / 2 \lambda\right)$. We set $a_{i j}=h_{i-j}, b_{i j}=h_{i-j-m-1}$ and $c_{i j}=h_{i+m+1-j} \in \operatorname{gl}_{N}(\boldsymbol{C}[t, z])$. Let $A=\left(a_{i j}\right)_{0 \leq i, j \leq m}, B=\left(b_{i j}\right)_{0 \leq i, j \leq m}$ and $C=\left(c_{i j}\right)_{0 \leq i, j \leq m} \in \mathfrak{g l}_{N(m+1)}(C[t, z])$. We define inductively $A_{0}=A$ and $A_{i}=A-C A_{i-1}^{-1} B$ for $i>0$. Set $B_{i}=B A_{i}^{-1}$ and $C_{i}=C A_{i}^{-1}$. Let $E_{0}=\left(1_{N}, 0, \cdots, 0\right) \in \bigoplus^{m} \mathrm{gl}_{N}(\boldsymbol{C})$ and ${ }^{t} E_{0}$ is the transpose of E_{0}. Then

$$
\sigma:=E_{0} A^{-1}\left(1+\sum_{k>0} B_{1} \cdots B_{k} C_{k-1} \cdots C_{0}\right)^{t} E_{0}
$$

is a solution of (1.1) with $\sigma(0, z)=\gamma(z)$.
In fact, if $\gamma\left(z+\lambda t^{2} / 2+1 / 2 \lambda\right)=w^{-1} p$ with $w \in \mathscr{N}_{G}$ and $p=\Sigma_{n \geq 0} p_{n} \lambda^{n} \in \mathscr{P}_{G}$, then

$$
\begin{equation*}
\left(p_{0}, p_{1}, \cdots\right)\left(a_{i j}\right)_{0 \leq i, j<\infty}=\left(1_{N}, 0, \cdots\right), \tag{2.5}
\end{equation*}
$$

and it is easy to solve the linear algebraic equation (2.5) since the matrix $\left(a_{i j}\right)_{0 \leq i, j<\infty}$ has the blocks of tridiagonal form

$$
\left[\begin{array}{llllllll}
A & B & & & & & & \\
C & A & B & & & & & \\
& C & A & B & & & & \\
& & C & \cdot & \cdot & & & \\
& & & & \cdot & \cdot & \cdot & \\
& & \\
& & & & \cdot & \cdot & \cdot & \\
& & & & & \cdot & \cdot & \\
& & & & & & \cdot & \\
& & & & & & \cdot & \cdot
\end{array}\right] .
$$

Definition 2.5. Let $\mathscr{S}(G)$ denote the space of solutions of (1.1). In view of Theorem 1.1, a pair $(w, p) \in \mathscr{N}_{G} \times \mathscr{P}_{G}$ is called a potential for $\sigma \in \mathscr{S}(G)$ if $D_{i} w \cdot w^{-1}=D_{i} p \cdot p^{-1}$ and if $p(t, z, 0)=\sigma$.

For $g \in G(\mathscr{A})$ and $(w, p) \in \mathscr{N}_{G} \times \mathscr{P}_{G}$, set $g \cdot(w, p)=(v, q p)$ with $v \in \mathscr{N}_{G}$, $q \in \mathscr{P}_{G}$ satisfying $g w^{-1}=v^{-1} g$. The map $G(\mathscr{A}) \times \mathscr{N}_{G} \times \mathscr{P}_{G} \rightarrow \mathscr{N}_{G} \times \mathscr{P}_{G}$ defined by $(g, w, p) \rightarrow g \cdot(w, p)$ is an action of $G(\mathscr{A})$ on $\mathscr{N}_{G} \times \mathscr{P}_{G}$. If (w, p) is a potential for $\sigma \in \mathscr{S}(G)$ and if $g \in G(\mathscr{A})$ satisfies $D_{i} g=0$, then $D_{i} v \cdot v^{-1}=q D_{i} w \cdot w^{-1} q^{-1}+$ $D_{i} q \cdot q^{-1}$. This implies that $(v, q p)$ is also a potential for a certain $\tau \in \mathscr{S}(G)$. Set $g \cdot \sigma=\tau$. Since $(g \cdot \sigma)(0, z)=g(z) \sigma(0, z)$, Proposition 2.2 implies that the map $\left\{g \in G(\mathscr{A}) ; D_{i} g=0\right\} \times \mathscr{S}(G) \rightarrow \mathscr{S}(G)$ given by $(g, \sigma) \rightarrow g \cdot \sigma$ is a transitive action of the group. Thus we can define an action of $G(C[[z]])$ on $\mathscr{S}(G)$ via the following isomorphism.

Proposition 2.6. We set $l(\gamma)=\gamma\left(z+\lambda t^{2} / 2+1 / 2 \lambda\right)$ for $\gamma \in G(C[[z]])$. Then t is an isomorphism: $G(C[[z]]) \rightarrow\left\{g \in G(\mathscr{A}) ; D_{i} g=0\right\}$.

Proof. We change the variables $t=t, z=x-\lambda t^{2} / 2$ and $\lambda=\lambda$. Then $\partial_{z}=\partial_{x}, \partial_{t}=\partial_{t}+\lambda t \partial_{x}$ and $\partial_{\lambda}=\partial_{\lambda}+t^{2} \partial_{x} / 2$. Hence $D_{1}=\partial_{t}$ and $D_{2}=\partial_{x}-\lambda t \partial_{t}+$ $2 \lambda^{2} \partial_{\lambda}$ with respect to the new variables.

Let $\psi=\Sigma_{n \in Z} \psi_{n} \lambda^{n} \in \mathfrak{g l}_{N}(\mathscr{A})$ satisfy $D_{i} \psi=0$. We set $\varphi(t, x, \lambda)=\psi(t, x-$ $\left.\lambda t^{2} / 2, \lambda\right)=\exp \left(-\lambda t^{2} \partial_{z} / 2\right) \psi(t, x, \lambda)$. Then φ is independent of t, since $D_{1} \varphi=$ $\partial_{t} \varphi=0$. Since $D_{2} \varphi=\left(\partial_{x}+2 \lambda^{2} \partial_{\lambda}\right) \varphi=0$, we have $\partial_{x} \varphi_{n}+2(n-1) \varphi_{n-1}=0$ in the expansion $\varphi=\Sigma_{n \in \mathcal{Z}} \varphi_{n} \lambda^{n}$. Hence $\varphi_{n}=0$ and $\varphi_{-n}=\partial_{x}^{n} \varphi_{0} / 2^{n} n$! for $n>0$, since $\varphi=\varphi(0, x, \lambda)=\psi(0, x, \lambda)$. Thus $\varphi=\varphi_{0}(x+1 / 2 \lambda)$ and $\psi=\varphi\left(t, z+\lambda t^{2} / 2, \lambda\right)$ $=\varphi_{0}\left(z+\lambda t^{2} / 2+1 / 2 \lambda\right)$.

Corollary 2.7. We have a unique potential for a solution of (1.1).
Proof. Let $(w, p) \in \mathscr{N}_{G} \times \mathscr{P}_{G}$ be a potential for $\sigma \in \mathscr{S}(G)$. Set $g=w^{-1} p$. Then $D_{i} g=0$. From Proposition 2.6, it follows that $g=\gamma\left(z+\lambda t^{2} / 2+1 / 2 \lambda\right)$
with $\gamma \in G(C[[z]])$. Since $w(0, z, \lambda) \gamma(z+1 / 2 \lambda)=p(0, z, \lambda)$, we see that $\gamma(z)=$ $p(0, z, \lambda)=\sigma(0, z)$. The corollary now follows from the uniqueness of the Birkhoff decomposition.

3. The Einstein-Maxwell fields

In this section, we study a $(1+1)$-dimensional reduction for the EinsteinMaxwell field equations. Those equations are expressed in terms of potentials due to F. J. Ernst $(u, v) \in C^{2}[[t, z]]$ as follows ([2]):

$$
\begin{equation*}
d(t * d(u, v))=f^{-1}(d u-\bar{v} d v) t * d(u, v), \quad 2 f=u+\bar{u}-|v|^{2}>0 \tag{3.1}
\end{equation*}
$$

Moreover, following M. Gürses \& B. C. Xanthopoulos [4], we shall identify (3.1) with a subclass of the chiral model (1.1) taking values in $S U(2,1)$. Let

$$
\sigma=f^{-1}\left[\begin{array}{ccc}
1 & i(f-\bar{u}) & \bar{v} \tag{3.2}\\
i(\bar{u}-f) & |u|^{2} & i u \bar{v} \\
v & -i \bar{u} v & f+|v|^{2}
\end{array}\right] .
$$

Then, by a direct calculation, we can check that (3.1) is equivalent to (1.1). Hence we identify the space \mathscr{M} of solutions of (3.1) with a subspace of $\mathscr{P}\left(S L_{3}\right)$. Let $J=\left[\begin{array}{ccc}-i & i & \\ & & 1\end{array}\right]$. Let $\mathscr{S} \mathscr{U}(2,1)=\left\{g \in S L_{3}(C[[z]]) ; g J^{\dagger} g=J\right\}$ and $\mathscr{U}(2)=$ $\left\{g \in \mathscr{S} \mathscr{U}(2,1) ; g^{\dagger} g=1\right\}$, where ${ }^{\dagger}$ denotes the Hermitian conjugation. We set $g \circ \sigma={ }^{\dagger}\left(g \cdot{ }^{\dagger}(g \cdot \sigma)\right)$ for $g \in S L_{3}(C[[z]])$ and $\sigma \in \mathscr{S}\left(S L_{3}\right)$, where \cdot denotes the action defined in $\S 2$. This new action makes \mathscr{M} into a homogeneous space of $\mathscr{S} \mathscr{U}(2,1)$, that is,

Theorem 3.1. Set $v(g)=g \circ 1$ for $g \in \mathscr{S} \mathscr{U}(2,1)$. Then v induces a bijection: $\mathscr{S} \mathscr{U}(2,1) / \mathscr{U}(2) \rightarrow \mathscr{M}$.

Proof. We set

$$
n(b, c)=\left[\begin{array}{ccc}
1 & 0 & 0 \\
b+i|c|^{2} / 2 & 1 & i \bar{c} \\
c & 0 & 1
\end{array}\right]
$$

for $b \in \boldsymbol{R}$ and $c \in \boldsymbol{C} . \quad$ Let $N=\{n(b, c) ; b \in \boldsymbol{R}, c \in \boldsymbol{C}\}$ and $A=\left\{\operatorname{diag}\left(a^{-1}, a, 1\right)\right.$; $a>0\}$. Then we have an Iwasawa decomposition $\operatorname{SU}(2,1)=\operatorname{NAU}(2)$. We set $u=a^{2}+|c|^{2} / 2-i b, v=c$ and $s=n(b, c) \operatorname{diag}\left(a^{-1}, a, 1\right)$ for $a>0, b \in \boldsymbol{R}$ and $c \in C$: Then we see that $s^{\dagger} s$ is of the same form as σ in (3.2). This implies that $v(\mathscr{P U}(2,1))=\mathscr{M}$, since $v(g)=g^{\dagger} g$ on $t=0$.

References

[1] L. Crane, Action of the loop group on the self-dual Yang-Mills equations, Comm. Math. Phys., 110(1987), 391-414.
[2] F. J. Ernst, New formulation of the axially symmetric gravitational field problem. II, Phys. Rev., 168(1968), 1415-1417.
[3] R. Geroch, A method for generating new solutions of Einstein's equations. II, J. Math. Phys., 13(1972), 394-404.
[4] M. Gürses \& B. C. Xanthopoulos, Axially symmetric, static self-dual $\operatorname{SU}(3)$ gauge fields and stationary Einstein-Maxwell metrics, Phys. Rev. D, 26(1982), 1912-1915.
[5] K. Nagatomo, The Ernst equation as a motion on a universal Grassmann manifold, Comm. Math. Phys., 122(1989), 439-453.
[6] K. Takasaki, A new approach to the self-dual Yang-Mills equations II, Saitama Math. J., 3(1985), 11-40.
[7] L. Witten, Static axially symmetric solutions of self-dual $S U(2)$ gauge fields in euclidean four-dimensional space, Phys. Rev. D, 19(1979), 718-720.

Department of Mathematics,
Faculty of Science,
Hiroshima University

